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So, What is DEEP Machine Learning

A few different ideas:

* (Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

 End-to-End Learning
— Learning (goal-driven) representations
— Learning feature extraction

* Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together
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Building A Complicated Function

Given a library of simple functions

Compose a

-

complicated function
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Building A Complicated Function

Given a library of simple functions

ldea 1: Linear Combinations
Compose a

-

complicated function

J(x) = Z a;g;(x)
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Building A Complicated Function

Given a library of simple functions

ldea 2: Compositions
Compose a

; * Deep Learning

complicated function




Building A Complicated Function

Given a library of simple functions

ldea 2: Compositions
Compose a

; * Deep Learning

complicated function

f(z) = log(cos(exp(sin®(z))))

4,| sin(x)H x> Hexp(x)Hcos(x)H log(x)l




Deep Learning = Hierarchical Compositionality

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier

Slide by Dhruv Batra Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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“Shallow” vs Deep Learning

 “Shallow” models

hand-crafted “Simple” Trainable
— y -
Feature Extractor Classifier
fixed learned

« Deep models (especially supervised deep learning)

Trainable Trainable Trainable
Feature- ) Feature- Feature-

Transform / Transform / [ % Transform / —>
Classifier Classifier f Classifier

Slide by Dhruv Batra Learned Internal Representations
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Distributed Representations

* Local vs Distributed
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Distributed Representations

« Can we interpret each dimension?

no pattern
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Power of distributed representations!
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Loss function
Optimization
Convolutional Nets

Recurrent Nets



. oss Functions



Loss functions

e There are many different loss functions

4

e Log Loss/ Cross Entropy
e Hinge Loss
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Classification Losses
Hinge Loss/Multi class SVM Loss

SV M Loss = Z maz(0,s; — s, + 1)
IFYi

e 5; —Computed score of the training example for jth class.

® (i) - Ground truth label for ith training example.



Classification Losses
Cross Entropy Loss/Negative Log Likelihood

e’Yi
CrossEntropyLoss = — log( > o )
J

e 5; —Computed score of the training example for jth class.

® (i) - Ground truth label for ith training example.



Regression Losses
Mean Square Error/Quadratic Loss/L2 Loss

n - Number of training examples.
i - ith training example in a data set.
y(i) - Ground truth label for ith training example.

y_hat(i) - Prediction for ith training example.



Regression Losses
Mean Absolute Error/L1 Loss

n

n - Number of training examples.
i - ith training example in a data set.
y(i) - Ground truth label for ith training example.

y_hat(i) - Prediction for ith training example.



Regression Losses

Mean Bias Error

n

n - Number of training examples.
i - ith training example in a data set.
y(i) - Ground truth label for ith training example.

y_hat(i) - Prediction for ith training example.



Weight Regularization

I = % Zfil LOSSi T )\R(W)

Some reg. types:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

\lambda = regularization strength

" (hyperparameter)

RW) =32, 3 Wy,
(W) Zk Zz IWkl|
R(W) = 320, 32, BWE, + Wiy



L2 regularization: motivation

z=[1,1,1,1]

w; = [1,0,0,0]
we = [0.25,0.25,0.25, 0.25]



L2 regularization: motivation

= [T, L, I, 1]
Which one does L2
W1 = [17 0, an] regularization
wy = [0.25,0.25,0.25,0.25] choose?
! T
w; T =w,x =1



L2 regularization: motivation

z=[1,1,1,1]

Why does it make
sense?

w; = [1,0,0,0]

wy = [0.25,0.25,0.25,0.25]
T f &
1 2

wrr =wsr=1



Multi-task Learning

Jointly minimize the losses of different tasks

Task Al |[Task Bl [Task C| Task-
f i t specific
layers
T Shared
i layers

Hard parameter sharing for
multi-task learning in deep neural
networks

Task A

Task B

Task C

Constrained
layers

Soft parameter sharing for multi-task learning in deep
neural networks



Multi-task Learning

Jointly minimize the losses of different tasks (combine loss terms)

L=1,+al, + Bl +

Task A

Task B

Task C

I

Task-
specific
layers

Shared
layers

Hard parameter sharing for
multi-task learning in deep neural
networks

Task A

Task B

Task C

i

f

f

f

Constrained
layers

Soft parameter sharing for multi-task learning in deep
neural networks



Metric/Contrastive Learning

L earn distinctiveness

Before Metric Learning After Metric Learning

1.A distance-based loss -
function (as opposed Class 1 @ C‘”Sl\.
to prediction error-based e o 9O
loss functions like Logistic ® :— ® .‘ ® ©
loss or Hinge loss used in ® 4
Classification) / []
2.Like any distance-based I O . m ] : H B
loss, it tries to ensure that ir— B E B— .
semantically similar
examples are embedded
close together. L; = ZHW Xier — W || Z”W Xier — WXy oo

3.Defined based on pairs (+/- i#]j
class pairs) or groups of
samples.






Neural Networks

Linear score function: f — Wax

2-layer Neural Network: f = Wi max(0, Wiz)



Neural Networks

LiInear score function:

2-layer Neural Network:

3072

W1

100

W2

¥ = Wb
f = Wamax(0, Wix)

10



Neural Networks

Linear score function: f — Wax

2-layer Neural Network f = Wamax(0, Wiz)
or 3-layer Neural Network

f = W3 max(0, W2 max(0, Wiz))



Neural Networks: Architectures
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output layer

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net”

“Fully-connected” layers



Setting the number of layers and their sizes

3 hidde neurons | 6 hidde neurons 20 hidd neurons

more neurons = maore capacity



Do not use size of neural network as a regularizer. Use stronger regularization instead:

A =0.001 A=0.01 A=0.1




Activation Functions



Activation Functions

Sigmoid

olz)=1/(14+e %) +—

tanh tanh(x)

ReLU max(0,x)

Leaky RelLU
max(0.1x, x)

Maxout

max(w! z + by, wlz + by)



Activation Functions o(z)=1/(1+e77)

- Squashes numbers to range [0,1]
- - Historically popular since they
/ have nice interpretation as a
; saturating “firing rate” of a neuron

/ 3 problems:

1. Saturated neurons “kill”
Sigmoid the gradients
2. Sigmoid outputs are
not zero-centered
3. exp() is a bit computationally
expensive



Activation Functions

e —e™
tanh(x) =
e +e™*
/[ - Squashes numbers to range [-1,1]
PSS - zero centered (nice)
o | - still kills gradients when saturated :(
tanh(x)

[LeCun et al., 1991]



Activation Functions
- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

..........

- Not zero-centered output
RelLU - An annoyance:

(Rectified Linear Unit)
hint: what is the gradient when x < 0?

[Krizhevsky et al., 2012]



Activation Functions [Mass et al., 2013]
[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

_ sigmoid/tanh in practice! (e.g. 6x)
e - will not “die”.

Leaky RelLU
f(z) = max(0.01z, x)



Activation Functions [Mass et al., 2013]
[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

: sigmoid/tanh in practice! (e.g. 6x)
A - will not “die”.

Parametric Rectifier (PRelLU)

Leaky RelLU f(:l?) _ maX(aw, ZC)
f(z) = max(0.01z, x) /
backprop into \alpha
(parameter)




(o 77
Maxout "Neuron [Goodfellow et al., 2013]

- Does not have the basic form of dot product ->

nonlinearity
- Generalizes ReLU and Leaky Rel.U
- Linear Regime! Does not saturate! Does not die!

max(w] z + by, wgw + bs)

Problem: doubles the number of parameters/neuron :(



In practice

- Use RelLU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout

- Try out tanh but don’t expect much

- Don't use sigmoid



Parameter Updates



activations

H i
é?{z “local gradient”
CAANS 07{
2
& <
oL
0z
Y
52 O gradients



Training a neural network, main loop:

2 True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx

simple gradient descent update



Optimize the parameters =] d
. 7 momentum
using one of the SGD |

: — nag a

adadelta |4
| rmsprop :
o 1 5
20 60 80 100 120

Image credits: Alec Radford



Suppose loss function is steep vertically but shallow horizontally:

—

Q: What Is the trajectory along which we converge
towards the minimum with SGD?




Suppose loss function is steep vertically but shallow horizontally:

Q: What Is the trajectory along which we converge
towards the minimum with SGD?




Suppose loss function is steep vertically but shallow horizontally:

Q: What Is the trajectory along which we converge
towards the minimum with SGD? very slow progress
along flat direction, jitter along steep one



Momentum Update

- learning rate * dx

v = mu * v - learning rate * dx
X += V

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)



Momentum Update

- learning rate * dx

- learning rate * dx

- Allows a velocity to “build up” along shallow (yet consistent) directions
- Velocity becomes damped in steep (inconsistent) direction due to quickly
changing sign



SGD

sgd

VS —  momentum |}
-~ nag :

Momentum ~ waomd | j
::;

N\

adadelta
rmsprop
— notice momentum
overshooting the
| target, but overall

5 getting to the
minimum much faster.

80 100 120



Convolutional Neural Networks



Convolution Layer

activation map

__— 32x32x3 Image

5x5x3 filter /
=
@>@ N

convolve (slide) over all

spatial locations
32 28

3 1




For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
5x5x3
filters

28

28

CONY,

RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24



Preview:

[From recent Yann
LeCun slides]

Low-Level
Feature

| Mid-Level

Feature

|High-Level

Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 = 28 = 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24




A closer look at spatial dimensions:

v

/X7 Iinput (spatially)

assume 3x3 filter

applied with stride 1




A closer look at spatial dimensions:

v

/X7 Iinput (spatially)

assume 3x3 filter

applied with stride 1




A closer look at spatial dimensions:

v

/X7 Iinput (spatially)

assume 3x3 filter

applied with stride 1




A closer look at spatial dimensions:

v

/X7 Iinput (spatially)

assume 3x3 filter

applied with stride 1




A closer look at spatial dimensions:

v

v

/X7 Iinput (spatially)
assume 3x3 filter
applied with stride 1

-> 5x5 output



A closer look at spatial dimensions:

7
/X7 Input (spatially)

assume 3x3 filter

applied with stride 2




A closer look at spatial dimensions:

7
/X7 Input (spatially)

assume 3x3 filter

applied with stride 2




A closer look at spatial dimensions:

v

/X7 Input (spatially)
assume 3x3 filter
applied with stride 2
-> 3x3 output!



Output size:
(N-F)/stride +1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3



In practice: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

(recall?)

(N-F)/stride +1




In practice: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

/X7 output!




In practice: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g.F =3 =>zeropadwith 1

F=5 =>zero pad with 2

F=7 =>zero pad with 3




1x1 convolution layers

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56
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Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

——-

> e 112
224 downsampling

224




MAX Pooling

Single depth slice
111 |2 | 4

max pool with 2x2 filters
and stride 2

>

5 |6 | 7|8
312 |1|0
1123 | 4




Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU

coiwlclvl CONV corwl C¢Vlcvl

-

O 7 I O
T TR

&=
=
=
Ei




error (%)

Residual Networks

—

CIFAR-10 plain nets

iter. (led)

5 6

56-layer
“” 44-layer

. 32-layer

W= 20-layer

solid: test
dashed: train

CIFAR-10 ResNets

204
~ResNet-20
“““ResNet-32
““ResNet-44
==ResNet-56
=ResNet-110}
ES
B
.E_ 1
o
5
1 g %ixga_;.. . -
() 2 3 4 s 6
iter. (1e4)

20-layer
32-layer
44-layer
56-layer
110-layer

[He at al., 2015]



Residual Networks

34-layer plain

image

Y

7x7 conv, 64, /2

34-layer residual

image

224x224x3

Y

v

pool, /2

7x7 conv, 64, /2 |

3x3 conv, 64

v

pool, /2

\ 4

3x3 conv, 64

3x3 conv, 64

\ 4

\

3x3 conv, 64

3x3 conv, 64

\

3x3 conv, 64

3x3 conv, 64

\ 4

3x3 conv, 64

3x3 conv, 64

\

3x3 conv, 64

3x3 conv, 64

v

\

3x3 conv, 64

3x3 conv, 128, /2

........
cen

3x3 conv, 128

\ 4

3x3conv,128,/2 | e
v y
3x3 conv, 128 l g

."’

|

3x3 conv, 128

\ 4

3x3 conv, 128

3x3 conv, 128

v

v

3x3 conv, 128

[He at al., 2015]



Residual Networks

* Plain net

!
weight layer
any two
stacked layers l relu

weight layer

I
HE) lre u

* Residual net

X

weight layer

F(x) lrelu

weight layer

H(x) =F(x) + x

identity
X

[He at al., 2015]



Residual Networks

34-layer plain 34-layer residual
image image
224x224x3
Y Y
|  7x7conv,64,/2 | | 7x7conv,64,/2 |
\ v
pool, /2 pool, /2

I 3x3 conv, 64 I I 3x3 conv, 64
I = | I -
3x3 conv, 64 3x3 conv, 64 .
¥ During back-prop,
| 3x3 conv, 64 | | 3x3 conv, 64 . .
\ 4 \ 4
| 3x3 conv, 64 | | 3x3 conv, 64 gradlent IS ﬂOWS
A 4
[ 3x3 conv, 64 I [ 3x3 conv, 64 th ro u g h | aye rS
v v . . .
[ 3x3 conv, 64 | | 3x3 conv, 64 Wlthout VaHIShlng
v W
| 3x3cony,128,/2 | | 3x3conv,128,/2 |
\ 4 \ 4 Y
I 3x3 cony, 128 ] I 3x3 conv, 128 l il
s
[ 3x3 conv, 128 ] I 3x3 conv, 128
\ 4 \ 4
|  3x3conv,128 | | 3x3cony, 128

. [He at al., 2015]



Recurrent Neural Networks



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f B t ot
f f bt bt Pt 1

\ Vanilla Neural Networks



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt ! L Pt
f f bt bt tt

\ e.g. Image Captioning
Image -> sequence of words



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt ! L Pt
f f bt bt tt

\ e.g. Sentiment Classification
sequence of words -> sentiment



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt ! L Pt
f f bt bt tt

\ e.g. Machine Translation
seq of words -> seq of words



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt ! L Pt
f f bt bt Pt 1

/

e.g. Video classification on frame level



Recurrent Neural Network




Recurrent Neural Network

usually want to
predict a vector at
some time steps




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

P

new state / 0

fw

(

ht—la

Lt

)

some function
with parameters W

d state input vector at
some time step

- 2

T




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fw (1, 4) m>

Notice: the same function and the same set
of parameters are used at every time step.




(Vanilla) Recurrent Neural Network
The state consists of a single “hidden” vector h:

y hy = fW(ht—h xt)

|
m> hy = tanh(Wyphi—q + Wopxy)

Y — Why hy




Character-level y
language model
example

Vocabulary:
[h,e,l,0]

Example training

sequence:
“hello”

Objective:
Predict the next character given the previous characters



One-hot (one-of-n) encoding

Example: letters. [V| = 30

‘a’: xt= 1[1,0,0, , O]
‘b7 xt = :OI]—IOI ’ O
‘e’ xt= 1[0,0,1, , 0]




Character-level
language model

example

Vocabulary:

[h,e,l,0]

Example training 1 0

Sequence: input layer 8 8

“hello” ; :
input chars: “p” &

Objective:

Predict the next character given the previous characters

= |lo~o0c o

“~ |lo~00O




Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Objective:

hy = tanh(Wprphi—1 + Wepat)

03 1.0 0.1 |w nhn! -0-3

hidden layer | -0.1 > 0.3 > -05 —— 0.9

0.9 0.1 -0.3 0.7
b we

1 0 0 0

: 0 1 0 0

input layer 0 0 1 1

0 0 0 0

input chars: “p” “e” | 17

Predict the next character given the previous characters



Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Objective:

target chars:

output layer

hidden layer

input layer

input chars:

1.0
2.2

-3.0

4.1

0.3

-0.1

0.9

S o= ___ ,

Y

\
[

o !

(8

W_hh| -

Predict the next character given the previous characters




Varying length input

Forward and
backward
passes are
conducted on
consequent
subsequences
iteratively

target chars:

output layer

hidden layer

input layer

input chars:

Heﬂ

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

0.5
0.3
-1.0
1.2

|

1
0
0
0
“h”

\ 4

W_hh
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Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.
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"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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RNN:
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LSTM - main idea

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh

j*+1



Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

X

h

W
vector from
before (h)
4n x 2n

sigmoid | — | |

sigmoid | — | f

sigmoid | — | O

tanh — | g

c: cell state

h: hidden state (cell output)

I. Input gate, weight of
acquiring new information

f. forget gate, weight of
remembering old information
g: transformed input ([-1,+1])
0: output gate, decides values
to be activated based on
current memory

0 sigm
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¢t=fOc¢_1+i0g
hl = 0 ® tanh(c})




Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

X

h

W
vector from
before (h)
4n x 2n

sigmoid | — | |

sigmoid | — | f

sigmoid | — | O

tanh — | g

4*n

f decides the degree
of preservation for
cell state, by scaling

It with a numb
[0,1]
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

X

h

W
vector from
before (h)
4n x 2n

sigmoid

sigmoid
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tanh

4*n

g Is a transformation
of input / hidden

state
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

X

h

W
vector from
before (h)
4n x 2n

sigmoid | — | |
sigmoid | — | f
sigmoid | — | O

tanh — | g

4*n

Add g into the cell state,
weighted by |
(weight of acquiring new

Information)

Alternative interpretation:
I*g decouples the "influence
of g" and "g itself".

g

¢t=fOc_,1|[+i0g
hl = 0 ® tanh(c})
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

4n X 2n

vector from
below (x)

X

h

vector from
before (h)

sigmoid

sigmoid

sigmoid

tanh

4*n

New hidden state Is a
scaled version of
tanh(cell state).

0: output gate, decides
values to be activated
based on current memory
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

X

h

W
vector from
before (h)
4n x 2n

sigmoid

sigmoid

sigmoid

tanh

4*n

Q: Why tanh?

A: Not very crucial,
sometimes not used
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM)

[Hochreiter et al.,

cell
state c

1997]

A higher layer, or

prediction
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Understanding gradient flow dynamics
Backprop signal

127 127




Understanding gradient flow dynamics

Backprop signal video: http://imgur.com/gallery/vaNahKE

In RNN, the gradient vanishes much more quickly as we backprop
from the last time step towards the first one

Therefore, RNN here cannot learn long time dependencies


http://imgur.com/gallery/vaNahKE

Understanding gradient flow dynamics

RNN without any inputs

=5 # dimensionality of hidden state
= 50 # number of time steps
hh = np.random. randn(H,H)

# forward pass of an RNN (ignoring inputs x)
hs = {}

ss = {}

hs[-1] = np.random.randn(H)

for t in xrange(T):

ss[t] = np.dot(Whh, hs[t-1])
hs[t] = np.maximum(©, ss[t])
# backward pass of the RNN
dhs = {}
dss = {}

dhs[T-1] = np.random.randn(H) # start off the chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # backprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state



Understanding gradient flow dynamics

RNN without any inputs

H=5 # dimensionality of hidden state

T =50 # number of time steps

Whh = np.random. randn(H,H)

# forward pass of an RNN (ignoring inputs x) Back-propagation signal is repeatedly multiplied by Whh.
hs = {}

ss = {}

hs[-1] = np.random.randn(H)

for t in xrange(T):
ss[t] np.dot(wWhh, hs[t-1])
hs[t] np.maximum(®, ss[t])

I

# backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off Ahe chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > 0) * dhs[t] # bgfkprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]



Understanding gradient flow dynamics

RNN without any inputs

H=5 # dimensionality of hidden state
T =50 # number of time steps ) . ) ) ] )
Whh = np.random. randn(H,H) If the largest eigenvalue is < 1, gradient will vanish

| , o if the largest eigenvalue is > 1, gradient will explode
# forward pass of an RNN (ignoring inputs x)

hs = {}

ss = {}

hs[-1] = np.random.randn(H)

for t in xrange(T):
ss[t] np.dot(wWhh, hs[t-1])
hs[t] np.maximum(®, ss[t])

I

can control vanishing with LSTM
can control exploding with gradient clipping

# backward pass of the RNN

dhs = {}

dss = {}

dhs[T-1] = np.random.randn(H) # start off Ahe chain with random gradient

for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # bgckprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]



Vanishing gradient problem

An example how vanishing gradient problem can affect RNNSs:

“In , | had a great time and | learnt some
of the

our parameters are not trained to capture long-term
dependencies, so the word we predict will mostly depend on
the previous few words, not much earlier ones



State

RNN

More prone to the

vanishing gradient
problem

LSTM

O

O

(ignoring

forget gates)




34-layer plain
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Recall:

“PlainNets” vs. ResNets
ResNet is to PlainNet what LSTM is to RNN, kind of.

* Plaint net

"

weight layer
any two

stacked layers v relu

weight layer

|
HED) lre u

* Residual net

X
L 4
weight layer
F(x) J relu identity
weight layer X

H(x)=F(x)+x




Vanishing gradient problem summary

To address this problem, use
e Detter activation function (eg, RelLU)

e proper initialization (W=Identity, bias=zeros) to prevent W
from shrinking the gradients

e replace RNN cells with LSTM or other gated cells (LSTM variants)
to control what information is passed through



