
Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.1

Chapter
Reinforcement Learning;
Applications
GE461: Introduction to Data Science

Cem Tekin
Bilkent University

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.2

Reinforcement learning (RL)
How should an agent interact with its environment in order to
maximize its cumulative reward?
Example: Robot in a gridworld

S0: initial state (position)
In each round t

Take action At in state St (move 1 step left, right, up or down)

Observe the next state St+1

Collect reward Rt+1 (-100 if bomb hit, 1 if power found, 100 if end
reached, -1 otherwise)

Figure by Akshay Lambda from
https://medium.com/free-code-camp/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.3

Reinforcement learning (RL)
Goal
Given discount rate 0 ≤ γ ≤ 1 select actions to maximize

(total return) G1 = R1 + γR2 + γ2R3 + . . . =
∞∑

k=0

γk Rk+1

Discount rate represents how much the agent cares about
immediate rewards vs. future rewards

Policy π (method to select actions)
History Ht = {S0,A0,R1, . . . ,St−1,At−1,Rt ,St ,At}
everything that happened by the end of round t
Policy π maps past information to distributions over actions
At sampled from π(·|Ht−1,Rt ,St)

π is deterministic if it puts all probability to a single action
What is a good model the environment?
Markov property

Pr(Rt+1 = r ,St+1 = s′|Ht) = Pr(Rt+1 = r ,St+1 = s′|St ,At)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.4

General RL model

Some real-world applications

Autonomous driving
Personalized medicine
Web advertising
News, video, movie recommendation

Figure 3.1 from “Reinforcement Learning: An Introduction" by Sutton and Barto

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.5

Markov Decision Process (MDP)

A mathematical framework for modeling the interaction
between agent and environment under Markov assumption

Finite set of states: S
Finite set of actions: A
State transition probabilities:

p(s′|s,a) := Pr(St+1 = s′|St = s,At = a)

Expected reward:

r(s,a, s′) = E[Rt+1|St = s,At = a,St+1 = s′]

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.6

Recycling robot example

S = {high, low}
A(high) = {search,wait}
A(low) = {search,wait, recharge}
rsearch > rwait [expected num. of cans collected by the
robot]
State transitions are random

Figure 3.3 from “Reinforcement Learning: An Introduction" by Sutton and Barto

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.7

Recycling robot example

Table 3.1 from “Reinforcement Learning: An Introduction" by Sutton and Barto

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.8

Markov policies and the value function
General policy
At sampled from π(·|Ht−1,Rt ,St)

Stationary Markov policy
At sampled from π(·|St)

Total return after time t

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑

k=0

γk Rt+k+1

State-value function for π

vπ(s) = Eπ[Gt |St = s] = Eπ

[∞∑
k=0

γk Rt+k+1|St = s

]
Action-value (Q) function for π

qπ(s,a) = Eπ[Gt |St = s,At = a]

= Eπ

[∞∑
k=0

γk Rt+k+1|St = s,At = a

]

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.9

Optimal policy
π∗ is optimal iff vπ∗(s) ≥ vπ(s) for all s ∈ S and π

Theorem [Puterman, 1994]
For infinite horizon discounted MDP there exists a deterministic
stationary Markov policy that is optimal.

Optimal state-value function v∗(s) = maxπ vπ(s)

Optimal action-value (Q) function q∗(s,a) = maxπ qπ(s,a)

Bellman optimality equations

v∗(s) = max
a∈A(s)

E[Rt+1 + γv∗(St+1)|St = s,At = a]︸ ︷︷ ︸
q∗(s,a)

q∗(s,a) = E[Rt+1 + γmax
a′

q∗(St+1,a′)︸ ︷︷ ︸
v∗(St+1)

|St = s,At = a]

Optimal policy

π∗(s) = arg max
a

q∗(s,a) for all states s

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.10

Computing the optimal policy (when state transition
probabilities are known)

Value Iteration

(1) Start with an initial guess of the value functions v0(s),
s ∈ S (e.g., set to zero)

(2) Compute the new value functions (at iteration k + 1) by
updating the value functions found at iteration k :

vk+1(s) = max
a

E[Rt+1 + γvk (St+1)|St = s,At = a]

= max
a

∑
s′

p(s′|s,a)[r(s,a, s′) + γvk (s′)]

(3) Repeat the above procedure until convergence, i.e.,
||vk∗ − vk∗−1|| ≤ ε

(4) The final policy is

π(s) = arg max
a

{∑
s′

p(s′|s,a) [r(s,a, s′) + γvk∗(s′)]

}

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.11

Computing the optimal policy (when state transition
probabilities are known)

Value Iteration (with Q function)

(1) Start with an initial guess of the Q functions q0(s,a), s ∈ S,
a ∈ A (e.g., set to zero)

(2) Compute the new Q functions (at iteration k + 1) by
updating the Q functions found at iteration k :

qk+1(s,a) =
∑

s′
p(s′|s,a)

[
r(s,a, s′) + γmax

a′
qk (s′,a′)

]
(3) Repeat the above procedure until convergence
(4) We have vk∗(s) = maxa qk∗(s,a)

(5) π(s) = arg maxa qk∗(s,a)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.12

Robot grid-world example for value iteration

https://youtu.be/gThGerajccM

Goal location: high reward
Freespace: small penalty
Obstacles: very large penalty

Types of robots:
Deterministic: Always moves in the direction of the
dictated action
Stochastic: Can also move in other directions with a
positive probability

https://youtu.be/gThGerajccM

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.13

Learning the optimal policy (when state transition
probabilities are unknown)

Estimate q∗(s,a) in a data-driven manner. Recall that

q∗(s,a) = E[Rt+1 + γmax
a′

q∗(St+1,a′)︸ ︷︷ ︸
v∗(St+1)

|St = s,At = a]

Q learning

Keep a table of Q value estimates: Q(s,a) for s ∈ S, a ∈ A
In round t : St →︸︷︷︸

How?

At → (St+1,Rt+1)

Form sample estimate:
Q̂(St ,At) = Rt+1 + γmaxa′ Q(St+1,a′)
Update Q-value of (St ,At)

Q(St ,At)← (1− α)Q(St ,At) + α︸︷︷︸
learning rate

Q̂(St ,At)

Convergence If all (s,a) pairs are selected infinitely many times

Q(s,a)→ q∗(s,a) with probability 1

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.14

How to choose At given St?

Option 1: Greedy

At = arg max
a

Q(St ,a)

Always exploits. No exploration. Might stuck in suboptimal

Option 2: ε-greedy

Toss a coin Ct with Pr(Ct = H) = ε

If Ct = H, then sample At uniformly randomly from action
set (explore)
If Ct = T , then At = arg maxa Q(St ,a) (exploit)

Option 3: Boltzmann exploration

At ∼ Pr(·|St) such that Pr(At = a|St) =
eQ(St ,a)∑
a′ eQ(St ,a′)

Explores implicitly

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.15

Deep Q Network Learning to Play Atari Game

https://youtu.be/cjpEIotvwFY

https://youtu.be/cjpEIotvwFY

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.16

The multi-armed bandit problem

Gambling in a casino with K arms (slot machines)

In each round t

Play an arm At

Collect its random reward RAt ,t that comes from an
unknown distribution

Goal: Maximize expected total reward E
[∑

t RAt ,t
]

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.17

Multi-armed bandits and reinforcement learning

General RL framework

Repeated interaction over time t = 1,2, . . .
St : state at time t . At : action at time t . Rt : reward at time t

General RL: St+1 depends on past actions and states
(e.g., Markov model)
K -armed stochastic bandit: one state
More structure⇒ more specialized algorithms & faster
learning/convergence & rigorous optimality guarantees

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.18

Sequential decision-making under uncertainty: navigation

How to go from home to school?
Day 1: Route A. Travel time: 20 min
Day 2: Route A. Travel time: 40 min
Day 3: Route B. Travel time: 25 min
Day 4: ?

Travel times are uncertain

Want to

Minimize
∑

travel times

Route A Route B

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.19

Sequential decision-making under uncertainty:
recommender system

Pool of items {A,B,C, . . .}

Users arrive sequentially over time (t = 1,2, . . .)

What should we recommend to maximize number of clicks

User 1: Item A. Clicked
User 2: Item A. Not clicked
User 3: Item B. Clicked
User 4: ?

User behavior is uncertain

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.20

Sequential decision-making under uncertainty: cognitive
communications

Channels with time varying qualities {A,B,C, . . .}

Time-slotted communication (t = 1,2, . . .)

Which channels should be selected to maximize throughput

Time slot 1: Channel A. Successful transmission
Time slot 2: Channel A. Failed transmission
Time slot 3: Channel B. Successful transmission
Time slot 4: ?

Channel gains are unknown, their distributions are unknown

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.21

How to play the game

1. Know the the environment class E
Arm set A = {1, . . . ,K}
Reward from arm a is sampled from unknown Fa,
independent of other arms

This is called stochastic K -armed bandit

Assume: Ra,t ∈ [0,1] bounded support (alternatives:
Bernoulli, Gaussian, subGaussian, heavy tailed)

2. Construct a policy

History Ht = {A1,RA1,1, . . . ,At−1,RAt−1,t−1}
Policy π : histories→ distributions over A

3. Play according to your policy
Play At ∼ π(·|Ht)

Observe RAt ,t ∼ FAt

Update Ht+1 = Ht ∪ {At ,RAt ,t}

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.22

Regret of a policy
Expected reward of arm a : µa = E[Ra,t]

Always select the best arm a∗ = arg maxa µa

Highest expected reward: µ∗ = µa∗

Highest cumulative expected reward in T rounds: T × µ∗

Regret

Regπ(T) = T × µ∗ −
T∑

t=1

µAt

Fact

MaxπE

[
T∑

t=1

RAt ,t

]
= MinπE [Regπ(T)]

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.23

What is a good policy?

For all bandit instances in E (e.g., all K -armed bandits with
independent arm rewards in [0,1])

lim
T→∞

E [Regπ(T)]

T
= 0

Examples: E [Regπ(T)] = O(
√

T), E [Regπ(T)] = O(log T)

Since expected rewards are unknown, a good policy should

Explore arms to discover the best

Exploit the arm that is believed to be the best

Be computationally efficient

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.24

Regret lower bound

Consistent policy
π is consistent if for all {Fa}K

a=1 ∈ E and p > 0

lim
T→∞

E[Regπ(T)]

T p = 0

Asymptotic lower bound*
Let E be class of bandits with single parameter exponential
family of reward distributions (e.g., Fa = Ber(θa), Ra,t ∈ {0,1}).
For a consistent policy π regret grows at least logarithmically
over time.

lim inf
T→∞

E[Regπ(T)]

log T
≥

∑
a:µa<µ∗

µ∗ − µa

KL(a,a∗)

Minimum achievable regret O(log T)

*Lai and Robbins 1985: Asymptotically efficient adaptive allocation rules.

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.25

Greedy policy
Sample mean reward collected from arm a by the end of round
t − 1: µ̂a,t−1

Initially
Sample each arm once

At each round t > K
Select At = arg maxa µ̂a,t−1

Example with K = 2 arms
Bernoulli rewards, µi = 0.9, µj = 0.8

t µ̂i,t−1 µ̂j,t−1 At rAt ,t

1 i 1
2 j 1

3 1 1 i 0
4 1/2 1 j 1
5 1/2 1 j 1
6 1/2 1 ? ?

Might get stuck in arm j which is suboptimal

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.26

εt -greedy policy

A sequence of exploration probabilities {εt}

Empirical best arm â∗t = arg maxa µ̂a,t−1

Initially

Sample each arm once

At each round t > K
Explore with probability εt

Select At randomly from {1,2, . . . ,K}

Exploit with probability 1− εt

Select At = â∗t

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.27

Regret of εt -greedy algorithm
Let ∆a = µ∗ − µa suboptimality gap
Let ∆min = mina:µa<µ∗ ∆a
Tune exploration probabilities

εt =
cK

∆2
mint

, c > 0

Regret bound*

E
[
Regεt−greedy(T)

]
≤ c′ ×

K∑
a=1

(
∆a +

∆a

∆2
min

log max

{
e,

T ∆2
min

K

})
= O(

K log T
∆2

min

)

Takeaways

Exploration achieved by randomization
Need careful tuning
Uniform exploration

*Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.28

εt -greedy in action

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.29

Upper Confidence Bound (UCB) policy

Initially

Sample each arm once

At each round t > K

1. Calculate optimistic estimate of arm a

ga,t︸︷︷︸
index

= µ̂a,t−1︸ ︷︷ ︸
sample mean

+

√
2 log t
Na,t−1︸ ︷︷ ︸

exploration bonus

2. Select the optimistic best arm

at = arg max
a

ga,t

Fact: ga,t is an upper confidence bound for µa, i.e., with high
probability ga,t ≥ µa for all arms

Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.30

Regret of UCB policy

Regret bound

E [RegUCB(T)] ≤ 8
∑

a:µa<µ∗

log T
µ∗ − µa

+

(
1 +

π2

3

)∑
a

(µ∗ − µa)

= O(
∑

a:µa<µ∗

log T
∆a

)

Takeaways

Exploration achieved by optimism under uncertainty
Adaptive exploration
Deterministic policy

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.31

UCB in action

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.32

Regret analysis for UCB

Regret decomposition
Recall: ∆a = µ∗ − µa suboptimality gap

Na,t =
∑t

s=1 I(As = a) number of plays of arm a by round t

E [Regπ(T)] = Tµ∗ − E

[
T∑

t=1

µAt

]
(1)

=
T∑

t=1

µ∗ − E

[
T∑

t=1

K∑
a=1

µaI(At = a)

]
(2)

= E

[
K∑

a=1

(µ∗ − µa)
T∑

t=1

I(At = a)

]
(3)

=
K∑

a=1

∆aE[Na,t] (4)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.33

Regret analysis for UCB

Recall regret decomposition

E [Regπ(T)] =
K∑

a=1

∆aE[Na,t]

Bounding E[Na,t] for suboptimal arms

Na,t = 1 +
T∑

t=K +1

I(At = a) (5)

= 1 +
T∑

t=K +1

I(At = a,Na,t−1 ≥ m) +
T∑

t=K +1

I(At = a,Na,t−1 < m) (6)

≤ m +
T∑

t=K +1

I(At = a,Na,t−1 ≥ m) (7)

≤ m +
T∑

t=K +1

I(ga,t ≥ ga∗,t ,Na,t−1 ≥ m) (8)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.34

Regret analysis for UCB
When Na,t−1 ≥ m =

⌈ 8 log T
(µ∗−µa)2

⌉
, ga,t ≥ ga∗,t happens when

Either µ̂a,t−1 −

√
2 log t
Na,t−1

≥ µa︸ ︷︷ ︸
LCBt fails

or µ̂a∗,t−1 +

√
2 log t

Na∗,t−1
≤ µ∗︸ ︷︷ ︸

UCBt fails

Assuming that Na,t−1 and Na∗,t−1 are fixed (not random), Hoeffding’s
inequality implies that

Pr(LCBt fails) ≤ t−4, Pr(UCBt fails) ≤ t−4

Actual proof requires taking a union bound over possible realizations of Na,t−1
and Na∗,t−1.
Finally,

E
[
Na,T

]
≤ m + E

 T∑
t=K +1

I(ga,t ≥ ga∗,t ,Na,t−1 ≥ m)

= m +

T∑
t=K +1

Pr(ga,t ≥ ga∗,t ,Na,t−1 ≥ m)

≤ m +
π2

3
=
⌈ 8 log T

(µ∗ − µa)2

⌉
+
π2

3

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.35

Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior distribution of the optimal arm p(a∗|Ht)

3 At ∼ p(a∗|Ht)

Equivalently

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior over bandit instances p({Fa}K
a=1|Ht)

3 Sample a bandit instance {F̂a}K
a=1 ∼ p({Fa}K

a=1|Ht)

4 At = arg maxa µ(F̂a)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.35

Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior distribution of the optimal arm p(a∗|Ht)

3 At ∼ p(a∗|Ht)

Equivalently

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior over bandit instances p({Fa}K
a=1|Ht)

3 Sample a bandit instance {F̂a}K
a=1 ∼ p({Fa}K

a=1|Ht)

4 At = arg maxa µ(F̂a)

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.36

Thompson sampling for Bernoulli bandits

Bernoulli bandits Fa = Ber(θa), Ra,t ∈ {0,1}

Prior distribution p({Fa}K
a=1) =

∏K
a=1 p(Fa), p(Fa) = Beta(1,1)

Posterior distribution p(Fa|Ht) = Beta(1 + αa,t−1,1 + βa,t−1)

αa,t−1: number successes (1) from arm a by end of t − 1
βa,t−1: number failures (0) from arm a by end of t − 1

At each round t

1 Sample µ̃a,t from Beta(1 + αa,t−1,1 + βa,t−1) (posterior)
2 Select At = arg maxa µ̃a,t

3 Observe RAt ,t ∈ {0,1}
4 αAt ,t = αAt ,t−1 + RAt ,t , βAt ,t = βAt ,t−1 + 1− RAt ,t

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.37

Regret bound for Thompson sampling

For Bernoulli bandits*, for every ε > 0

E [RegTS(T)] ≤ (1 + ε)
∑

a:µa<µ∗

(log T + log log T)

KL(a,a∗)
∆a + const

= O(
∑

a:µa<µ∗

log T
∆a

)

Takeaways

Exploration achieved by sampling from posterior
Adaptive exploration
Randomized policy

*Kaufmann et al. 2012 “Thompson sampling: An asymptotically optimal finite-time analysis"

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.38

Thompson sampling in action

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.39

Empirical comparison

0 200 400 600 800 1000
Number of rounds (t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

re
wa

rd

UCB1
n-greedy

TS

Figure: Average reward (tuned
εt -greedy)

0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.94 0.95
Arm expected reward

0

100

200

300

400

500

Nu
m

be
r o

f t
im

es
 c

ho
se

n

UCB1
n-greedy

TS

Figure: Average number of times
each arm was played by the end of
the simulation.

Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.40

Summary

1 Studied stochastic K -armed bandit.
Ra,t ∼ Fa (unknown), indep. of other arms

2 Any consistent policy incurs at least O(log T) regret
3 Following policies that can achieve O(log T) regret

εt -greedy

Explores with probability εt
Uniformly explores all arms
O(K log T

∆2
min

) regret (with tuned εt)

UCB
Explores by being optimistic
Adaptively explores
O(
∑

a:µa<µ∗
log T
∆a

) regret
Thompson sampling

Explores by sampling from posterior
Adaptively explores
O(
∑

a:µa<µ∗
log T
∆a

) regret

	Reinforcement Learning
	Markov Decision Process
	Value Iteration
	Q Learning
	Introduction to MAB
	Multi-armed bandit
	Regret
	Greedy policy
	UCB policy
	Regret Analysis of UCB policy
	Thompson sampling
	Empirical comparison
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	0.180:
	0.181:
	0.182:
	0.183:
	0.184:
	0.185:
	0.186:
	0.187:
	0.188:
	0.189:
	0.190:
	0.191:
	0.192:
	0.193:
	0.194:
	0.195:
	0.196:
	0.197:
	0.198:
	0.199:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	1.100:
	1.101:
	1.102:
	1.103:
	1.104:
	1.105:
	1.106:
	1.107:
	1.108:
	1.109:
	1.110:
	1.111:
	1.112:
	1.113:
	1.114:
	1.115:
	1.116:
	1.117:
	1.118:
	1.119:
	1.120:
	1.121:
	1.122:
	1.123:
	1.124:
	1.125:
	1.126:
	1.127:
	1.128:
	1.129:
	1.130:
	1.131:
	1.132:
	1.133:
	1.134:
	1.135:
	1.136:
	1.137:
	1.138:
	1.139:
	1.140:
	1.141:
	1.142:
	1.143:
	1.144:
	1.145:
	1.146:
	1.147:
	1.148:
	1.149:
	1.150:
	1.151:
	1.152:
	1.153:
	1.154:
	1.155:
	1.156:
	1.157:
	1.158:
	1.159:
	1.160:
	1.161:
	1.162:
	1.163:
	1.164:
	1.165:
	1.166:
	1.167:
	1.168:
	1.169:
	1.170:
	1.171:
	1.172:
	1.173:
	1.174:
	1.175:
	1.176:
	1.177:
	1.178:
	1.179:
	1.180:
	1.181:
	1.182:
	1.183:
	1.184:
	1.185:
	1.186:
	1.187:
	1.188:
	1.189:
	1.190:
	1.191:
	1.192:
	1.193:
	1.194:
	1.195:
	1.196:
	1.197:
	1.198:
	1.199:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	2.99:
	2.100:
	2.101:
	2.102:
	2.103:
	2.104:
	2.105:
	2.106:
	2.107:
	2.108:
	2.109:
	2.110:
	2.111:
	2.112:
	2.113:
	2.114:
	2.115:
	2.116:
	2.117:
	2.118:
	2.119:
	2.120:
	2.121:
	2.122:
	2.123:
	2.124:
	2.125:
	2.126:
	2.127:
	2.128:
	2.129:
	2.130:
	2.131:
	2.132:
	2.133:
	2.134:
	2.135:
	2.136:
	2.137:
	2.138:
	2.139:
	2.140:
	2.141:
	2.142:
	2.143:
	2.144:
	2.145:
	2.146:
	2.147:
	2.148:
	2.149:
	2.150:
	2.151:
	2.152:
	2.153:
	2.154:
	2.155:
	2.156:
	2.157:
	2.158:
	2.159:
	2.160:
	2.161:
	2.162:
	2.163:
	2.164:
	2.165:
	2.166:
	2.167:
	2.168:
	2.169:
	2.170:
	2.171:
	2.172:
	2.173:
	2.174:
	2.175:
	2.176:
	2.177:
	2.178:
	2.179:
	2.180:
	2.181:
	2.182:
	2.183:
	2.184:
	2.185:
	2.186:
	2.187:
	2.188:
	2.189:
	2.190:
	2.191:
	2.192:
	2.193:
	2.194:
	2.195:
	2.196:
	2.197:
	2.198:
	2.199:
	2.200:
	2.201:
	2.202:
	2.203:
	2.204:
	2.205:
	2.206:
	2.207:
	2.208:
	2.209:
	2.210:
	2.211:
	2.212:
	2.213:
	2.214:
	2.215:
	2.216:
	2.217:
	2.218:
	2.219:
	2.220:
	2.221:
	2.222:
	2.223:
	2.224:
	2.225:
	2.226:
	2.227:
	2.228:
	2.229:
	2.230:
	2.231:
	2.232:
	2.233:
	2.234:
	2.235:
	2.236:
	2.237:
	2.238:
	2.239:
	2.240:
	2.241:
	2.242:
	2.243:
	2.244:
	2.245:
	2.246:
	2.247:
	2.248:
	2.249:
	2.250:
	2.251:
	2.252:
	2.253:
	2.254:
	2.255:
	2.256:
	2.257:
	2.258:
	2.259:
	2.260:
	2.261:
	2.262:
	2.263:
	2.264:
	2.265:
	2.266:
	2.267:
	2.268:
	2.269:
	2.270:
	2.271:
	2.272:
	2.273:
	2.274:
	2.275:
	2.276:
	2.277:
	2.278:
	2.279:
	2.280:
	2.281:
	2.282:
	2.283:
	2.284:
	2.285:
	2.286:
	2.287:
	2.288:
	2.289:
	2.290:
	2.291:
	2.292:
	2.293:
	2.294:
	2.295:
	2.296:
	2.297:
	2.298:
	2.299:
	2.300:
	2.301:
	2.302:
	2.303:
	2.304:
	2.305:
	2.306:
	2.307:
	2.308:
	2.309:
	2.310:
	2.311:
	2.312:
	2.313:
	2.314:
	2.315:
	2.316:
	2.317:
	2.318:
	2.319:
	2.320:
	2.321:
	2.322:
	2.323:
	2.324:
	2.325:
	2.326:
	2.327:
	2.328:
	2.329:
	2.330:
	2.331:
	2.332:
	2.333:
	2.334:
	2.335:
	2.336:
	2.337:
	2.338:
	2.339:
	2.340:
	2.341:
	2.342:
	2.343:
	2.344:
	2.345:
	2.346:
	2.347:
	2.348:
	2.349:
	2.350:
	2.351:
	2.352:
	2.353:
	2.354:
	2.355:
	2.356:
	2.357:
	2.358:
	2.359:
	2.360:
	2.361:
	2.362:
	2.363:
	2.364:
	2.365:
	2.366:
	2.367:
	2.368:
	2.369:
	2.370:
	2.371:
	2.372:
	2.373:
	2.374:
	2.375:
	2.376:
	2.377:
	2.378:
	2.379:
	2.380:
	2.381:
	2.382:
	2.383:
	2.384:
	2.385:
	2.386:
	2.387:
	2.388:
	2.389:
	2.390:
	2.391:
	2.392:
	2.393:
	2.394:
	2.395:
	2.396:
	2.397:
	2.398:
	2.399:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:

