
GE 461  
Introduction to 
Data Science 
Spring 2024  

Deep Learning 
 
 
Hamdi Dibeklioğlu 

Slide Credits: F. Li, A. Karpathy, J. Johnson, G. Cinbis 
 



2 

A few different ideas: 

 

• (Hierarchical) Compositionality 

– Cascade of non-linear transformations 

– Multiple layers of representations 

 

• End-to-End Learning 

– Learning (goal-driven) representations 

– Learning feature extraction 

 

• Distributed Representations 

– No single neuron “encodes” everything 

– Groups of neurons work together 

Slide by Dhruv Batra 
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So, What is DEEP Machine Learning 



Given a library of simple functions 

   Compose a 

complicated function 

Slide by Dhruv Batra 

Building A Complicated Function 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Given a library of simple functions 

Compose a 

complicated function 

Idea 1: Linear Combinations 

Building A Complicated Function 
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Idea 2: Compositions 

• Deep Learning 
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Idea 2: Compositions 

• Deep Learning 



Trainable  

Classifier 

Low-Level  

Feature 

Mid-Level  

Feature 

High-Level  

Feature 

Slide by Dhruv Batra Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] 
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Deep Learning = Hierarchical Compositionality 
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• (Hierarchical) Compositionality 

– Cascade of non-linear transformations 

– Multiple layers of representations 

 

• End-to-End Learning 

– Learning (goal-driven) representations 

– Learning feature extraction 

 

• Distributed Representations 

– No single neuron “encodes” everything 

– Groups of neurons work together 

Slide by Dhruv Batra 

So, What is DEEP Machine Learning 



• “Shallow” models 

• Deep models (especially supervised deep learning) 

Trainable  

Feature-

Transform /  

Classifier 

Trainable  

Feature-

Transform /  

Classifier 

Learned Internal Representations 

hand-crafted  

Feature Extractor 

fixed 

“Simple” Trainable  

Classifier 

learned 

“Shallow” vs Deep Learning 

 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 
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So, What is DEEP Machine Learning 



• Local vs Distributed 

Slide by Dhruv Batra 

Slide Credit: Moontae Lee 

Distributed Representations Toy Example 



Distributed Representations Toy Example 
• Can we interpret each dimension? 

Slide by Dhruv Batra 

Slide Credit: Moontae Lee 



Local 

 

Distributed 

Power of distributed representations! 

Slide by Dhruv Batra 

Slide Credit: Moontae Lee 



- Loss function 

- Optimization 

- Convolutional Nets 

- Recurrent Nets 



Loss Functions 



● There are many different loss functions 

● Log Loss / Cross Entropy 

● Hinge Loss 

● Square Loss 

Loss functions 



● 𝑠𝑗   – Computed score of the training example for jth class. 

● y(i) - Ground truth label for ith training example. 

Classification Losses 
Hinge Loss/Multi class SVM Loss 



● 𝑠𝑗   – Computed score of the training example for jth class. 

● y(i) - Ground truth label for ith training example. 

Classification Losses 
Cross Entropy Loss/Negative Log Likelihood 



● n - Number of training examples. 

● i - ith training example in a data set. 

● y(i) - Ground truth label for ith training example. 

● y_hat(i) - Prediction for ith training example. 

Regression Losses 
Mean Square Error/Quadratic Loss/L2 Loss 



● n - Number of training examples. 

● i - ith training example in a data set. 

● y(i) - Ground truth label for ith training example. 

● y_hat(i) - Prediction for ith training example. 

Regression Losses 
Mean Absolute Error/L1 Loss 



● n - Number of training examples. 

● i - ith training example in a data set. 

● y(i) - Ground truth label for ith training example. 

● y_hat(i) - Prediction for ith training example. 

Regression Losses 
Mean Bias Error 



\lambda = regularization strength  
(hyperparameter) 

Some reg. types: 

L2 regularization  

L1 regularization  

Elastic net (L1 + L2) 

… 

Loss𝑖  

Weight Regularization 



L2 regularization: motivation 



Which one does L2  

regularization  

choose? 

L2 regularization: motivation 



Why does it make  

sense? 

L2 regularization: motivation 



Multi-task Learning 

Hard parameter sharing for  
multi-task learning in deep neural 

networks 

Soft parameter sharing for multi-task learning in deep 
neural networks 

Jointly minimize the losses of different tasks 



Multi-task Learning 

Hard parameter sharing for  
multi-task learning in deep neural 

networks 

Soft parameter sharing for multi-task learning in deep 
neural networks 

Jointly minimize the losses of different tasks (combine loss terms) 

𝐿 = 𝑙𝑎 + 𝛼𝑙𝑏 + 𝛽𝑙𝑐 +⋯ 



Metric/Contrastive Learning 
Learn distinctiveness 

1.A distance-based loss 

function (as opposed 

to prediction error-based 

loss functions like Logistic 

loss or Hinge loss used in 

Classification). 

2.Like any distance-based 

loss, it tries to ensure that 

semantically similar 

examples are embedded 

close together.  

3.Defined based on pairs (+/- 

class pairs) or groups of 

samples. 

𝐿𝑖 = 𝑤
𝑇𝑥𝑖,𝑐1 −𝑤

𝑇𝑥𝑗,𝑐1

 

𝑖≠𝑗

− 𝑤𝑇𝑥𝑖,𝑐1 − 𝑤
𝑇𝑥𝑘,𝑐2    

 

𝑘

 





Linear score function: 

 

2-layer Neural Network: 

31 

Neural Networks 



 

x h W1 s W2 

10 3072 100 
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Linear score function: 

 

2-layer Neural Network: 

Neural Networks 



 Linear score function: 

 
 2-layer Neural Network   

or 3-layer Neural Network 

33 

Neural Networks 



“2-layer Neural Net”, or 

“1-hidden-layer Neural Net” 

“3-layer Neural Net”, or 

“2-hidden-layer Neural Net” 

“Fully-connected” layers 

Neural Networks: Architectures 



more neurons = more capacity 

Setting the number of layers and their sizes 



Do not use size of neural network as a regularizer. Use stronger regularization instead: 



Activation Functions 



Sigmoid 

tanh tanh(x) 

ReLU max(0,x) 

Leaky ReLU 
max(0.1x, x) 

Maxout 

 

 

Activation Functions 



Sigmoid 

- Squashes numbers to range [0,1] 

- Historically popular since they  

have nice interpretation as a  

saturating “firing rate” of a neuron 

 

3 problems: 

1. Saturated neurons “kill” 

the  gradients 

2. Sigmoid outputs are 

not  zero-centered 

3. exp() is a bit computationally 

expensive 

Activation Functions 



tanh(x) 

- Squashes numbers to range [-1,1] 

- zero centered (nice) 

- still kills gradients when saturated :( 

[LeCun et al., 1991] 

Activation Functions 

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 



- Computes f(x) = max(0,x) 

- Does not saturate (in +region) 

- Very computationally efficient 

- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x) 

ReLU 

(Rectified Linear Unit) 

[Krizhevsky et al., 2012] 

Activation Functions 

- Not zero-centered output 

- An annoyance:  
 

    hint: what is the gradient when x < 0? 



Leaky ReLU 

- Does not saturate 

- Computationally efficient 

- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x) 
- will not “die”. 

[Mass et al., 2013]            

    [He et al., 2015]                
Activation Functions 



Leaky ReLU 

- Does not saturate 

- Computationally efficient 

- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x) 
- will not “die”. 

[Mass et al., 2013]            

    [He et al., 2015]                
Activation Functions 

backprop into \alpha  

(parameter) 

Parametric Rectifier (PReLU) 



- Does not have the basic form of dot product ->  

nonlinearity 

- Generalizes ReLU and Leaky ReLU 

- Linear Regime! Does not saturate! Does not die! 

Problem: doubles the number of parameters/neuron :( 

[Goodfellow et al., 2013] 
Maxout “Neuron” 



- Use ReLU. Be careful with your learning rates 

- Try out Leaky ReLU / Maxout 

- Try out tanh but don’t expect much 

- Don’t use sigmoid 

In practice 



Parameter Updates 



f 

activations 

gradients 

“local gradient” 



simple gradient descent update 

Training a neural network, main loop: 



Image credits: Alec Radford 

Optimize the parameters 

using one of the SGD 

variants 

 



Q: What is the trajectory along which we converge  

towards the minimum with SGD? 

50 

Suppose loss function is steep vertically but shallow horizontally: 



Q: What is the trajectory along which we converge  

towards the minimum with SGD? 
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Suppose loss function is steep vertically but shallow horizontally: 



Q: What is the trajectory along which we converge  

towards the minimum with SGD? very slow progress  

along flat direction, jitter along steep one 

52 

Suppose loss function is steep vertically but shallow horizontally: 



- Physical interpretation as ball rolling down the loss function + friction (mu coefficient). 

- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99) 

53 

Momentum Update 



- Allows a velocity to “build up” along shallow (yet consistent) directions 

- Velocity becomes damped in steep (inconsistent) direction due to quickly  

changing sign 

54 

Momentum Update 



SGD 
vs   
Momentum 

notice momentum  

overshooting the 

target, but overall 

getting to the  

minimum much faster. 

55 



Convolutional Neural Networks 



32 

3 

32x32x3 image  

5x5x3 filter 
32 

convolve (slide) over all  

spatial locations 

activation map 

1 

28 

28 

Convolution Layer 

57 



32 

32 

3 

Convolution Layer 

activation maps 

6 

28 

28 

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps: 

We stack these up to get a “new image” of size 28x28x6! 

58 



32 

32 

3 

CONV,  

ReLU 

e.g. 6  

5x5x3  

filters 28 

28 

6 

CONV,  

ReLU 

e.g. 10  

5x5x6  

filters 

CONV,  

ReLU 

…. 

10 

24 

24 

Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions 
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Preview:  

 
[From recent Yann  

LeCun slides] 

60 



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!  

(32  28  24 ...). Shrinking too fast is not good, doesn’t work well. 

32 

32 

3 

CONV,  

ReLU 

e.g. 6  

5x5x3  

filters 28 

28 

6 

CONV,  

ReLU 

e.g. 10  

5x5x6  

filters 

CONV,  

ReLU 

…. 

10 

24 

24 
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7x7 input (spatially)  

assume 3x3 filter 

applied with stride 1 

7 

A closer look at spatial dimensions: 
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7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter 

applied with stride 1 

7 
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A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter 

applied with stride 1 

7 



7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter 

applied with stride 1 

7 



 5x5 output 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter 

applied with stride 1 

7 



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2 
 3x3 output! 

7 

7 

A closer look at spatial dimensions: 

69 



N 

N 

F 

F 

Output size: 

(N - F) / stride + 1 

e.g. N = 7, F = 3: 

stride 1 => (7 - 3)/1 + 1 = 5 

stride 2 => (7 - 3)/2 + 1 = 3 

… 

70 



0 0 0 0 0 0 

0 

0 

0 

0 

e.g. input 7x7 

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output? 

(recall:) 

(N - F) / stride + 1 

In practice: Common to zero pad the border 

71 



e.g. input 7x7 

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output? 

 

7x7 output! 

0 0 0 0 0 0 

0 

0 

0 

0 

In practice: Common to zero pad the border 

72 



e.g. input 7x7 

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output? 

 

In general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially) 

e.g. F = 3   => zero pad with 1   

F = 5   => zero pad with 2   

F = 7   => zero pad with 3 

0 0 0 0 0 0 

0 

0 

0 

0 

In practice: Common to zero pad the border 
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64 

56 

56 
1x1 CONV 

with 32 filters 

32 

56 

56 

(each filter has size  

1x1x64, and performs a  

64-dimensional dot  

product) 

1x1 convolution layers 





- makes the representations smaller and more manageable 

- operates over each activation map independently: 

Pooling layer 



1 1 2 4 

5 6 7 8 

3 2 1 0 

1 2 3 4 

Single depth slice 

x 

y 

max pool with 2x2 filters  

and stride 2 6 8 

3 4 

MAX Pooling 



- Contains neurons that connect to the entire input volume, as in ordinary Neural  
Networks 

Fully Connected Layer (FC layer) 



[He at al., 2015] 

Residual Networks 



224x224x3 

[He at al., 2015] 

Residual Networks 



[He at al., 2015] 

Residual Networks 



224x224x3 

During back-prop,  

gradient is flows  

through layers  

without vanishing 

[He at al., 2015] 

Residual Networks 



 
Recurrent Neural Networks 

83 



Recurrent Networks offer a lot of flexibility: 

Vanilla Neural Networks 

84 



Recurrent Networks offer a lot of flexibility: 

e.g. Image Captioning 

image -> sequence of words 
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Recurrent Networks offer a lot of flexibility: 

e.g. Sentiment Classification 

sequence of words -> sentiment 
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Recurrent Networks offer a lot of flexibility: 

e.g. Machine Translation 

seq of words -> seq of words 

87 



Recurrent Networks offer a lot of flexibility: 

e.g. Video classification on frame level 

88 



Recurrent Neural Network 

 
x 

RNN 

89 



Recurrent Neural Network 

 
x 

RNN 

 
y 

usually want to  

predict a vector at  

some time steps 

90 



Recurrent Neural Network 

 
x 

RNN 

 
y 

We can process a sequence of vectors x by  

applying a recurrence formula at every time step: 

new state old state input vector at 

some time step 
some function 

with parameters W 

91 



Recurrent Neural Network 

We can process a sequence of vectors x by  

applying a recurrence formula at every time step: 

Notice: the same function and the same set  

of parameters are used at every time step. 
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x 

RNN 

 
y 



The state consists of a single “hidden” vector h: 
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x 

RNN 

 
y 

(Vanilla) Recurrent Neural Network 



Character-level  

language model  

example 

Vocabulary:  

[h,e,l,o] 

Example training  

sequence:  

“hello” 

 
x 

RNN 

 
y 

Objective: 
Predict the next character given the previous characters 



Slide adapted from Antonio Bonafonte 

 One-hot (one-of-n) encoding 

= [1,0,0, ..., 0] 

= [0,1,0, ..., 0] 

= [0,0,1, ..., 0] 

Example: letters. |V| = 30 

‘a’: xT 

‘b’: xT 

‘c’: xT 

. 

. 

. 

‘.’: x
T 
=[0,0,0, ..., 1] 
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Character-level  

language model  

example 

 

Vocabulary:  

[h,e,l,o] 

 

Example training  

sequence:  

“hello” 
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Objective: 
Predict the next character given the previous characters 



Character-level  

language model  

example 

 

Vocabulary:  

[h,e,l,o] 

 

Example training  

sequence:  

“hello” 
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Objective: 
Predict the next character given the previous characters 



Character-level  

language model  

example 

 

Vocabulary:  

[h,e,l,o] 

 

Example training  

sequence:  

“hello” 
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Objective: 
Predict the next character given the previous characters 
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… 

… 

… 

Varying length input 

Forward and 

backward 

passes are 

conducted on 

consequent 

subsequences 

iteratively 



 
x 

RNN 

 
y 

100 



101 



train more 

train more 

train more 

at first: 

102 
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A generalization of RNN. At l=1: 

time 

h l-1 = x 
t t 

● 

● Wl
 = [Wxh Whh] 

It is equivalent to: 

 

depth 

RNN: 



depth 

LSTM: 

time 

RNN: 



Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

LSTM - main idea 

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh 



Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 

x 

h 

vector from  

before (h) 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4n 4*n 

● c: cell state 

● h: hidden state (cell output) 
● i: input gate, weight of  

acquiring new information 

● f: forget gate, weight of  

remembering old information 

● g: transformed input ([-1,+1]) 
● o: output gate, decides values  

to be activated based on  

current memory 



x 

h 

vector from  

before (h) 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4n 4*n 

f decides the degree  

of preservation for  

cell state, by scaling  

it with a number in  

[0,1] 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



x 

h 

vector from  

before (h) 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4n 4*n 

g is a transformation  

of input / hidden  

state 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



x 

h 

vector from  

before (h) 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4n 4*n 

Add g into the cell state,  

weighted by i 

(weight of acquiring new  

information) 

Alternative interpretation:  

i*g decouples the "influence  

of g" and "g itself". 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



x 

h 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4*n 

New hidden state is a  

scaled version of  

tanh(cell state). 

o: output gate, decides  

values to be activated  

based on current memory 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 

vector from  

before (h) 

4n 



x 

h 

 

 

 

 
W 

i 

f 

o 

g 

vector from  

below (x) 

sigmoid 

sigmoid 

tanh 

sigmoid 

4n x 2n 4*n 

Q: Why tanh? 

A: Not very crucial,  

sometimes not used 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 

vector from  

before (h) 

4n 



f 

cell  

state c 

x 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



cell  

state c 

f 

x 

i g 

x 

+ 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



cell  

state c 

f 

x + 

tanh 

o x 

h 

c 

i g 

x 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



cell  

state c 

f 

x + 

tanh 

o x 

h 

c 

i g 

x 

higher layer, or  

prediction 

Long Short Term Memory (LSTM) 
[Hochreiter et al., 1997] 



Understanding gradient flow dynamics 

117 

Backprop signal  



Understanding gradient flow dynamics 

Backprop signal video: http://imgur.com/gallery/vaNahKE 
 
In RNN, the gradient vanishes much more quickly as we backprop  
from the last time step towards the first one 
 
Therefore, RNN here cannot learn long time dependencies 
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http://imgur.com/gallery/vaNahKE


Understanding gradient flow dynamics 

RNN without any inputs 

119 



Back-propagation signal is repeatedly multiplied by Whh. 

Understanding gradient flow dynamics 

RNN without any inputs 

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013] 
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if the largest eigenvalue is < 1, gradient will vanish 

if the largest eigenvalue is > 1, gradient will explode 

Understanding gradient flow dynamics 

RNN without any inputs 

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013] 

121 

can control vanishing with LSTM 

can control exploding with gradient clipping 
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Vanishing gradient problem 
An example how vanishing gradient problem can affect RNNs: 



 
f 

 
f 

   

RNN 
More prone to the  
vanishing gradient  
problem 

state 

 
f 

 
f 

 
f 

LSTM 
(ignoring  
forget gates) 

+ + + 
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f 
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Recall:  

“PlainNets” vs. ResNets 
ResNet is to PlainNet what LSTM is to RNN, kind of. 



Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

To address this problem, use 

 

● better activation function (eg, ReLU) 

 
● proper initialization (W=Identity, bias=zeros) to prevent W 

from shrinking the gradients 

 
● replace RNN cells with LSTM or other gated cells (LSTM variants) 

to control what information is passed through 

Vanishing gradient problem summary 

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh 
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