Chapter Reinforcement Learning; Applications

GE461: Introduction to Data Science

Reinforcement Learning

Markov Decision

Reinforcement Learning; Applications

Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy UCB policy Regret Analysis of UCB policy Thompson sampling Empirical comparison Summary

Cem Tekin Bilkent University

Reinforcement learning (RL)

How should an agent interact with its environment in order to maximize its cumulative reward? Example: Robot in a gridworld

S_0 : initial state (position) In each round t

- Take action A_t in state S_t (move 1 step left, right, up or down)
- Observe the next state S_{t+1}
- Collect reward R_{t+1} (-100 if bomb hit, 1 if power found, 100 if end reached, -1 otherwise)

Reinforcement Learning; Applications

earning

Figure by Akshay Lambda from https://medium.com/free-code-camp/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc

Reinforcement learning (RL)

<u>Goal</u> Given discount rate $0 \le \gamma \le 1$ select actions to maximize

(total return)
$$G_1 = R_1 + \gamma R_2 + \gamma^2 R_3 + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{k+1}$$

Discount rate represents how much the agent cares about immediate rewards vs. future rewards

Policy π (method to select actions)

- History $\mathcal{H}_t = \{S_0, A_0, R_1, \dots, S_{t-1}, A_{t-1}, R_t, S_t, A_t\}$ everything that happened by the end of round *t*
- Policy π maps past information to distributions over actions
- A_t sampled from $\pi(\cdot | \mathcal{H}_{t-1}, R_t, S_t)$
- π is deterministic if it puts all probability to a single action What is a good model the environment? Markov property

$$\Pr(R_{t+1} = r, S_{t+1} = s' | \mathcal{H}_t) = \Pr(R_{t+1} = r, S_{t+1} = s' | S_t, A_t)$$

Reinforcement Learning; Applications

Figure 3.1 from "Reinforcement Learning: An Introduction" by Sutton and Barto

General RL model

state

S.

Some real-world applications

reward

 R_{t+1}

S.,

R,

- Autonomous driving
- Personalized medicine
- Web advertising
- News, video, movie recommendation

Agent

Environment

action

Α,

earning

Markov Decision Process (MDP)

A mathematical framework for modeling the interaction between agent and environment under Markov assumption

- Finite set of states: S
- Finite set of actions: A
- State transition probabilities:

$$p(s'|s, a) := \Pr(S_{t+1} = s'|S_t = s, A_t = a)$$

Expected reward:

$$r(s, a, s') = \mathsf{E}[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s']$$

Reinforcement Learning; Applications

Recycling robot example

1, r_{vait} high 1, 0 recharge high α , r_{search} r_{search} β , r_{search} β

- $\mathcal{S} = \{\text{high}, \text{low}\}$
- $\mathcal{A}(high) = \{search, wait\}$
- $\mathcal{A}(\mathsf{low}) = \{\mathsf{search}, \mathsf{wait}, \mathsf{recharge}\}$
- r_{search} > r_{wait} [expected num. of cans collected by the robot]
- State transitions are random

Recycling robot example

Reinforcement Learning; Applications

Reinforcement Learning
Markov Decision Process
Value Iteration
Q Learning
Introduction to MAB
Multi-armed bandit
Regret
Greedy policy
UCB policy
Regret Analysis of UCB policy
Thompson sampling
Empirical comparison
Summary

s	s'	a	p(s' s,a)	r(s,a,s')
high	high	search	α	r_{search}
high	low	search	$1 - \alpha$	r_{search}
low	high	search	$1 - \beta$	-3
low	low	search	β	$r_{\rm search}$
high	high	wait	1	r_{wait}
high	low	wait	0	$r_{\mathtt{wait}}$
low	high	wait	0	$r_{\rm wait}$
low	low	wait	1	r_{wait}
low	high	recharge	1	0
low	low	recharge	0	0.

Table 3.1 from "Reinforcement Learning: An Introduction" by Sutton and Barto

Markov policies and the value function

General policy $\overline{A_t}$ sampled from $\pi(\cdot | \mathcal{H}_{t-1}, R_t, S_t)$ Stationary Markov policy

 $\overline{A_t}$ sampled from $\pi(\cdot|S_t)$

Total return after time t

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

State-value function for π

$$m{v}_{\pi}(m{s}) = \mathsf{E}_{\pi}[m{G}_t|m{S}_t = m{s}] = \mathsf{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k m{R}_{t+k+1}|m{S}_t = m{s}
ight]$$

Action-value (Q) function for π

$$egin{aligned} q_{\pi}(m{s},m{a}) &= \mathsf{E}_{\pi}[G_t|S_t=m{s},m{A}_t=m{a}] \ &= \mathsf{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k B_{t+k+1}|S_t=m{s},m{A}_t=m{a}
ight] \end{aligned}$$

Reinforcement Learning; Applications

Optimal policy

 π^* is optimal iff $v_{\pi^*}(s) \ge v_{\pi}(s)$ for all $s \in \mathcal{S}$ and π

Theorem [Puterman, 1994]

For infinite horizon discounted MDP there exists a deterministic stationary Markov policy that is optimal.

Optimal state-value function $v_*(s) = \max_{\pi} v_{\pi}(s)$

Optimal action-value (Q) function $q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$

Bellman optimality equations

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \underbrace{\mathsf{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]}_{q_*(s,a)}$$
$$q_*(s,a) = \mathsf{E}[R_{t+1} + \gamma \underbrace{\max_{a'} q_*(S_{t+1}, a')}_{v_*(S_{t+1})} | S_t = s, A_t = a]$$

Optimal policy

$$\pi^*(s) = rg\max_a q_*(s,a)$$
 for all states s

Reinforcement Learning; Applications

Reinforcement

Computing the optimal policy (when state transition probabilities are known)

Value Iteration

- Start with an initial guess of the value functions v₀(s), s ∈ S (e.g., set to zero)
- (2) Compute the new value functions (at iteration k + 1) by updating the value functions found at iteration k:

$$v_{k+1}(s) = \max_{a} \mathsf{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a]$$
$$= \max_{a} \sum_{s'} p(s'|s, a)[r(s, a, s') + \gamma v_k(s')]$$

- (3) Repeat the above procedure until convergence, i.e., $||v_{k^*} v_{k^*-1}|| \le \epsilon$
- (4) The final policy is

$$\pi(\boldsymbol{s}) = \arg\max_{\boldsymbol{a}} \left\{ \sum_{\boldsymbol{s}'} \boldsymbol{p}(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) \left[\boldsymbol{r}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') + \gamma \boldsymbol{v}_{\boldsymbol{k}^*}(\boldsymbol{s}') \right] \right\}$$

Reinforcement Learning; Applications

Reinforcement

Learning

Computing the optimal policy (when state transition probabilities are known)

Value Iteration (with Q function)

- Start with an initial guess of the *Q* functions *q*₀(*s*, *a*), *s* ∈ S, *a* ∈ A (e.g., set to zero)
- (2) Compute the new Q functions (at iteration k + 1) by updating the Q functions found at iteration k:

$$q_{k+1}(s,a) = \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma \max_{a'} q_k(s',a') \right]$$

(3) Repeat the above procedure until convergence

(4) We have
$$v_{k^*}(s) = \max_a q_{k^*}(s, a)$$

(5) $\pi(s) = \arg \max_a q_{k^*}(s, a)$

Reinforcement

Learning; Applications

Robot grid-world example for value iteration

https://youtu.be/gThGerajccM

- Goal location: high reward
- Freespace: small penalty
- Obstacles: very large penalty

Types of robots:

- Deterministic: Always moves in the direction of the dictated action
- Stochastic: Can also move in other directions with a positive probability

Learning the optimal policy (when state transition probabilities are unknown)

Estimate $q^*(s, a)$ in a data-driven manner. Recall that

$$q_{*}(s, a) = \mathsf{E}[R_{t+1} + \gamma \underbrace{\max_{a'} q_{*}(S_{t+1}, a')}_{v_{*}(S_{t+1})} | S_{t} = s, A_{t} = a]$$

Q learning

• Keep a table of Q value estimates: Q(s, a) for $s \in S$, $a \in A$

• In round
$$t: S_t \xrightarrow[How?]{} A_t \to (S_{t+1}, R_{t+1})$$

- Form sample estimate: $\hat{Q}(S_t, A_t) = R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$
- Update Q-value of (S_t, A_t)

$$Q(S_t, A_t) \leftarrow (1 - \alpha)Q(S_t, A_t) + \underbrace{\alpha}_{\text{learning rate}} \hat{Q}(S_t, A_t)$$

Convergence If all (s, a) pairs are selected infinitely many times

 $Q(s, a)
ightarrow q_*(s, a)$ with probability 1

Reinforcement Learning; Applications

How to choose A_t given S_t ?

Option 1: Greedy

$$A_t = rg\max_a Q(S_t, a)$$

Always exploits. No exploration. Might stuck in suboptimal

Option 2: ϵ -greedy

- Toss a coin C_t with $Pr(C_t = H) = \epsilon$
- If C_t = H, then sample A_t uniformly randomly from action set (explore)
- If $C_t = T$, then $A_t = \arg \max_a Q(S_t, a)$ (exploit)

Option 3: Boltzmann exploration

$$m{A}_t \sim \Pr(\cdot|m{S}_t)$$
 such that $\Pr(m{A}_t = m{a}|m{S}_t) = rac{m{e}^{Q(S_t,m{a})}}{\sum_{m{a}'}m{e}^{Q(S_t,m{a}')}}$

Explores implicitly

Reinforcement Learning; Applications

Reinforcement Learning Markov Decision Process

Value Iteration

Q Learnin

Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy UCB policy Regret Analysis of UCB policy Thompson sampling Empirical comparison Summary

Deep Q Network Learning to Play Atari Game

Reinforcement Learning

Markov Decision Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Summary

https://youtu.be/cjpEIotvwFY

The multi-armed bandit problem

Gambling in a casino with K arms (slot machines)

In each round t

- Play an arm A_t
- Collect its random reward *R*_{*A*_{*t*},*t*} that comes from an unknown distribution

Goal: Maximize expected total reward $\mathbb{E}\left[\sum_{t} R_{A_{t},t}\right]$

Multi-armed bandits and reinforcement learning

General RL framework

- Repeated interaction over time *t* = 1, 2, ...
- S_t : state at time t. A_t : action at time t. R_t : reward at time t

- General RL: S_{t+1} depends on past actions and states (e.g., Markov model)
- K-armed stochastic bandit: one state
- More structure ⇒ more specialized algorithms & faster learning/convergence & rigorous optimality guarantees

Reinforcement Learning; Applications

Sequential decision-making under uncertainty: navigation

How to go from home to school?

- Day 1: Route A. Travel time: 20 min
- Day 2: Route A. Travel time: 40 min
- Day 3: Route B. Travel time: 25 min
- Day 4: ?

Travel times are uncertain

Want to

• Minimize \sum travel times

Sequential decision-making under uncertainty: recommender system

Pool of items $\{A, B, C, \ldots\}$

Users arrive sequentially over time (t = 1, 2, ...)

What should we recommend to maximize number of clicks

- User 1: Item A. Clicked
- User 2: Item A. Not clicked
- User 3: Item B. Clicked
- User 4: ?

User behavior is uncertain

Sequential decision-making under uncertainty: cognitive communications

Channels with time varying qualities $\{A, B, C, \ldots\}$

Time-slotted communication (t = 1, 2, ...)

Which channels should be selected to maximize throughput

- Time slot 1: Channel A. Successful transmission
- Time slot 2: Channel A. Failed transmission
- Time slot 3: Channel B. Successful transmission
- Time slot 4: ?

Channel gains are unknown, their distributions are unknown

Reinforcement

Reinforcement

Learning; Applications

Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

How to play the game

- 1. Know the the environment class $\ensuremath{\mathcal{E}}$
 - Arm set $\mathcal{A} = \{1, \dots, K\}$
 - Reward from arm *a* is sampled from unknown *F_a*, independent of other arms
- This is called stochastic K-armed bandit
 - Assume: *R_{a,t}* ∈ [0, 1] bounded support (alternatives: Bernoulli, Gaussian, subGaussian, heavy tailed)
- 2. Construct a policy
 - History $\mathcal{H}_t = \{A_1, R_{A_1,1}, \dots, A_{t-1}, R_{A_{t-1},t-1}\}$
 - Policy π : histories \rightarrow distributions over \mathcal{A}
- 3. Play according to your policy
 - Play $A_t \sim \pi(\cdot | \mathcal{H}_t)$
 - Observe $R_{A_t,t} \sim F_{A_t}$

• Update
$$\mathcal{H}_{t+1} = \mathcal{H}_t \cup \{A_t, R_{A_t, t}\}$$

Reinforcement Learning

Markov Decision Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Regret of a policy Expected reward of arm $a : \mu_a = \mathbb{E}[R_{a,t}]$

- Always select the best arm a^{*} = arg max_a μ_a
- Highest expected reward: μ^{*} = μ_a*
- Highest cumulative expected reward in T rounds: $T \times \mu^*$

Regret

$$\mathsf{Reg}_{\pi}(T) = T \times \mu^* - \sum_{t=1}^{T} \mu_{\mathsf{A}_t}$$

Fact

$$\operatorname{Max}_{\pi}\mathbb{E}\left[\sum_{t=1}^{T} R_{A_{t},t}\right] = \operatorname{Min}_{\pi}\mathbb{E}\left[\operatorname{Reg}_{\pi}(T)\right]$$

Reinforcement Learning; Applications

What is a good policy?

For all bandit instances in \mathcal{E} (e.g., all K-armed bandits with independent arm rewards in [0, 1])

$$\lim_{T\to\infty}\frac{\mathbb{E}\left[\mathsf{Reg}_{\pi}(T)\right]}{T}=0$$

Examples: $\mathbb{E}[\operatorname{Reg}_{\pi}(T)] = O(\sqrt{T}), \mathbb{E}[\operatorname{Reg}_{\pi}(T)] = O(\log T)$

Since expected rewards are unknown, a good policy should

- Explore arms to discover the best
- Exploit the arm that is believed to be the best
- Be computationally efficient

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Regret lower bound

Consistent policy π is consistent if for all $\{F_a\}_{a=1}^{K} \in \mathcal{E}$ and p > 0

$$\lim_{T \to \infty} \frac{\mathbb{E}[\mathsf{Reg}_{\pi}(T)]}{T^p} = 0$$

Asymptotic lower bound*

Let \mathcal{E} be class of bandits with single parameter exponential family of reward distributions (e.g., $F_a = \text{Ber}(\theta_a)$, $R_{a,t} \in \{0, 1\}$). For a consistent policy π regret grows at least logarithmically over time.

$$\liminf_{T \to \infty} \frac{\mathbb{E}[\mathsf{Reg}_{\pi}(T)]}{\log T} \geq \sum_{a: \mu_a < \mu^*} \frac{\mu^* - \mu_a}{\mathsf{KL}(a, a^*)}$$

Minimum achievable regret $O(\log T)$

^{*}Lai and Robbins 1985: Asymptotically efficient adaptive allocation rules.

Greedy policy

Sample mean reward collected from arm *a* by the end of round t - 1: $\hat{\mu}_{a,t-1}$

Initially Sample each arm once

 $\frac{\text{At each round } t > K}{\text{Select } A_t = \arg \max_a \hat{\mu}_{a,t-1}}$

Example with K = 2 arms Bernoulli rewards, $\mu_i = 0.9$, $\mu_j = 0.8$

t	$\hat{\mu}_{i,t-1}$	$\hat{\mu}_{j,t-1}$	A_t	$r_{A_t,t}$
1			i	1
2			j	1
3	1	1	i	0
4	1/2	1	j	1
5	1/2	1	j	1
6	1/2	1	?	?

Might get stuck in arm j which is suboptimal

Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit

Reinforcement

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

ϵ_t -greedy policy

A sequence of exploration probabilities $\{\epsilon_t\}$ Empirical best arm $\hat{a}_t^* = \arg \max_a \hat{\mu}_{a,t-1}$ Initially

- Sample each arm once
- <u>At each round t > K</u>
 - Explore with probability ϵ_t

Select A_t randomly from $\{1, 2, \ldots, K\}$

• Exploit with probability $1 - \epsilon_t$

Select
$$A_t = \hat{a}_t^*$$

Regret of ϵ_t -greedy algorithm

Let $\Delta_a = \mu^* - \mu_a$ suboptimality gap Let $\Delta_{\min} = \min_{a:\mu_a < \mu^*} \Delta_a$ Tune exploration probabilities

$$\epsilon_t = rac{cK}{\Delta_{\min}^2 t}, c > 0$$

Regret bound*

$$\mathbb{E}\left[\mathsf{Reg}_{\epsilon_t-\mathsf{greedy}}(T)\right] \leq c' \times \sum_{a=1}^{K} \left(\Delta_a + \frac{\Delta_a}{\Delta_{\min}^2} \log \max\left\{e, \frac{T\Delta_{\min}^2}{K}\right\}\right)$$
$$= O(\frac{K \log T}{\Delta_{\min}^2})$$

Takeaways

- Exploration achieved by randomization
- Need careful tuning
- Uniform exploration

^{*}Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.

ϵ_t -greedy in action

Reinforcement Learning

Markov Decision Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Upper Confidence Bound (UCB) policy

Initially

Sample each arm once

<u>At each round t > K</u>

1. Calculate optimistic estimate of arm a

2. Select the optimistic best arm

$$a_t = rg \max_a g_{a,t}$$

<u>Fact</u>: $g_{a,t}$ is an upper confidence bound for μ_a , i.e., with high probability $g_{a,t} \ge \mu_a$ for all arms

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.

Regret of UCB policy

Regret bound

$$\begin{split} \mathbb{E}\left[\mathsf{Reg}_{\mathsf{UCB}}(T)\right] &\leq 8\sum_{a:\mu_a < \mu_*} \frac{\log T}{\mu_* - \mu_a} + \left(1 + \frac{\pi^2}{3}\right) \sum_a (\mu_* - \mu_a) \\ &= O(\sum_{a:\mu_a < \mu^*} \frac{\log T}{\Delta_a}) \end{split}$$

Takeaways

- Exploration achieved by optimism under uncertainty
- Adaptive exploration
- Deterministic policy

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Rearet Analysis of

UCB policy

Thompson sampling

Empirical comparison

UCB in action

Reinforcement Learning Markov Decision Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Regret analysis for UCB

 $\frac{\text{Regret decomposition}}{\text{Recall: } \Delta_a = \mu^* - \mu_a} \text{suboptimality gap}$ $N_{a,t} = \sum_{s=1}^{t} \mathbb{I}(A_s = a) \text{ number of plays of arm } a \text{ by round } t$

$$\mathbb{E}\left[\operatorname{Reg}_{\pi}(T)\right] = T\mu^{*} - \mathbb{E}\left[\sum_{t=1}^{T} \mu_{A_{t}}\right]$$

$$= \sum_{t=1}^{T} \mu^{*} - \mathbb{E}\left[\sum_{t=1}^{T} \sum_{a=1}^{K} \mu_{a}\mathbb{I}(A_{t} = a)\right]$$

$$= \mathbb{E}\left[\sum_{a=1}^{K} (\mu^{*} - \mu_{a}) \sum_{t=1}^{T} \mathbb{I}(A_{t} = a)\right]$$

$$= \sum_{a=1}^{K} \Delta_{a}\mathbb{E}[N_{a,t}]$$

$$(1) \qquad \text{Markov Decision Process}$$
Value Iteration
$$O \text{ Learning} \\
\text{Introduction to MAB} \\
\text{Multi-armed bandit} \\
\text{Regret} \\
\text{Greedy policy} \\
\text{UCB policy} \\
\text{Thompson sampling} \\
\text{Empirical comparison} \\
\text{Empirical compariso$$

Reinforcement Learning; Applications

Poinforcomont

Regret analysis for UCB

Recall regret decomposition

T

$$\mathbb{E}\left[\mathsf{Reg}_{\pi}(T)\right] = \sum_{a=1}^{K} \Delta_{a} \mathbb{E}[N_{a,t}]$$

Bounding $\mathbb{E}[N_{a,t}]$ for suboptimal arms

$$N_{a,t} = 1 + \sum_{t=K+1}^{T} \mathbb{I}(A_t = a)$$
 (5)

$$= 1 + \sum_{t=K+1}^{T} \mathbb{I}(A_t = a, N_{a,t-1} \ge m) + \sum_{t=K+1}^{T} \mathbb{I}(A_t = a, N_{a,t-1} < m)$$
(6)

$$\leq m + \sum_{t=K+1}^{\prime} \mathbb{I}(A_t = a, N_{a,t-1} \geq m)$$
 (7)

$$\leq m + \sum_{t=K+1}^{T} \mathbb{I}(g_{a,t} \geq g_{a^*,t}, N_{a,t-1} \geq m)$$

Reinforcement Learning; Applications

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Regret Analysis of Thompson sampling Empirical comparison Summary

(8)

Regret analysis for UCB

When $N_{a,t-1} \ge m = \lceil \frac{8 \log T}{(\mu^* - \mu_a)^2} \rceil$, $g_{a,t} \ge g_{a^*,t}$ happens when

$$\text{Either } \underbrace{ \underbrace{\hat{\mu}_{a,t-1} - \sqrt{\frac{2\log t}{N_{a,t-1}}} \ge \mu_a}_{\text{LCB}_t \text{ fails}} \text{ or } \underbrace{ \underbrace{\hat{\mu}_{a^*,t-1} + \sqrt{\frac{2\log t}{N_{a^*,t-1}}} \le \mu^*}_{\text{UCB}_t \text{ fails}}$$

Assuming that $N_{a,t-1}$ and $N_{a^*,t-1}$ are fixed (not random), Hoeffding's inequality implies that

$$\Pr(\mathsf{LCB}_t \text{ fails}) \leq t^{-4}, \ \ \Pr(\mathsf{UCB}_t \text{ fails}) \leq t^{-4}$$

Actual proof requires taking a union bound over possible realizations of $N_{a,t-1}$ and $N_{a^*,t-1}$. Finally,

$$\mathbb{E}\left[N_{a,T}\right] \le m + \mathbb{E}\left[\sum_{t=K+1}^{T} \mathbb{I}(g_{a,t} \ge g_{a^*,t}, N_{a,t-1} \ge m)\right]$$
$$= m + \sum_{t=K+1}^{T} \Pr(g_{a,t} \ge g_{a^*,t}, N_{a,t-1} \ge m)$$
$$\le m + \frac{\pi^2}{3} = \left\lceil \frac{8\log T}{(\mu^* - \mu_a)^2} \right\rceil + \frac{\pi^2}{3}$$

Reinforcement Learning; Applications

Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

- 1 Start with prior over bandit instances $p(\{F_a\}_{a=1}^{K})$
- 2 Compute posterior distribution of the optimal arm $p(a^*|\mathcal{H}_t)$
- **3** $A_t \sim p(a^* | \mathcal{H}_t)$

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

- 1 Start with prior over bandit instances $p(\{F_a\}_{a=1}^K)$
- **2** Compute posterior distribution of the optimal arm $p(a^*|\mathcal{H}_t)$
- **3** $A_t \sim p(a^* | \mathcal{H}_t)$

Equivalently

- 1 Start with prior over bandit instances $p(\{F_a\}_{a=1}^{K})$
- 2 Compute posterior over bandit instances $p(\{F_a\}_{a=1}^{K} | \mathcal{H}_t)$
- 3 Sample a bandit instance $\{\hat{F}_a\}_{a=1}^K \sim p(\{F_a\}_{a=1}^K | \mathcal{H}_t)$

4
$$A_t = \arg \max_a \mu(\hat{F}_a)$$

Thompson sampling for Bernoulli bandits

<u>Bernoulli bandits</u> $F_a = Ber(\theta_a), R_{a,t} \in \{0, 1\}$

<u>Prior distribution</u> $p(\{F_a\}_{a=1}^{K}) = \prod_{a=1}^{K} p(F_a), p(F_a) = \text{Beta}(1,1)$

<u>Posterior distribution</u> $p(F_a|\mathcal{H}_t) = \text{Beta}(1 + \alpha_{a,t-1}, 1 + \beta_{a,t-1})$

- $\alpha_{a,t-1}$: number successes (1) from arm *a* by end of t-1
- $\beta_{a,t-1}$: number failures (0) from arm *a* by end of t-1

At each round t

- 1 Sample $\tilde{\mu}_{a,t}$ from Beta $(1 + \alpha_{a,t-1}, 1 + \beta_{a,t-1})$ (posterior)
- 2 Select $A_t = \arg \max_a \tilde{\mu}_{a,t}$
- **3** Observe $R_{A_t,t} \in \{0,1\}$

4
$$\alpha_{A_{t},t} = \alpha_{A_{t},t-1} + R_{A_{t},t}, \ \beta_{A_{t},t} = \beta_{A_{t},t-1} + 1 - R_{A_{t},t}$$

Regret bound for Thompson sampling

For Bernoulli bandits*, for every $\epsilon > 0$

$$\mathbb{E}\left[\operatorname{\mathsf{Reg}}_{\mathsf{TS}}(T)\right] \le (1+\epsilon) \sum_{a:\mu_a < \mu^*} \frac{\left(\log T + \log \log T\right)}{\mathsf{KL}(a,a^*)} \Delta_a + const$$
$$= O\left(\sum_{a:\mu_a < \mu^*} \frac{\log T}{\Delta_a}\right)$$

Takeaways

- Exploration achieved by sampling from posterior
- Adaptive exploration
- Randomized policy

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

^{*}Kaufmann et al. 2012 "Thompson sampling: An asymptotically optimal finite-time analysis"

Thompson sampling in action

Reinforcement Learning; Applications

Reinforcement Learning Markov Decision Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of UCB policy

Thompson sampling

Empirical comparison

Empirical comparison

Reinforcement Learning: Applications

Beinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Regret Analysis of UCB policy Thompson sampling irical comparison

Summary

Figure: Average reward (tuned ϵ_t -greedy)

Figure: Average number of times each arm was played by the end of the simulation.

Arm expected reward

0.80 0.80 0.80 0.80 0.94 0.95

UCB1

0.80 0.80 0.80 0.80

E-areedy TS

Summary

- 1 Studied stochastic *K*-armed bandit.
 - $R_{a,t} \sim F_a$ (unknown), indep. of other arms
- 2 Any consistent policy incurs at least $O(\log T)$ regret
- 3 Following policies that can achieve $O(\log T)$ regret

 ϵ_t -greedy

- Explores with probability ϵ_t
- Uniformly explores all arms
- $O(\frac{K \log T}{\Delta_{\min}^2})$ regret (with tuned ϵ_t)

UCB

- Explores by being optimistic
- Adaptively explores
- $O(\sum_{a:\mu_a < \mu^*} \frac{\log T}{\Delta_a})$ regret

Thompson sampling

- Explores by sampling from posterior
- Adaptively explores

•
$$O(\sum_{a:\mu_a < \mu^*} \frac{\log T}{\Delta_a})$$
 regret

Reinforcement Learning; Applications

Reinforcement Learning Markov Decision Process Value Iteration Q Learning Introduction to MAB Multi-armed bandit Regret Greedy policy UCB policy Regret Analysis of UCB policy Thompson sampling Empirical comparison