GE461: applications in genomics

Can Alkan EA509 calkan@cs.bilkent.edu.tr

Genomics: the "new" Big Data

PERSPECTIVE

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

1 Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 2 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 3 Carl R. Woese Institute for Genomic Biology & Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 3 Carl R. Woese Institute for Genomic Biology & Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 4 School of Library and Information Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 5 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America, 6 Carl R. Woese Institute for Genomic Biology, Department of Entomology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

* mschatz@cshl.edu (MCS); sinhas@illinois.edu (SS); generobi@illinois.edu (GER)

Stephens et al. PLoS Biology, 2015

Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1–17 PB/year	1–2 EB/year	2–40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, <2 trillion central processing unit (SPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement
doi:10.1371/jourr	nal.pbio.1002195.t001			

Estimation for 2025

Data size & processing

- Human reference genome: 3 GB
- One sequenced human sample (average):
 - 150 GB raw (compressed)
 - 150 GB "aligned" (analysis-ready)
 - ~20 CPU days
- One human (current) clinical sequencing data
 - □ 30-40 GB aligned
 - ~1 CPU week

Genomics and healthcare

Stark et al., AJHG 2019

Publicly available data

- Two "main" sources for genomics/transcriptomics:
 - NCBI Sequence Read Archive (SRA)
 - > 14 PB public / free
 - > 36 PB total (~22 PB controlled access)
 - EBI Nucleotide Archive (ENA)
 - > 10 PB

Genomics: many use cases

- Catalog "normal" human genome variation
 - Population genetics / analysis of migration
 - Filtering data set for disease studies
- Genetic diseases
 - Find genetic causes of diseases
 - Guide diagnostics
 - Guide treatment
 - Identify cancer type / subtype

- Infection / outbreaks
 - Bacterial infections:
 - Guide antibiotics treatment
 - Sepsis: find cause & treat
 - Viral disease outbreaks:
 - Guide vaccine development
 - SARS-CoV-2!
 - Tracking new mutations
- Pharmacogenomics
 - Drug efficacy
 - Warfarin (blood thinner)
 - VKORC1 and CYP2C9 gene mutations -> increased sensitivity

SARS-CoV-2 analysis in action

Genomic epidemiology of novel coronavirus - Global subsampling

🎒 Built with nextstrain/ncov. Maintained by the Nextstrain team. Enabled by data from GISAID.

Showing 3118 of 3118 genomes sampled between Dec 2019 and Feb 2022.

https://nextstrain.org/ncov/global

The 23andMe cohort is the largest re-contactable research database of genotypic and phenotypic information in the world. At 23andMe, we believe our research platform can help discover novel treatments for patients with serious unmet medical needs.

Data science in genomics industry

- 23andMe: ancestry, therapeutics
- Insitro: drug discovery, pharmacogenomics
- Regeneron: drug discovery, precision medicine
- Pretty much all major drug companies
 - Merck, Novartis, Bristol Myers-Squibb, Pfizer,...
- Many more

Bioinformatics: methods for -omics

- Bioinformatics: Development of methods based on computer science for problems in biology &medicine
 - Sequence analysis (combinatorial and statistical/probabilistic methods)
 - Graph theory
 - Data mining
 - Database
 - Statistics
 - Image processing
 - Visualization
 - •••••

CS 481 and CS 681

All life depends on 3 critical molecules

- DNAs Genomics
 - Hold information on how cell works
 - RNA for retroviruses
- RNAs Transcriptomics
 - Act to transfer short pieces of information to different parts of cell
 - Provide templates to synthesize into protein
- Proteins

Proteomics

- Form enzymes that send signals to other cells and regulate gene activity
- □ Form body's major components (e.g. hair, skin, etc.)
- For a computer scientist, these are all strings derived from three alphabets.

Alphabets

DNA: $\sum = \{A, C, G, T\}$ A pairs with T; G pairs with C

RNA:

 $\Sigma = \{A, C, G, U\}$ A pairs with U; G pairs with C

Protein:

$$\begin{split} &\sum = \{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y\} \ and \\ &B = N \mid D \\ &Z = Q \mid E \\ &X = any \end{split}$$

GENOMIC VARIATION: CHANGES IN DNA SEQUENCE

SAMPLE USE CASE

Human genome variation

- Genomic variation
 - Changes in DNA sequence
- Epigenetic variation
 - Methylation, histone modification, etc.

APP GADEWICK

Human genetic variation

Types of genetic variants

How do we assay them?

Size range of genetic variation

- Single nucleotide (SNPs)
- Few to ~50bp (small indels, microsatellites)
- >50bp to several megabases (structural variants):
 - Deletions
 - Insertions

CNVs

- Novel sequence
- Mobile elements (Alu, L1, SVA, etc.)
- Segmental Duplications
 - Duplications of size \geq 1 kbp and sequence similarity \geq 90%
- <u>Inversions</u>
- Translocations
- Chromosomal changes

SNPs & indels

SNP: Single nucleotide polymorphism (substitutions) **Short indel**: Insertions and deletions of sequence of length 1 to 50 basepairs

reference:
sample:CAC
$$A$$
C A C G GT G C G C $-$ TSNPdeletioninsertion

- Neutral: no effect
- Positive: increases fitness (resistance to disease)
- Negative: causes disease
- Nonsense mutation: creates early stop codon
- Missense mutation: changes encoded protein
- Frameshift: shifts basepairs that changes codon order

Short tandem repeats

reference: sample:

CAGCAGCAGCAG CAGCAGCAGCAGCAG

- Microsatellites (STR=short tandem repeats) 1-10 bp
 - Used in population genetics, paternity tests and forensics
- Minisatellites (VNTR=variable number of tandem repeats): 10-60 bp
- Other satellites
 - Alpha satellites: centromeric/pericentromeric, 171bp in humans
 - Beta satellites: centromeric (some), 68 bp in humans
 - Satellite I (25-68 bp), II (5bp), III (5 bp)
- Disease relevance:
 - Fragile X Syndrome
 - Huntington's disease

Chromosomal changes

- "Microscope-detectable"
- Disease causing or prevents birth
- Monosomy: 1 copy of a chromosome pair
- Uniparental disomy (UPD): Both copies of a pair comes from the same parent
- Trisomy: Extra copy of a chromosome
 - chr21 trisomy = Down syndrome

Genetic variation among humans

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

Nature, 2015

Genetic variation among humans

Table 1 | Median autosomal variant sites per genome

	AFR 661 8.2		AMR 347 7.6		EAS 504 7.7		EUR 503 7.4		SAS 489 8.0	
Samples Mean coverage										
N	Var. sites	Singletons								
SNPs Indels	4.31M 625k	14.5k	3.64M 557k	12.0k	3.55M 546k	14.8k	3.53M 546k	11.4k	3.60M 556k	14.4k
Large deletions CNVs	1.1k 170	5 1	949 153	5 1	940 158	7	939 157	5 1	947 165	5 1
MEI (Alu) MEI (L1)	1.03k	0	845	0	899	1	919	0	889	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
Inversions	12	0	9	0	10	0	9	0	11	0
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR Promoter	37.2k 102k	168 430	30.8k 84.3k	136 332	30.0k 81.6k	169 425	30.0k 82.2k	129 336	30.7k 84.0k	168 430
Insulator Enhancer TFBSs	70.9k 354k 927	248 1.32k 4	59.0k 295k 759	199 1.05k 3	57.7k 289k 748	252 1.34k 4	57.7k 288k 749	189 1.02k 3	59.1k 295k 765	243 1.31k 3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
GWAS ClinVar	2.00k 28	0	2.07k 30	0	1.99k 24	0	2.08k 29	0	2.06k 27	0

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

Genetic variation are "shared"

Kim et al. Nature, 2009

PROJECTS FOR GENOMIC VARIATION DISCOVERY

International HapMap Project

- Determine genotypes & haplotypes of 270 human individuals from 3 diverse populations:
 - Northern Americans (Utah / Mormons)
 - Africans (Yoruba from Nigeria)
 - Asians (Han Chinese and Japanese)
- 90 individuals from each population group, organized into parent-child trios.
- Each individual genotyped at ~5 million roughly evenly spaced markers (SNPs and small indels)

Human Genome Diversity Panel

- More extensive set of genomic variation
- One aim is to build DNA resource libraries for large scale discovery & genotyping projects
- 1.050 human individuals from 52 populations

Initial HapMap and HGDP did not sequence the genomes of any samples.

ARTICLE

doi:10.1038/nature18964

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

Mallick et al., 2016

Why sequence whole genomes?

- SNP/indel/arrayCGH platforms are mainly designed for individuals of West European descent
- For a disease common in somewhere else, like India:
 - Variants at high frequency in India may not be represented in the available platforms
 - Genome is a big entity; SNP/indel/arrayCGH can not cover the entire genome:
 - Largest has 2.1 million markers (compare to 3 billion)

High Throughput Sequencing

- 2007: "Sanger"-based capillary sequencing; one human genome (WGS): ~ \$10 million (Levy et al., 2007)
- 2008: First "next-generation" sequencer 454 Life Sciences; genome of James Watson: ~\$2 million (Wheeler et al., 2008)
- 2008: The Illumina platform; genome of an African (Bentley et al, 2008) and an Asian (Wang et al., 2008): ~\$200K each
- 2009: The SOLiD platform: ~\$200K
- Today with the Illumina platform: ~\$1K/ genome
- Others: Oxford Nanopore, Pacific Biosciences SMRT

Sequencing-based projects

- The 1000 Genomes Project Consortium (<u>www.1000genomes.org</u>)
 - Large consortium: groups from USA, UK, China, Germany, Canada
 - 2.504 humans from 29 populations
- Independent
 - South African (Schuster et al., 2010), Korean, Japanese, UK (UK100K project), Ireland, Netherlands (GoNL project), France, US All of Us (> 1 million), UK Biobank (> 500K) ...
- Cancer:
 - □ TCGA: >500 cases of 20 tumor types; 1.2 PB as of 2016
 - ICGC: > 20K samples (different types); 1.7 PB
- Ancient DNA: Neandertal (Green et al., 2010); Denisova (Reich et al., 2010); Çatalhöyük (METU)

DNA sequencing

How we obtain the sequence of nucleotides of a species

...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG ACTGATTTAGATACCTGAC TGATTTTAAAAAAATATT...

HIGH THROUGHPUT SEQUENCING

Human genome reference

- 1986: Announced (USA+UK)
- 1990: Started
- 1999: Chromosome 22 sequenced
- 2001: First draft
- 2004: Finished

4 human samples, 14 years, 3-10 billion dollars

Current version: hg38

https://www.ncbi.nlm.nih.gov/grc

Chromosomes 1-22, X, Y, MT Alternative haplotypes HLA haplotypes

Whole Genome Shotgun sequencing

Whole Genome Shotgun sequencing

HTS Technologies

- Short read:
 - Illumina (Solexa): current market leader
 - GAIIx, HiSeq2000, MiSeq, HiSeq2500, NovaSeq
 - Sequencing by synthesis
- Long Read:
 - Pacific Biosciences Single Molecule Real Time
 - RSII, Sequel
 - Oxford Nanopore Technologies:
 - MinION, Flongle, PromethION, GridION

Fundamental informatics challenges

1. Interpreting machine readouts – base calling, base error estimation

2. Data visualization

3. Data storage & management Gzip compressed raw data for one human genome > 100 GB (Illumina)

Informatics challenges (cont'd)

4. SNP, indel, and structural variation discovery

5. De novo Assembly

CURRENT PLATFORMS

Features of HTS data

- Short sequence reads
 - 150 300 bp Illumina
- Long, but error prone sequence reads
 - Average ~50 Kb PacBio 12% error
 - □ Up to 1 Mb ONT 20% error
- Huge amount of sequence per run
 - □ Up to terabases per run (3 Tbp for Illumina/NovaSeq 6000)
- Huge number of reads per run
 - Up to billions
- Higher error (compared with Sanger)
 - Illumina: mostly substitutions
 - PacBio / ONT: mostly indels

Whole Genome Sequencing

Sequencing technologies

Short-Read

Illumina

- 100-200bp
- · Paired-end
- Billions of reads
- < 0.1%
 error

Long Read

PacBio and Oxford Nanopore

- > 10 Kb, up to 1 Mb
- Single-end
- Hundreds of millions of reads
- 5-12% error indel dominated
 - HiFi: 1% error

Long Range

10X + Illumina

- 100-200bp
- Paired-end
- Billions of reads
- < 0.1% error
- Barcoded: 30-50
 Kb molecule range

Illumina

- Current market leader
- Based on sequencing by synthesis
- Current read length 150-300bp
- Paired-end sequencing
- Error ~0.1%
 - Substitution errors dominate
- Throughput: Up to 3 Tbp in one run (2 days)
- Cheapest sequencing technology
 - □ Cost: ~ \$1,000 per human

Pacific Biosciences

- "Third generation"; single molecule real time sequencing (SMRT)
- Phosphates are labeled. Watches DNA polymerase in real-time while it copies single DNA molecules.
- Premise: long sequence reads in short time (median 60 Kbp)
- Errors: ~12%; indel dominated
 - □ HiFi: shorter reads with 1% error
- ~\$ 3,000 / human

Pacific Biosciences

- For any DNA polymerase you can read a total of ~60 kb (median) sequence
- Two sequencing protocols:
 - CLR: single read
 - HiFi: Make a circle, re-read the same molecule
 5-6 times
 - Multiple sequence alignment to correct errors
 - Median length = 60000 / 6= 10 Kbp
 - > 99% accuracy

Nanopore sequencing

- Up to 2 Mbp reads
 - 5-20% error, indel dominated
- Real-time analysis supported
- RNN-based basecallers

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions @

Damla Senol Cali 🗷, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼

Nanopore sequencing

This was used to sequence the first 2019-nCoV genome

HTS: Computational Challenges

Data management

- □ Files are very large; compression algorithms needed
- Read mapping
 - Finding the location on the reference genome
 - All platforms have different data types and error models
 - Repeats!!!!
- Variation discovery
 - Depends on mapping
 - Again, all platforms has strengths and weaknesses
- De novo assembly
 - It's very difficult to assemble short sequences and/or long sequences with high errors

Data science pipeline

- 1. Identify problem
- 2. Locate data sources
- 3. Collect data
- Prepare data (integrate, transform, clean, filter, aggregate)
- 5. Build model
- 6. Evaluate model
- 7. Communicate results

1) Identify problem

Are there mobile element insertion mutations that cause breast cancer?

2) Locate data sources / normal

dbSNP

dbSNP contains human single nucleotide variations, microsatellites, and small-scale insertions and deletions along with publication, population frequency, molecular consequence, and genomic and RefSeq mapping information for both common variations and clinical mutations.

dbVar

dbVar is NCBI's database of human genomic Structural Variation — large variants >50 bp including insertions, deletions, duplications, inversions, mobile elements, translocations, and complex variants

www.internationalgenome.org

https://www.ncbi.nlm.nih.gov/snp/

https://www.ncbi.nlm.nih.gov/dbvar/

genome aggregation database

https://gnomad.broadinstitute.org/

Tumors and tumor/normal pairs

3) Collect data

- Some datasets (i.e., TCGA/ICGC) require access permissions
 - Legal documents, ethical review boards
- Most data available on AWS and GCP
- For local access, download:
 - □ FTP (will take a long time)
 - Aspera Connect (200-300 Mbit/sec)
 - NCBI and ENA have Aspera servers

4) Prepare data

Depends on input data type:

- Raw reads (FASTQ):
 - Map to human reference genome using BWA-MEM
 - Convert to BAM, sort, remove duplicates with SAMTools, sambamba, Picard
- Aligned reads (BAM/CRAM)
 - Check if the human reference genome version is correct. If not, extract FASTQ, repeat the step above
- Variation calls (VCF)
 - No preparation necessary, compare across samples
 - Very likely that variation types you are interested in are not listed

TE Consensus (Alu, L1, etc.)

- Strand rules: MEI-mapping "+" reads and MEI mapping "-" reads should be in different orientations:
 - +/- and -/+ clusters; or +/+ and -/- clusters (inverted MEI)
 - Span rules: A=(A1, A2); B=(B1, B2); C=(C1, C2); D=(D1, D2)
 - |A1-B1| ~ |A2-B2| and |C1-D1| ~ |C2-D2| (simplified; we have 8 rules)
- Location and 2-breakpoint rule:

 $\exists loc, \forall PE : RightMost(+) < loc < LeftMost(-)$

Illumina paired-end data only

Hormozdiari et al., Bioinformatics 2010

6) Evaluate model

- Implement your new algorithm, or use:
 TARDIS, MELT, Tangram, Mobster
- Run on normal genomes and tumors
- Filter MEI predictions in tumors that are also found in normal genomes
- Calculate variant allele frequency
 - Require high VAF
- Check if any hit oncogenes, or other functionally important regions of the genome

7) Communicate results

Create VCF file

- Calculate all necessary statistics
 - Minor Allele Frequency
 - Variant Allele Frequency
 - Genes or functionally relevant regions
 - Pathway analyses
- Generate plots (genome.ucsc.edu)
- Release data