
GE 461
Introduction to
Data Science
Spring 2023

Deep Learning

Hamdi Dibeklioğlu

Slide Credits: F. Li, A. Karpathy, J. Johnson, G. Cinbis

2

A few different ideas:

• (Hierarchical) Compositionality

– Cascade of non-linear transformations

– Multiple layers of representations

• End-to-End Learning

– Learning (goal-driven) representations

– Learning feature extraction

• Distributed Representations

– No single neuron “encodes” everything

– Groups of neurons work together

Slide by Dhruv Batra

So, What is DEEP Machine Learning

A few different ideas:

• (Hierarchical) Compositionality

– Cascade of non-linear transformations

– Multiple layers of representations

• End-to-End Learning

– Learning (goal-driven) representations

– Learning feature extraction

• Distributed Representations

– No single neuron “encodes” everything

– Groups of neurons work together

Slide by Dhruv Batra

So, What is DEEP Machine Learning

Given a library of simple functions

 Compose a

complicated function

Slide by Dhruv Batra

Building A Complicated Function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

Compose a

complicated function

Idea 1: Linear Combinations

Building A Complicated Function

Slide by Dhruv Batra

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

Compose a

complicated function

Building A Complicated Function

Slide by Dhruv Batra

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Idea 2: Compositions

• Deep Learning

Given a library of simple functions

Compose a

complicated function

Building A Complicated Function

Slide by Dhruv Batra

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Idea 2: Compositions

• Deep Learning

Trainable

Classifier

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

Slide by Dhruv Batra Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Deep Learning = Hierarchical Compositionality

A few different ideas:

• (Hierarchical) Compositionality

– Cascade of non-linear transformations

– Multiple layers of representations

• End-to-End Learning

– Learning (goal-driven) representations

– Learning feature extraction

• Distributed Representations

– No single neuron “encodes” everything

– Groups of neurons work together

Slide by Dhruv Batra

So, What is DEEP Machine Learning

• “Shallow” models

• Deep models (especially supervised deep learning)

Trainable

Feature-

Transform /

Classifier

Trainable

Feature-

Transform /

Classifier

Learned Internal Representations

hand-crafted

Feature Extractor

fixed

“Simple” Trainable

Classifier

learned

“Shallow” vs Deep Learning

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Slide by Dhruv Batra

Trainable

Feature-

Transform /

Classifier

A few different ideas:

• (Hierarchical) Compositionality

– Cascade of non-linear transformations

– Multiple layers of representations

• End-to-End Learning

– Learning (goal-driven) representations

– Learning feature extraction

• Distributed Representations

– No single neuron “encodes” everything

– Groups of neurons work together

Slide by Dhruv Batra

So, What is DEEP Machine Learning

• Local vs Distributed

Slide by Dhruv Batra

Slide Credit: Moontae Lee

Distributed Representations Toy Example

Distributed Representations Toy Example
• Can we interpret each dimension?

Slide by Dhruv Batra

Slide Credit: Moontae Lee

Local

Distributed

Power of distributed representations!

Slide by Dhruv Batra

Slide Credit: Moontae Lee

- Loss function

- Optimization

- Convolutional Nets

- Recurrent Nets

Loss Functions

● There are many different loss functions

● Log Loss / Cross Entropy

● Hinge Loss

● Square Loss

Loss functions

● 𝑠𝑗 – Computed score of the training example for jth class.

● y(i) - Ground truth label for ith training example.

Classification Losses
Hinge Loss/Multi class SVM Loss

● 𝑠𝑗 – Computed score of the training example for jth class.

● y(i) - Ground truth label for ith training example.

Classification Losses
Cross Entropy Loss/Negative Log Likelihood

● n - Number of training examples.

● i - ith training example in a data set.

● y(i) - Ground truth label for ith training example.

● y_hat(i) - Prediction for ith training example.

Regression Losses
Mean Square Error/Quadratic Loss/L2 Loss

● n - Number of training examples.

● i - ith training example in a data set.

● y(i) - Ground truth label for ith training example.

● y_hat(i) - Prediction for ith training example.

Regression Losses
Mean Absolute Error/L1 Loss

● n - Number of training examples.

● i - ith training example in a data set.

● y(i) - Ground truth label for ith training example.

● y_hat(i) - Prediction for ith training example.

Regression Losses
Mean Bias Error

\lambda = regularization strength
(hyperparameter)

Some reg. types:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

…

Loss𝑖

Weight Regularization

L2 regularization: motivation

Which one does L2

regularization

choose?

L2 regularization: motivation

Why does it make

sense?

L2 regularization: motivation

Multi-task Learning

Hard parameter sharing for
multi-task learning in deep neural

networks

Soft parameter sharing for multi-task learning in deep
neural networks

Jointly minimize the losses of different tasks

Multi-task Learning

Hard parameter sharing for
multi-task learning in deep neural

networks

Soft parameter sharing for multi-task learning in deep
neural networks

Jointly minimize the losses of different tasks (combine loss terms)

𝐿 = 𝑙𝑎 + 𝛼𝑙𝑏 + 𝛽𝑙𝑐 +⋯

Metric/Contrastive Learning
Learn distinctiveness

1.A distance-based loss

function (as opposed

to prediction error-based

loss functions like Logistic

loss or Hinge loss used in

Classification).

2.Like any distance-based

loss, it tries to ensure that

semantically similar

examples are embedded

close together.

3.Defined based on pairs (+/-

class pairs) or groups of

samples.

𝐿𝑖 = 𝑤
𝑇𝑥𝑖,𝑐1 −𝑤

𝑇𝑥𝑗,𝑐1

𝑖≠𝑗

− 𝑤𝑇𝑥𝑖,𝑐1 − 𝑤
𝑇𝑥𝑘,𝑐2

𝑘

Linear score function:

2-layer Neural Network:

31

Neural Networks

x h W1 s W2

10 3072 100

32

Linear score function:

2-layer Neural Network:

Neural Networks

 Linear score function:

 2-layer Neural Network

or 3-layer Neural Network

33

Neural Networks

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

“Fully-connected” layers

Neural Networks: Architectures

more neurons = more capacity

Setting the number of layers and their sizes

Do not use size of neural network as a regularizer. Use stronger regularization instead:

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they

have nice interpretation as a

saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill”

the gradients

2. Sigmoid outputs are

not zero-centered

3. exp() is a bit computationally

expensive

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]

Activation Functions

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Activation Functions

- Not zero-centered output

- An annoyance:

 hint: what is the gradient when x < 0?

Leaky ReLU

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]

 [He et al., 2015]
Activation Functions

Leaky ReLU

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]

 [He et al., 2015]
Activation Functions

backprop into \alpha

(parameter)

Parametric Rectifier (PReLU)

- Does not have the basic form of dot product ->

nonlinearity

- Generalizes ReLU and Leaky ReLU

- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
Maxout “Neuron”

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU / Maxout

- Try out tanh but don’t expect much

- Don’t use sigmoid

In practice

Parameter Updates

f

activations

gradients

“local gradient”

simple gradient descent update

Training a neural network, main loop:

Image credits: Alec Radford

Optimize the parameters

using one of the SGD

variants

Q: What is the trajectory along which we converge

towards the minimum with SGD?

50

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge

towards the minimum with SGD?

51

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge

towards the minimum with SGD? very slow progress

along flat direction, jitter along steep one

52

Suppose loss function is steep vertically but shallow horizontally:

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).

- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

53

Momentum Update

- Allows a velocity to “build up” along shallow (yet consistent) directions

- Velocity becomes damped in steep (inconsistent) direction due to quickly

changing sign

54

Momentum Update

SGD
vs
Momentum

notice momentum

overshooting the

target, but overall

getting to the

minimum much faster.

55

Convolutional Neural Networks

32

3

32x32x3 image

5x5x3 filter
32

convolve (slide) over all

spatial locations

activation map

1

28

28

Convolution Layer

57

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

58

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

59

Preview:

[From recent Yann

LeCun slides]

60

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 28 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

7

7x7 input (spatially)

assume 3x3 filter

applied with stride 1

7

A closer look at spatial dimensions:

62

7

A closer look at spatial dimensions:

63

7x7 input (spatially)

assume 3x3 filter

applied with stride 1

7

7

A closer look at spatial dimensions:

64

7x7 input (spatially)

assume 3x3 filter

applied with stride 1

7

7

A closer look at spatial dimensions:

65

7x7 input (spatially)

assume 3x3 filter

applied with stride 1

7

 5x5 output

7

A closer look at spatial dimensions:

66

7x7 input (spatially)

assume 3x3 filter

applied with stride 1

7

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

67

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

68

7x7 input (spatially)

assume 3x3 filter

applied with stride 2
 3x3 output!

7

7

A closer look at spatial dimensions:

69

N

N

F

F

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

…

70

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

In practice: Common to zero pad the border

71

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

In practice: Common to zero pad the border

72

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

In general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

In practice: Common to zero pad the border

73

64

56

56
1x1 CONV

with 32 filters

32

56

56

(each filter has size

1x1x64, and performs a

64-dimensional dot

product)

1x1 convolution layers

- makes the representations smaller and more manageable

- operates over each activation map independently:

Pooling layer

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters

and stride 2 6 8

3 4

MAX Pooling

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

Fully Connected Layer (FC layer)

[He at al., 2015]

Residual Networks

224x224x3

[He at al., 2015]

Residual Networks

[He at al., 2015]

Residual Networks

224x224x3

During back-prop,

gradient is flows

through layers

without vanishing

[He at al., 2015]

Residual Networks

Recurrent Neural Networks

83

Recurrent Networks offer a lot of flexibility:

Vanilla Neural Networks

84

Recurrent Networks offer a lot of flexibility:

e.g. Image Captioning

image -> sequence of words

85

Recurrent Networks offer a lot of flexibility:

e.g. Sentiment Classification

sequence of words -> sentiment

86

Recurrent Networks offer a lot of flexibility:

e.g. Machine Translation

seq of words -> seq of words

87

Recurrent Networks offer a lot of flexibility:

e.g. Video classification on frame level

88

Recurrent Neural Network

x

RNN

89

Recurrent Neural Network

x

RNN

y

usually want to

predict a vector at

some time steps

90

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

91

Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

Notice: the same function and the same set

of parameters are used at every time step.

92

x

RNN

y

The state consists of a single “hidden” vector h:

93

x

RNN

y

(Vanilla) Recurrent Neural Network

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

x

RNN

y

Objective:
Predict the next character given the previous characters

Slide adapted from Antonio Bonafonte

 One-hot (one-of-n) encoding

= [1,0,0, ..., 0]

= [0,1,0, ..., 0]

= [0,0,1, ..., 0]

Example: letters. |V| = 30

‘a’: xT

‘b’: xT

‘c’: xT

.

.

.

‘.’: x
T
=[0,0,0, ..., 1]

95

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

96

Objective:
Predict the next character given the previous characters

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

97

Objective:
Predict the next character given the previous characters

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

98

Objective:
Predict the next character given the previous characters

99

…

…

…

Varying length input

Forward and

backward

passes are

conducted on

consequent

subsequences

iteratively

x

RNN

y

100

101

train more

train more

train more

at first:

102

103

A generalization of RNN. At l=1:

time

h l-1 = x
t t

●

● Wl
 = [Wxh Whh]

It is equivalent to:

depth

RNN:

depth

LSTM:

time

RNN:

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

LSTM - main idea

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from

before (h)

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4n 4*n

● c: cell state

● h: hidden state (cell output)
● i: input gate, weight of

acquiring new information

● f: forget gate, weight of

remembering old information

● g: transformed input ([-1,+1])
● o: output gate, decides values

to be activated based on

current memory

x

h

vector from

before (h)

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4n 4*n

f decides the degree

of preservation for

cell state, by scaling

it with a number in

[0,1]

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from

before (h)

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4n 4*n

g is a transformation

of input / hidden

state

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from

before (h)

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4n 4*n

Add g into the cell state,

weighted by i

(weight of acquiring new

information)

Alternative interpretation:

i*g decouples the "influence

of g" and "g itself".

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4*n

New hidden state is a

scaled version of

tanh(cell state).

o: output gate, decides

values to be activated

based on current memory

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from

before (h)

4n

x

h

W

i

f

o

g

vector from

below (x)

sigmoid

sigmoid

tanh

sigmoid

4n x 2n 4*n

Q: Why tanh?

A: Not very crucial,

sometimes not used

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from

before (h)

4n

f

cell

state c

x

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell

state c

f

x

i g

x

+

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell

state c

f

x +

tanh

o x

h

c

i g

x

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell

state c

f

x +

tanh

o x

h

c

i g

x

higher layer, or

prediction

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Understanding gradient flow dynamics

117

Backprop signal

Understanding gradient flow dynamics

Backprop signal video: http://imgur.com/gallery/vaNahKE

In RNN, the gradient vanishes much more quickly as we backprop
from the last time step towards the first one

Therefore, RNN here cannot learn long time dependencies

118

http://imgur.com/gallery/vaNahKE

Understanding gradient flow dynamics

RNN without any inputs

119

Back-propagation signal is repeatedly multiplied by Whh.

Understanding gradient flow dynamics

RNN without any inputs

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

120

if the largest eigenvalue is < 1, gradient will vanish

if the largest eigenvalue is > 1, gradient will explode

Understanding gradient flow dynamics

RNN without any inputs

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

121

can control vanishing with LSTM

can control exploding with gradient clipping

122

Vanishing gradient problem
An example how vanishing gradient problem can affect RNNs:

f

f

RNN
More prone to the
vanishing gradient
problem

state

f

f

f

LSTM
(ignoring
forget gates)

+ + +

123

f

124

Recall:

“PlainNets” vs. ResNets
ResNet is to PlainNet what LSTM is to RNN, kind of.

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

To address this problem, use

● better activation function (eg, ReLU)

● proper initialization (W=Identity, bias=zeros) to prevent W

from shrinking the gradients

● replace RNN cells with LSTM or other gated cells (LSTM variants)

to control what information is passed through

Vanishing gradient problem summary

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh

125

