Reinforcement
Learning;
Applications

Chapter
Reinforcement Learning;
Applications

Reinforcement
Learning

GE461: Introduction to Data Science Markov Decision

Process

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Cem Tek'n Summary
Bilkent University

Reinforcement

Reinforcement learning (RL) Learning;
How should an agent interact with its environment in order to Applications
maximize its cumulative reward?
Example: Robot in a gridworld

il
9o

o o

Markov Decision

Process

0 0 Value lteration

End Q Learning
Introduction to MAB

Multi-armed bandit
So: initial state (position) Regret

In each round t Greedy policy

@ Take action A; in state S; (move 1 step left, right, up or down) ::::’::;ysis o

@ Observe the next state S, UGB policy

Thompson samplin:
@ Collect reward R:.1 (-100 if bomb hit, 1 if power found, 100 if end peon S
reached, -1 otherwise)

Empirical comparison

Summary

Figure by Akshay Lambda from
https://medium.com/free-code-camp/an-introduction-to-g-learning-reinforcement-learning-14ac0b4493cc 2

Reinforcement learning (RL)

Goal
Given discount rate 0 < ~ < 1 select actions to maximize

(total return) Gy = Ry +vRe +?Rs + ... = > _ 7Rt
k=0

Discount rate represents how much the agent cares about
immediate rewards vs. future rewards
Policy m (method to select actions)

° HiStory Hf = {S(), A07 R‘Ia ceey ST—'I) Af—'la Rta Sfa At}
everything that happened by the end of round ¢

@ Policy = maps past information to distributions over actions
@ A; sampled from 7 (-|H:—1, Ry, St)
@ r is deterministic if it puts all probability to a single action

What is a good model the environment?
Markov property

Pr(Rey1 = r, Str1 = 8'[He) = Pr(Riy1 = 1, 8111 = §'[St, Ar)

Reinforcement
Learning;
Applications

Markov Decision
Process

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

Reinforcement

General RL model Rl

Applications

\ 4

Agent
state reward action

s | IR, A

R :]
< Siz Environment Markov Decision
Process

Value lteration

Q Learning

Some real-world applications

Introduction to MAB

@ Autonomous driving Mult-armed bandit
. . . R t
@ Personalized medicine o
Greedy policy
@ Web advertising UCB policy
@ News, video, movie recommendation e

Thompson sampling
Empirical comparison

Summary

Figure 3.1 from “Reinforcement Learning: An Introduction" by Sutton and Barto 4

Markov Decision Process (MDP)

A mathematical framework for modeling the interaction
between agent and environment under Markov assumption

@ Finite set of states: S
@ Finite set of actions: A
@ State transition probabilities:

p(s'|s,a) :=Pr(St1 = 5'|St=s,Ar = a)
@ Expected reward:

r(37 a, S/) = E[Rf+1 |St =S, At = a, St+1 = S/]

Reinforcement
Learning;
Applications

Reinforcement
Learning

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

Reinforcement

Recycling robot example Learning:

Applications

B . Tsearch

Reinforcement
Learning

1, Tuaie Value lteration

o, Tsearch 1-at, Tsearch
Q Learning

Introduction to MAB

Multi-armed bandit

@ S = {high, low}

Regret
@ A(high) = {search, wait} Greedy policy
@ A(low) = {search, wait, recharge} UGB poley
Regret Analysis of
@ TIsearch > Nwait [€XPected num. of cans collected by the UCEkclcy
robot] Thompson sampling

Empirical comparison

@ State transitions are random

Summary

Figure 3.3 from “Reinforcement Learning: An Introduction" by Sutton and Barto 6

Recycling robot example

s s a p(s'ls,a) | r(s,a,s")
high high search ot T'search
high low search -« Tsearch
low high search 1-p8 -3
low low search B Tsearch
high high wait 1 Twait
high low wait 0 Twait
low high wait 0 Tyait
low low wait 1 Twait
low high recharge |1 0

low 1low recharge |0 0.

Table 3.1 from “Reinforcement Learning: An Introduction"” by Sutton and Barto

Reinforcement
Learning;
Applications

Reinforcement
Learning

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

Reinforcement

Markov policies and the value function Learning:

Applications

General policy
A; sampled from 7(:|H:—1, Ry, St)

Stationary Markov policy
A; sampled from 7(-|S;)

Total return after time t

5 oo B Reinforcement
Learning
Gt = Rty1 +yRy2 +7°Ryys +... = Z v Rtk 1
k=0

State-value function for 7 VDT
Q Learning

Introduction to MAB
o0
k Multi-armed bandit
Va(8) = ExlGi|S: = 8] = Ex |3 1*Rerkn|Si = s
k=0 Greedy policy
Action-value (Q) function for = UCB policy

Regret Analysis of
UCB policy

qﬂ.(s’ a) = ETr[Gt|St =S, All = a] Thompson sampling

Empirical comparison

oo
k Summary
=E, Z’Y Riik+1|St =s,Ar=a
k=0

Optimal policy
7* is optimal iff v,-(8) > v,(s) forallse Sand =
Theorem [Puterman, 1994]

For infinite horizon discounted MDP there exists a deterministic
stationary Markov policy that is optimal.

Optimal state-value function v..(S) = max, Vx(S)

Optimal action-value (Q) function g.(s, a) = max, g-(s, a)

Bellman optimality equations

V*(S) = ma(x) E[Rt+1 + vv*(S,+1)|S, =S A= a]

acA(s
g« (s,a)
q:(s;a) = E[R11 + Y max q-(Sty1,d@)|St = s, At = &
— ———
Vi (St41)

Optimal policy

7 (8) = argmax q.(s, a) for all states s
a

Reinforcement
Learning;
Applications

Reinforcement
Learning

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

Reinforcement

Computing the optimal policy (when state transition Learning;

Applications

probabilities are known)

Value lteration

(1) Start with an initial guess of the value functions vy(s),
s e S (e.g., setto zero)

(2) Compute the new value functions (at iteration k + 1) by

updating the value functions found at iteration k: e
Markov Decision
Vk+1(S) = mgx E[Rt+1 + 7Vk(8t+1)|st =8 A = a] Pmcess_
_ / / / Q Learning
= max 3" p(s'ls. A)[r(s. 2. 8) + (5]
a ; Introduction to MAB
s Multi-armed bandit
(3) Repeat the above procedure until convergence, i.e., Fegret
| | ka _ Vk* 4 ‘ | S € Greedy policy
. . . UCB policy
(4) The f|na| p0|lcy IS Regret Analysis of
UCB policy

Thompson sampling

7(s) = arg max {Zp(s'|s, a)[r(s, a, &) + v (s’)]}
a s/

Summary

Reinforcement

Computing the optimal policy (when state transition Learning;

Applications

probabilities are known)

Value lteration (with Q function)

(1) Start with an initial guess of the Q functions qu(s, a), s € S,

ac A (e.g., setto zero) Reforcsmert
(2) Compute the new Q functions (at iteration k + 1) by Markov Decision
updating the Q functions found at iteration k: Frocess
Q Learning
qk+1 (S, a) - Z p(S/|S, a) |:I’(S7 a, Sl) + Y max qk(S/, a/) Introduction to MAB
s’ a Multi-armed bandit
Regret
(3) Repeat the above procedure until convergence Greedy policy
(4) We have Vi (S) = MmaXa qk* (Sv a) :CBT;CY| s of
egret Analysis of
(5) m(s) = argmax, qk~(s, a) UGB policy

Thompson sampling
Empirical comparison

Summary

Reinforcement

Robot grid-world example for value iteration Learning;

Applications

https://youtu.be/gThGerajccM

@ Goal location: high reward

Reinfqrcement
@ Freespace: small penalty Yl
Markov Decision
@ Obstacles: very large penalty Process
[Value fleraion
Types of robots: @iy
@ Deterministic: Always moves in the direction of the Introduction to MAB
dictated action Multi-armed bandit
. R t
@ Stochastic: Can also move in other directions with a Sy st
positive probability S
Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

https://youtu.be/gThGerajccM

Learning the optimal policy (when state transition
probabilities are unknown)
Estimate g*(s, a) in a data-driven manner. Recall that

q:(s,a) = E[Re1 + ¥ max q(St+1,d) St =5, Ar = g
N——
Vi (St1)
Q learning
@ Keep a table of Q value estimates: Q(s,a)forse S,ac A
@ Inround t: St — Ar— (St+1, Rt+1)

How?
@ Form sample estimate:

A

Q(St, At) = R + v maxy Q(St+1 R a’)
@ Update Q-value of (S;, Ar)

Q(SHA) (1 —)Q(SLA) + o QS A)

learning rate

Convergence If all (s, a) pairs are selected infinitely many times

Q(s, a) — q.(s, a) with probability 1

Reinforcement
Learning;
Applications

Reinforcement
Learning

Markov Decision
Process

Value lteration
‘Qreaming

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

How to choose A; given S;? e

Applications

Option 1: Greedy

A = argmax Q(St, @)
a

Always exploits. No exploration. Might stuck in suboptimal

Reinforcement

Option 2: e-greedy Learning
Markov Decision
@ Toss a coin Ct with Pr(Ct = H) — € Process

Value lteration

@ If C; = H, then sample A; uniformly randomly from action ‘Qleaming
Set (eXp|Ol’e) Introduction to MAB

@ If C; = T, then A; = arg max, Q(S;, @) (exploit) i) el

Regret

Option 3: Boltzmann exploration Greedy policy

UCB policy

Regret Analysis of
eQ(St,a) UCB policy
A[~ PI’(|S{) SUCh that PI’(A{ = a|St) = W Thompson sampling
a ’

Empirical comparison

Summary

Explores implicitly

Deep Q Network Learning to Play Atari Game e

Applications

Reinforcement
Learning

Markov Decision

https://youtu.be/cjpEIotvwFY gloce=s

Value lteration
‘Qreaming

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

https://youtu.be/cjpEIotvwFY

The multi-armed bandit problem e

Applications

Reinforcement
Learning

Markov Decision
Process

Value lteration

Q Learning
Gamb“ng in a casino with K arms (SIOt maChines) Introduction to MAB
 Multiarmed bandit
In each round t e
@ Playanarm A Greedy policy
‘ UCB policy

@ Collect its random reward Rg, ; that comes from an Regret Analysis of
unknown distribution Uoapaly

Thompson sampling

Goal: Maximize expected total reward E [}, Ra,] Empirical comparison

Summary

Multi-armed bandits and reinforcement learning e

Applications

General RL framework

@ Repeated interaction overtime t=1,2,...
@ S;: state at time t. A;: action at time t. R;: reward at time ¢

> Agent I Reinforcement
Learning
Markov Decision
state reward action Process
Sl Rt A, Value Iteration
RM . Q Learning
<< Environment Introciucton to MAB
[Mult-armed bandit
Regret
. Greedy policy
@ General RL: Sy, 1 depends on past actions and states UGB policy
(eg, MarkOV mOde|) Regret Analysis of
. . UCB policy
@ K-armed stochastic bandit: one state S ————
@ More structure = more specialized algorithms & faster Empirical comparison

learning/convergence & rigorous optimality guarantees Sy

Sequential decision-making under uncertainty: navigation e

Applications

How to go from home to school?
@ Day 1: Route A. Travel time: 20 min
@ Day 2: Route A. Travel time: 40 min
@ Day 3: Route B. Travel time: 25 min

Reinforcement
Learning

Markov Decision

Process
o Day 4:7? Value lteration
Q Learning
Travel times are uncertain Introduction to MAB
[Mult-armed bandit
Want to Regret

e . Greedy policy
@ Minimize) travel times

UCB policy
Regret Analysis of
UCB policy
Thompson sampling
Empirical comparison

Summary

Sequential decision-making under uncertainty: e

Applications

recommender system

Pool of items {A, B, C, ...}

Users arrive sequentially over time (t = 1,2, ...) Coaring
. . . Markov Decisi
What should we recommend to maximize number of clicks T
. Value lteratit
@ User 1: Item A. Clicked o
Q Learning
@ User 2: ltem A. Not clicked Introduction to MAB
. i [Muti-armed bandit
@ User 3: Item B. Clicked
Regret
o Usel’ 4: ? Greedy policy
UCB policy

User behavior is uncertain
Regret Analysis of
UCB policy
Thompson sampling
Empirical comparison

Summary

Sequential decision-making under uncertainty: cognitive e
communications Applications

Channels with time varying qualities {A, B, C, ...}

Time-slotted communication (t =1,2,...) Femorcement

Learning

Markov Decision

Which channels should be selected to maximize throughput Process

Value lteration

@ Time slot 1: Channel A. Successful transmission

Q Learning
@ Time slot 2: Channel A. Failed transmission Introduction to MAB
@ Time slot 3: Channel B. Successful transmission Mult-armed bandit
Regret

o Tlme Slot 4: 7 Greedy policy

Channel gains are unknown, their distributions are unknown ey
Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

How to play the game

1. Know the the environment class £
@ Armset A={1,... K}

@ Reward from arm ais sampled from unknown F,
independent of other arms

This is called stochastic K-armed bandit

@ Assume: Ry € [0, 1] bounded support (alternatives:

Bernoulli, Gaussian, subGaussian, heavy tailed)

2. Construct a policy
o HiStOfy Ht = {/‘\17 RA1,1 . ,A[,1 R RAI,1,I71}
@ Policy = : histories — distributions over A

3. Play according to your policy
@ Play A; ~ m(-|H¢)
@ Observe Ry, ; ~ Fpa,
@ Update H¢ 1 = Hi U {At, Ra.t}

Reinforcement
Learning;
Applications

Reinforcement
Learning

Markov Decision
Process

Value lteration
Q Learning

Introduction to MAB

Regret
Greedy policy
UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

Regret of a policy P

Applications

Expected reward of arm a: pg = E[Ra,]

Reinforcement
Learning

@ Always select the best arm a* = arg max, y4 arkos Dciion
@ Highest expected reward: u* = piz Process

@ Highest cumulative expected reward in T rounds: T x y* o

Introduction to MAB

Regret

Multi-armed bandit

T CReget
Reg.(T) =T xu" =) ua oty
t=1

Regret Analysis of
UCB policy
Fact

Thompson sampling

Empirical comparison

T
MaXﬂ—E Z RA{,[= Minﬂ,E [Regﬂ_(T)] Summary
t=1

What is a good policy? e

Applications

For all bandit instances in £ (e.g., all K-armed bandits with
independent arm rewards in [0, 1])

lim M =0 Reinforcement

T—oo T Learning

Examples: E[Reg_ (T)] = O(VT), E[Reg, (T)] = O(log T) Process

Value lteration

Q Learnin
Since expected rewards are unknown, a good policy should m,,oducﬁogn CallTG)

Multi-armed bandit

@ Explore arms to discover the best [Regst
Greedy policy

@ Exploit the arm that is believed to be the best UGB policy
Regret Analysis of

@ Be computationally efficient UG8 pollcy

Thompson sampling
Empirical comparison

Summary

Regret lower bound R Learming:

Applications

Consistent policy
7 is consistent if for all {F,}X_, € £and p >0

ElReg, (T)] _,
T—o0 TP
Reinforcement
Learning
Asymptotic lower bound* Markov Decision
Process

Let &€ be class of bandits with single parameter exponential

family of reward distributions (e.g., F5 = Ber(6,), Ra: € {0,1}). 0 Leaming

For a consistent policy 7 regret grows at least logarithmically ntroduction (6 MAB

over time. Multi-armed bandit
[Reget

Greedy policy
E[Regﬂ_ - ,ua UCB policy

T—oo |O KL a a* Regret Analysis of
apa<p* UCB policy

Value lteration

Thompson sampling

Minimum achievable regret O(log T) Empirical comparison

Summary

*Lai and Robbins 1985: Asymptotically efficient adaptive allocation rules. 24

Reinforcement

Greedy po"cy Learning;

Applications

Sample mean reward collected from arm a by the end of round
t—1:figt 1

Initially
Sample each arm once

Ateachround t > K

Select Ay = arg max, fia -1 Remnforcement
Example with K = 2 arms R
Bernoulli rewards, 1; = 0.9, p; = 0.8 Value Iteration
Q Learning
t ~ -~ ~ B A r Introduction to MAB
Ml’t ! uj’t ! t Aut Multi-armed bandit
1 I 1 Regret
2 j 1 Greedypolicy
UCB policy
3 1 1 / 0 Regret Analysis of
4 1 /2 1 j 1 UCB policy
5 1/2 1] 1 Thompson sampling
6 1/2 1) ,? Empirical comparison

Summary

Might get stuck in arm j which is suboptimal

e-greedy policy Reli_r::rr:ienr;;en!

Applications

A sequence of exploration probabilities {¢;}

Empirical best arm &; = arg max fia 1

Initially
— Reinforcement
Learning

@ Sample each arm once Morkoy Decisi
P;L:;/s ecision

At eaCh round t > K Value lteration
@ Explore with probability ¢; QLearning

Introduction to MAB
Multi-armed bandit

Select A; randomly from {1,2,... K}

Regret

UCB policy

@ Exploit with probability 1 — ;
Select A; = &; e P

Thompson sampling

Empirical comparison

Summary

Regret of ¢;-greedy algorithm e

Applications

Let A, = u* — g suboptimality gap
Let Amin = ming <+ g
Tune exploration probabilities

cK
€t = c>0
Ar2n|n t
Reinforcement
Reg I’et bOUnd* Learning
Markov Decision
Process

A TAZ Value Iteration
Reger—greedy(T)i| < C X Z (Aa + = A lOg max {e % }) Q Learning
a=1 min Introduction to MAB
K |Og T Multi-armed bandit
AZ) Regret

min (Greedypoley

UCB policy

=0(——

Takeaways
. . i) Regret Analysis of
@ Exploration achieved by randomization Ve ety
. Thompson sampling
@ Need careful tuning e .
pirical comparison
@ Uniform exploration Summary

*Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem. 27

¢~greedy in action "Ly

Applications

EpsilonGreedy
t =001 | choice =1 | reward =0

S
=
«© |
© Reinforcement
Learning
g © Markov Decision
2 o 7 Process
[
% Value lteration
g ¥ 4 Q Learning
z ©
Introduction to MAB
~ Multi-armed bandit
o 7| Choice
. Regret
@ Exploiting
B Explorin [Greedy poliy
= p 9
° ! T T UCB policy

03 0.5 0.7 Regret Analysis of

UCB policy
Arm probability

Thompson sampling

Empirical comparison

Summary

Upper Confidence Bound (UCB) policy e

Applications

Initially
@ Sample each arm once

Ateachround t > K

1. Calculate optimistic estimate of arm a

Reinforcement

Learning
~ 2 |Og t Markov Decision
ga,t = Ha,t—1 + N Process
~ ~—— a,t—1 Value lteration
index sample mean —— o —

exploration bonus ’
Introduction to MAB

Multi-armed bandit

2. Select the optimistic best arm Regret
Greedy policy

a; = argmax Qa¢ [ucBpoicy
a Regret Analysis of
UCB policy

Thompson sampling

Fact: ga is an upper confidence bound for ., i.e., with high Emprical comparison
probability ga: > 1, for all arms Summary

Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem. 29

Regret of UCB policy R Learming:

Applications

Regret bound

Iog T 72
E [RegUCB] < 8 Z (1 + 3> Z(/‘L* - ,LLa) Reinforcement

a Ma<M* a Learning
Iog T Markov Decision
Process
= O(Z Aa) Value lteration
Aiprg<p* Q Learning

Introduction to MAB

M Multi-armed bandit

@ Exploration achieved by optimism under uncertainty ez

Greedy policy

@ Adaptive exploration T

o DetermInIStIC pohCy Regret Analysis of
UCB policy

Thompson sampling
Empirical comparison

Summary

UCB in action Reinforcement

Learning;
Applications

UCB1
t =000 | choice =0 | reward =0
o -
o~ 4
Reinforcement
Learning
k<]
S — Markov Decision
S Process
o
° Value lteration
g ©-
§ Q Learning
< Introduction to MAB
[Multi-armed bandit
Choice
Regret
o B Rewarded 1
' B Rewarded 0 Greedy policy

0.0 0.2 0.4 0.6 0.8 1.0 Regret Analysis of

UCB policy
Arm probability

Thompson sampling

Empirical comparison

Summary

Regret analysis for UCB P Learming:

Applications

Regret decomposition
Recall: A, = p* — g suboptimality gap

Nat = 2221 I(As = a) number of plays of arm a by round t

Reinforcement

T Learning
E [Regﬂ,(T)] = T,LL* _ E Z /“‘LAI (1) I';/Iarkov Decision
rocess
t=1 Value lteration
T N T K Q Learning
= Z B~ E Z Z MEI(A[= a) (2) Introduction to MAB
t=1 t=1 a=1 Multi-armed bandit
K T Regret
=E (M* —) I(At — a) (3) Greedy policy
az::.l @ t:Z1 UCB policy
K I
- Z AaE[Na,[] (4) Thompson sampling
a=1 Empirical comparison

Summary

Regret analysis for UCB P Learming:

Applications

Recall regret decomposition

K
E[Reg,(T)] =) AsE[Na
a=1

ﬁeinfcrrcemem
. . earnin
Bounding E[N,] for suboptimal arms S
Process
T Value Iteration
Na,t =1+ Z I(At = a) (5) Q Learning
t=K+1 Introduction to MAB
T T Multi-armed bandit
=1+ Z I1(A; = a, Na,t—1 >m)+ Z 1(A; = a, Na,t—1 <m) (6) Regret
t=K+1 t=K+1 Greedy policy
T UCB policy
<m+ > 1(Ar=a,Ng_1 >m) @) _
t=K+1
T Thompson sampling
<m+ > Wgat > arts Naj—1 > m) (8) FEmprical comparison

t=K+1 Summary

Reinforcement

Regret analysis for UCB inforcers
When Na,t—1 >m= [%1’ Gat > Jav t happens when Applications
—Ha

2logt 2logt

Either iz 1 — > g OF fige ¢ 1+ <p*
Na,t71 Na*,t71
LCB; fails UCB; fails
Assuming that N ;1 and Na« ;4 are fixed (not random), Hoeffding’s Exeinfqrcemem
inequality implies that iy
Markov Decision
Process
Pr(LCB; fails) < t—*, Pr(UCB; fails) < t—* Value lteration
H Q Learning
Actual proof requires taking a union bound over possible realizations of N ;_1 N—
and Ng« ;1.
. ’ Multi-armed bandit
Finally,
Regret
T Greedy policy
E [Na,T] S m+E Z |(ga,t Z ga*,h Na,t71 Z m) UCB policy
-
=m+ Z Pr(ga’t > 9a* t, Na,t71 > m) Thompson sampling
t=K+1 Empirical comparison
2 2 Summar
s 8log T s Y
3 [(#* — Ha)?] 3

Thompson (posterior) sampling e

Applications

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}X_,)

2 Compute posterior distribution of the optimal arm p(a*|#;) Reinforcement
Learning

3 Af ~ p(a*|Ht) Markov Decision
Process

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Empirical comparison

Summary

Thompson (posterior) sampling e

Applications

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}X_,)

2 Compute posterior distribution of the optimal arm p(a*|#;) Reinforcement
Learning

3 Ai ~ p(a*|Hs)

Markov Decision
Process

Equivalently Value leration
Q Learning
Introduction to MAB

1 Start with prior over bandit instances p({Fa}X_,)

Multi-armed bandit

2 Compute posterior over bandit instances p({Fa}X_,|#:) R
3 Sample a bandit instance {Fa}X_, ~ p({Fa}K_,|H) ‘j’ce:“ylf’°"°y
N policy
4 At — arg maXa M(Fa) Regret Analysis of
UCB policy
 Thompson samping

Empirical comparison

Summary

Reinforcement

Thompson sampling for Bernoulli bandits Learning;

Applications

Bernoulli bandits F, = Ber(6,), Ra: € {0,1}
Prior distribution p({F2}%_,) = [T5_, p(Fa), p(Fa) = Beta(1, 1)

Posterior distribution p(Fa|H:) = Beta(1 + aat—1,1 + Bat—1) Renforcemert
@ «a,¢1: number successes (1) from arm a by end of { — 1 Motk Becision
@ [35:—1: number failures (0) from arm a by end of t — 1 Value lteration

Q L i
At each round t carning

Introduction to MAB

1 Sample fis: from Beta(1 + aai—1,1 + Ba,t—1) (posterior) Mult-armed bandit

~ Regret
2 Select A; = arg max, fia; creety oty

3 Observe HA,,t S {0, 1} UCB policy
4 aat= a1+ Rat Bagt = Bat—1 +1— Rat Uoapoley
[Thompson sampiing

Empirical comparison

Summary

Regret bound for Thompson sampling e

Applications

For Bernoulli bandits*, for every ¢ > 0

(log T + loglog T)

<
E[Regrs(M < (1+¢) > KL(a.a) A, + const -
apg<p* Learning
|og T Markov Decision
= O Process
(a. Z< * a) Value Iteration
Hask Q Learning
TakeaWays Introduction to MAB
- Multi-armed bandit
@ Exploration achieved by sampling from posterior Regret
@ Adaptive exploration Greedy policy

. . UCB policy
@ Randomized policy Regret Anlysis of
UCB policy

Empirical comparison

Summary

*Kaufmann et al. 2012 “Thompson sampling: An asymptotically optimal finite-time analysis” .37

Thompson sampling in action e

Applications

ThompsonSampling
t =001 | choice =3 | reward = 1

© -
v -
Reinforcement
Learning
< - -
Markov Decision
- Process
% ™ Value lteration
o
Q Learning
N Introduction to MAB
Arm probability Multi-armed bandit
| 03 Regret
m 05
o m 07 Greedy policy
T T T T T T UCB policy
0.0 0.2 0.4 0.6 0.8 1.0 Regret Analysis of
UCB policy

Theta Thompson samping

Empirical comparison

Summary

Empirical comparison

Cumulative reward

0.6
0.5 |'— ucs1
&,-greedy
— s
0.4
0 200 400 600 800

Number of rounds (t)

Figure: Average reward (tuned
et-greedy)

1000

- UCB1
500 - mmm ,-greedy
- TS

400

Number of times chosen

1

5

0

. III Il- Ill Ill III Il- III Il-

080 080 080 080 080 080 080 080 094 095

Figure: Average number of times

each arm was played by the end of

the simulation.

Reinforcement
Learning;
Applications

Reinforcement
Learning

Markov Decision
Process

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Summary

Summary
1 Studied stochastic K-armed bandit.

@ R ~ F, (unknown), indep. of other arms
2 Any consistent policy incurs at least O(log T) regret
3 Following policies that can achieve O(log T) regret

€-greedy
@ Explores with probability ¢;
@ Uniformly explores all arms
@ O(KleT) regret (with tuned ;)

Aiﬂn
ucB
@ Explores by being optimistic
@ Adaptively explores
® O(3 ey L) regret
Thompson sampling
@ Explores by sampling from posterior
@ Adaptively explores

© O(4pucp L) regret

Reinforcement
Learning;
Applications

Reinforcement
Learning

Markov Decision
Process

Value lteration

Q Learning
Introduction to MAB
Multi-armed bandit
Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

	Reinforcement Learning
	Markov Decision Process
	Value Iteration
	Q Learning
	Introduction to MAB
	Multi-armed bandit
	Regret
	Greedy policy
	UCB policy
	Regret Analysis of UCB policy
	Thompson sampling
	Empirical comparison
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	0.180:
	0.181:
	0.182:
	0.183:
	0.184:
	0.185:
	0.186:
	0.187:
	0.188:
	0.189:
	0.190:
	0.191:
	0.192:
	0.193:
	0.194:
	0.195:
	0.196:
	0.197:
	0.198:
	0.199:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	1.100:
	1.101:
	1.102:
	1.103:
	1.104:
	1.105:
	1.106:
	1.107:
	1.108:
	1.109:
	1.110:
	1.111:
	1.112:
	1.113:
	1.114:
	1.115:
	1.116:
	1.117:
	1.118:
	1.119:
	1.120:
	1.121:
	1.122:
	1.123:
	1.124:
	1.125:
	1.126:
	1.127:
	1.128:
	1.129:
	1.130:
	1.131:
	1.132:
	1.133:
	1.134:
	1.135:
	1.136:
	1.137:
	1.138:
	1.139:
	1.140:
	1.141:
	1.142:
	1.143:
	1.144:
	1.145:
	1.146:
	1.147:
	1.148:
	1.149:
	1.150:
	1.151:
	1.152:
	1.153:
	1.154:
	1.155:
	1.156:
	1.157:
	1.158:
	1.159:
	1.160:
	1.161:
	1.162:
	1.163:
	1.164:
	1.165:
	1.166:
	1.167:
	1.168:
	1.169:
	1.170:
	1.171:
	1.172:
	1.173:
	1.174:
	1.175:
	1.176:
	1.177:
	1.178:
	1.179:
	1.180:
	1.181:
	1.182:
	1.183:
	1.184:
	1.185:
	1.186:
	1.187:
	1.188:
	1.189:
	1.190:
	1.191:
	1.192:
	1.193:
	1.194:
	1.195:
	1.196:
	1.197:
	1.198:
	1.199:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	2.99:
	2.100:
	2.101:
	2.102:
	2.103:
	2.104:
	2.105:
	2.106:
	2.107:
	2.108:
	2.109:
	2.110:
	2.111:
	2.112:
	2.113:
	2.114:
	2.115:
	2.116:
	2.117:
	2.118:
	2.119:
	2.120:
	2.121:
	2.122:
	2.123:
	2.124:
	2.125:
	2.126:
	2.127:
	2.128:
	2.129:
	2.130:
	2.131:
	2.132:
	2.133:
	2.134:
	2.135:
	2.136:
	2.137:
	2.138:
	2.139:
	2.140:
	2.141:
	2.142:
	2.143:
	2.144:
	2.145:
	2.146:
	2.147:
	2.148:
	2.149:
	2.150:
	2.151:
	2.152:
	2.153:
	2.154:
	2.155:
	2.156:
	2.157:
	2.158:
	2.159:
	2.160:
	2.161:
	2.162:
	2.163:
	2.164:
	2.165:
	2.166:
	2.167:
	2.168:
	2.169:
	2.170:
	2.171:
	2.172:
	2.173:
	2.174:
	2.175:
	2.176:
	2.177:
	2.178:
	2.179:
	2.180:
	2.181:
	2.182:
	2.183:
	2.184:
	2.185:
	2.186:
	2.187:
	2.188:
	2.189:
	2.190:
	2.191:
	2.192:
	2.193:
	2.194:
	2.195:
	2.196:
	2.197:
	2.198:
	2.199:
	2.200:
	2.201:
	2.202:
	2.203:
	2.204:
	2.205:
	2.206:
	2.207:
	2.208:
	2.209:
	2.210:
	2.211:
	2.212:
	2.213:
	2.214:
	2.215:
	2.216:
	2.217:
	2.218:
	2.219:
	2.220:
	2.221:
	2.222:
	2.223:
	2.224:
	2.225:
	2.226:
	2.227:
	2.228:
	2.229:
	2.230:
	2.231:
	2.232:
	2.233:
	2.234:
	2.235:
	2.236:
	2.237:
	2.238:
	2.239:
	2.240:
	2.241:
	2.242:
	2.243:
	2.244:
	2.245:
	2.246:
	2.247:
	2.248:
	2.249:
	2.250:
	2.251:
	2.252:
	2.253:
	2.254:
	2.255:
	2.256:
	2.257:
	2.258:
	2.259:
	2.260:
	2.261:
	2.262:
	2.263:
	2.264:
	2.265:
	2.266:
	2.267:
	2.268:
	2.269:
	2.270:
	2.271:
	2.272:
	2.273:
	2.274:
	2.275:
	2.276:
	2.277:
	2.278:
	2.279:
	2.280:
	2.281:
	2.282:
	2.283:
	2.284:
	2.285:
	2.286:
	2.287:
	2.288:
	2.289:
	2.290:
	2.291:
	2.292:
	2.293:
	2.294:
	2.295:
	2.296:
	2.297:
	2.298:
	2.299:
	2.300:
	2.301:
	2.302:
	2.303:
	2.304:
	2.305:
	2.306:
	2.307:
	2.308:
	2.309:
	2.310:
	2.311:
	2.312:
	2.313:
	2.314:
	2.315:
	2.316:
	2.317:
	2.318:
	2.319:
	2.320:
	2.321:
	2.322:
	2.323:
	2.324:
	2.325:
	2.326:
	2.327:
	2.328:
	2.329:
	2.330:
	2.331:
	2.332:
	2.333:
	2.334:
	2.335:
	2.336:
	2.337:
	2.338:
	2.339:
	2.340:
	2.341:
	2.342:
	2.343:
	2.344:
	2.345:
	2.346:
	2.347:
	2.348:
	2.349:
	2.350:
	2.351:
	2.352:
	2.353:
	2.354:
	2.355:
	2.356:
	2.357:
	2.358:
	2.359:
	2.360:
	2.361:
	2.362:
	2.363:
	2.364:
	2.365:
	2.366:
	2.367:
	2.368:
	2.369:
	2.370:
	2.371:
	2.372:
	2.373:
	2.374:
	2.375:
	2.376:
	2.377:
	2.378:
	2.379:
	2.380:
	2.381:
	2.382:
	2.383:
	2.384:
	2.385:
	2.386:
	2.387:
	2.388:
	2.389:
	2.390:
	2.391:
	2.392:
	2.393:
	2.394:
	2.395:
	2.396:
	2.397:
	2.398:
	2.399:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:

