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Reinforcement learning (RL)
How should an agent interact with its environment in order to
maximize its cumulative reward?
Example: Robot in a gridworld

S0: initial state (position)
In each round t

Take action At in state St (move 1 step left, right, up or down)

Observe the next state St+1

Collect reward Rt+1 (-100 if bomb hit, 1 if power found, 100 if end
reached, -1 otherwise)

Figure by Akshay Lambda from
https://medium.com/free-code-camp/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc
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Reinforcement learning (RL)
Goal
Given discount rate 0 ≤ γ ≤ 1 select actions to maximize

(total return) G1 = R1 + γR2 + γ2R3 + . . . =
∞∑

k=0

γk Rk+1

Discount rate represents how much the agent cares about
immediate rewards vs. future rewards

Policy π (method to select actions)
History Ht = {S0,A0,R1, . . . ,St−1,At−1,Rt ,St ,At}
everything that happened by the end of round t
Policy π maps past information to distributions over actions
At sampled from π(·|Ht−1,Rt ,St )

π is deterministic if it puts all probability to a single action
What is a good model the environment?
Markov property

Pr(Rt+1 = r ,St+1 = s′|Ht ) = Pr(Rt+1 = r ,St+1 = s′|St ,At )
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General RL model

Some real-world applications

Autonomous driving
Personalized medicine
Web advertising
News, video, movie recommendation

Figure 3.1 from “Reinforcement Learning: An Introduction" by Sutton and Barto
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Markov Decision Process (MDP)

A mathematical framework for modeling the interaction
between agent and environment under Markov assumption

Finite set of states: S
Finite set of actions: A
State transition probabilities:

p(s′|s,a) := Pr(St+1 = s′|St = s,At = a)

Expected reward:

r(s,a, s′) = E[Rt+1|St = s,At = a,St+1 = s′]
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Recycling robot example

S = {high, low}
A(high) = {search,wait}
A(low) = {search,wait, recharge}
rsearch > rwait [expected num. of cans collected by the
robot]
State transitions are random

Figure 3.3 from “Reinforcement Learning: An Introduction" by Sutton and Barto



Reinforcement
Learning;

Applications

Reinforcement
Learning

Markov Decision
Process

Value Iteration

Q Learning

Introduction to MAB

Multi-armed bandit

Regret

Greedy policy

UCB policy

Regret Analysis of
UCB policy

Thompson sampling

Empirical comparison

Summary

.7

Recycling robot example

Table 3.1 from “Reinforcement Learning: An Introduction" by Sutton and Barto
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Markov policies and the value function
General policy
At sampled from π(·|Ht−1,Rt ,St )

Stationary Markov policy
At sampled from π(·|St )

Total return after time t

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑

k=0

γk Rt+k+1

State-value function for π

vπ(s) = Eπ[Gt |St = s] = Eπ

[ ∞∑
k=0

γk Rt+k+1|St = s

]
Action-value (Q) function for π

qπ(s,a) = Eπ[Gt |St = s,At = a]

= Eπ

[ ∞∑
k=0

γk Rt+k+1|St = s,At = a

]
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Optimal policy
π∗ is optimal iff vπ∗(s) ≥ vπ(s) for all s ∈ S and π

Theorem [Puterman, 1994]
For infinite horizon discounted MDP there exists a deterministic
stationary Markov policy that is optimal.

Optimal state-value function v∗(s) = maxπ vπ(s)

Optimal action-value (Q) function q∗(s,a) = maxπ qπ(s,a)

Bellman optimality equations

v∗(s) = max
a∈A(s)

E[Rt+1 + γv∗(St+1)|St = s,At = a]︸ ︷︷ ︸
q∗(s,a)

q∗(s,a) = E[Rt+1 + γmax
a′

q∗(St+1,a′)︸ ︷︷ ︸
v∗(St+1)

|St = s,At = a]

Optimal policy

π∗(s) = arg max
a

q∗(s,a) for all states s
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Computing the optimal policy (when state transition
probabilities are known)

Value Iteration

(1) Start with an initial guess of the value functions v0(s),
s ∈ S (e.g., set to zero)

(2) Compute the new value functions (at iteration k + 1) by
updating the value functions found at iteration k :

vk+1(s) = max
a

E[Rt+1 + γvk (St+1)|St = s,At = a]

= max
a

∑
s′

p(s′|s,a)[r(s,a, s′) + γvk (s′)]

(3) Repeat the above procedure until convergence, i.e.,
||vk∗ − vk∗−1|| ≤ ε

(4) The final policy is

π(s) = arg max
a

{∑
s′

p(s′|s,a) [r(s,a, s′) + γvk∗(s′)]

}
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Computing the optimal policy (when state transition
probabilities are known)

Value Iteration (with Q function)

(1) Start with an initial guess of the Q functions q0(s,a), s ∈ S,
a ∈ A (e.g., set to zero)

(2) Compute the new Q functions (at iteration k + 1) by
updating the Q functions found at iteration k :

qk+1(s,a) =
∑

s′
p(s′|s,a)

[
r(s,a, s′) + γmax

a′
qk (s′,a′)

]
(3) Repeat the above procedure until convergence
(4) We have vk∗(s) = maxa qk∗(s,a)

(5) π(s) = arg maxa qk∗(s,a)
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Robot grid-world example for value iteration

https://youtu.be/gThGerajccM

Goal location: high reward
Freespace: small penalty
Obstacles: very large penalty

Types of robots:
Deterministic: Always moves in the direction of the
dictated action
Stochastic: Can also move in other directions with a
positive probability

https://youtu.be/gThGerajccM
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Learning the optimal policy (when state transition
probabilities are unknown)

Estimate q∗(s,a) in a data-driven manner. Recall that

q∗(s,a) = E[Rt+1 + γmax
a′

q∗(St+1,a′)︸ ︷︷ ︸
v∗(St+1)

|St = s,At = a]

Q learning

Keep a table of Q value estimates: Q(s,a) for s ∈ S, a ∈ A
In round t : St →︸︷︷︸

How?

At → (St+1,Rt+1)

Form sample estimate:
Q̂(St ,At ) = Rt+1 + γmaxa′ Q(St+1,a′)
Update Q-value of (St ,At )

Q(St ,At )← (1− α)Q(St ,At ) + α︸︷︷︸
learning rate

Q̂(St ,At )

Convergence If all (s,a) pairs are selected infinitely many times

Q(s,a)→ q∗(s,a) with probability 1
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How to choose At given St?

Option 1: Greedy

At = arg max
a

Q(St ,a)

Always exploits. No exploration. Might stuck in suboptimal

Option 2: ε-greedy

Toss a coin Ct with Pr(Ct = H) = ε

If Ct = H, then sample At uniformly randomly from action
set (explore)
If Ct = T , then At = arg maxa Q(St ,a) (exploit)

Option 3: Boltzmann exploration

At ∼ Pr(·|St ) such that Pr(At = a|St ) =
eQ(St ,a)∑
a′ eQ(St ,a′)

Explores implicitly
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Deep Q Network Learning to Play Atari Game

https://youtu.be/cjpEIotvwFY

https://youtu.be/cjpEIotvwFY
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The multi-armed bandit problem

Gambling in a casino with K arms (slot machines)

In each round t

Play an arm At

Collect its random reward RAt ,t that comes from an
unknown distribution

Goal: Maximize expected total reward E
[∑

t RAt ,t
]
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Multi-armed bandits and reinforcement learning

General RL framework

Repeated interaction over time t = 1,2, . . .
St : state at time t . At : action at time t . Rt : reward at time t

General RL: St+1 depends on past actions and states
(e.g., Markov model)
K -armed stochastic bandit: one state
More structure⇒ more specialized algorithms & faster
learning/convergence & rigorous optimality guarantees
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Sequential decision-making under uncertainty: navigation

How to go from home to school?
Day 1: Route A. Travel time: 20 min
Day 2: Route A. Travel time: 40 min
Day 3: Route B. Travel time: 25 min
Day 4: ?

Travel times are uncertain

Want to

Minimize
∑

travel times

Route A Route B
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Sequential decision-making under uncertainty:
recommender system

Pool of items {A,B,C, . . .}

Users arrive sequentially over time (t = 1,2, . . .)

What should we recommend to maximize number of clicks

User 1: Item A. Clicked
User 2: Item A. Not clicked
User 3: Item B. Clicked
User 4: ?

User behavior is uncertain
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Sequential decision-making under uncertainty: cognitive
communications

Channels with time varying qualities {A,B,C, . . .}

Time-slotted communication (t = 1,2, . . .)

Which channels should be selected to maximize throughput

Time slot 1: Channel A. Successful transmission
Time slot 2: Channel A. Failed transmission
Time slot 3: Channel B. Successful transmission
Time slot 4: ?

Channel gains are unknown, their distributions are unknown
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How to play the game

1. Know the the environment class E
Arm set A = {1, . . . ,K}
Reward from arm a is sampled from unknown Fa,
independent of other arms

This is called stochastic K -armed bandit

Assume: Ra,t ∈ [0,1] bounded support (alternatives:
Bernoulli, Gaussian, subGaussian, heavy tailed)

2. Construct a policy

History Ht = {A1,RA1,1, . . . ,At−1,RAt−1,t−1}
Policy π : histories→ distributions over A

3. Play according to your policy
Play At ∼ π(·|Ht )

Observe RAt ,t ∼ FAt

Update Ht+1 = Ht ∪ {At ,RAt ,t}
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Regret of a policy
Expected reward of arm a : µa = E[Ra,t ]

Always select the best arm a∗ = arg maxa µa

Highest expected reward: µ∗ = µa∗

Highest cumulative expected reward in T rounds: T × µ∗

Regret

Regπ(T ) = T × µ∗ −
T∑

t=1

µAt

Fact

MaxπE

[
T∑

t=1

RAt ,t

]
= MinπE [Regπ(T )]
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What is a good policy?

For all bandit instances in E (e.g., all K -armed bandits with
independent arm rewards in [0,1])

lim
T→∞

E [Regπ(T )]

T
= 0

Examples: E [Regπ(T )] = O(
√

T ), E [Regπ(T )] = O(log T )

Since expected rewards are unknown, a good policy should

Explore arms to discover the best

Exploit the arm that is believed to be the best

Be computationally efficient
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Regret lower bound

Consistent policy
π is consistent if for all {Fa}K

a=1 ∈ E and p > 0

lim
T→∞

E[Regπ(T )]

T p = 0

Asymptotic lower bound*
Let E be class of bandits with single parameter exponential
family of reward distributions (e.g., Fa = Ber(θa), Ra,t ∈ {0,1}).
For a consistent policy π regret grows at least logarithmically
over time.

lim inf
T→∞

E[Regπ(T )]

log T
≥

∑
a:µa<µ∗

µ∗ − µa

KL(a,a∗)

Minimum achievable regret O(log T )

*Lai and Robbins 1985: Asymptotically efficient adaptive allocation rules.
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Greedy policy
Sample mean reward collected from arm a by the end of round
t − 1: µ̂a,t−1

Initially
Sample each arm once

At each round t > K
Select At = arg maxa µ̂a,t−1

Example with K = 2 arms
Bernoulli rewards, µi = 0.9, µj = 0.8

t µ̂i,t−1 µ̂j,t−1 At rAt ,t

1 i 1
2 j 1

3 1 1 i 0
4 1/2 1 j 1
5 1/2 1 j 1
6 1/2 1 ? ?

Might get stuck in arm j which is suboptimal
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εt -greedy policy

A sequence of exploration probabilities {εt}

Empirical best arm â∗t = arg maxa µ̂a,t−1

Initially

Sample each arm once

At each round t > K
Explore with probability εt

Select At randomly from {1,2, . . . ,K}

Exploit with probability 1− εt

Select At = â∗t
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Regret of εt -greedy algorithm
Let ∆a = µ∗ − µa suboptimality gap
Let ∆min = mina:µa<µ∗ ∆a
Tune exploration probabilities

εt =
cK

∆2
mint

, c > 0

Regret bound*

E
[
Regεt−greedy(T )

]
≤ c′ ×

K∑
a=1

(
∆a +

∆a

∆2
min

log max

{
e,

T ∆2
min

K

})
= O(

K log T
∆2

min

)

Takeaways

Exploration achieved by randomization
Need careful tuning
Uniform exploration

*Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.
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εt -greedy in action
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Upper Confidence Bound (UCB) policy

Initially

Sample each arm once

At each round t > K

1. Calculate optimistic estimate of arm a

ga,t︸︷︷︸
index

= µ̂a,t−1︸ ︷︷ ︸
sample mean

+

√
2 log t
Na,t−1︸ ︷︷ ︸

exploration bonus

2. Select the optimistic best arm

at = arg max
a

ga,t

Fact: ga,t is an upper confidence bound for µa, i.e., with high
probability ga,t ≥ µa for all arms

Auer et al. 2002: Finite-time analysis of the multiarmed bandit problem.
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Regret of UCB policy

Regret bound

E [RegUCB(T )] ≤ 8
∑

a:µa<µ∗

log T
µ∗ − µa

+

(
1 +

π2

3

)∑
a

(µ∗ − µa)

= O(
∑

a:µa<µ∗

log T
∆a

)

Takeaways

Exploration achieved by optimism under uncertainty
Adaptive exploration
Deterministic policy
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UCB in action
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Regret analysis for UCB

Regret decomposition
Recall: ∆a = µ∗ − µa suboptimality gap

Na,t =
∑t

s=1 I(As = a) number of plays of arm a by round t

E [Regπ(T )] = Tµ∗ − E

[
T∑

t=1

µAt

]
(1)

=
T∑

t=1

µ∗ − E

[
T∑

t=1

K∑
a=1

µaI(At = a)

]
(2)

= E

[
K∑

a=1

(µ∗ − µa)
T∑

t=1

I(At = a)

]
(3)

=
K∑

a=1

∆aE[Na,t ] (4)
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Regret analysis for UCB

Recall regret decomposition

E [Regπ(T )] =
K∑

a=1

∆aE[Na,t ]

Bounding E[Na,t ] for suboptimal arms

Na,t = 1 +
T∑

t=K +1

I(At = a) (5)

= 1 +
T∑

t=K +1

I(At = a,Na,t−1 ≥ m) +
T∑

t=K +1

I(At = a,Na,t−1 < m) (6)

≤ m +
T∑

t=K +1

I(At = a,Na,t−1 ≥ m) (7)

≤ m +
T∑

t=K +1

I(ga,t ≥ ga∗,t ,Na,t−1 ≥ m) (8)
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Regret analysis for UCB
When Na,t−1 ≥ m =

⌈ 8 log T
(µ∗−µa)2

⌉
, ga,t ≥ ga∗,t happens when

Either µ̂a,t−1 −

√
2 log t
Na,t−1

≥ µa︸ ︷︷ ︸
LCBt fails

or µ̂a∗,t−1 +

√
2 log t

Na∗,t−1
≤ µ∗︸ ︷︷ ︸

UCBt fails

Assuming that Na,t−1 and Na∗,t−1 are fixed (not random), Hoeffding’s
inequality implies that

Pr(LCBt fails) ≤ t−4, Pr(UCBt fails) ≤ t−4

Actual proof requires taking a union bound over possible realizations of Na,t−1
and Na∗,t−1.
Finally,

E
[
Na,T

]
≤ m + E

 T∑
t=K +1

I(ga,t ≥ ga∗,t ,Na,t−1 ≥ m)


= m +

T∑
t=K +1

Pr(ga,t ≥ ga∗,t ,Na,t−1 ≥ m)

≤ m +
π2

3
=
⌈ 8 log T

(µ∗ − µa)2

⌉
+
π2

3
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Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior distribution of the optimal arm p(a∗|Ht )

3 At ∼ p(a∗|Ht )

Equivalently

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior over bandit instances p({Fa}K
a=1|Ht )

3 Sample a bandit instance {F̂a}K
a=1 ∼ p({Fa}K

a=1|Ht )

4 At = arg maxa µ(F̂a)
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Thompson (posterior) sampling

Bayesian algorithm (William R. Thompson in 1933)

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior distribution of the optimal arm p(a∗|Ht )

3 At ∼ p(a∗|Ht )

Equivalently

1 Start with prior over bandit instances p({Fa}K
a=1)

2 Compute posterior over bandit instances p({Fa}K
a=1|Ht )

3 Sample a bandit instance {F̂a}K
a=1 ∼ p({Fa}K

a=1|Ht )

4 At = arg maxa µ(F̂a)
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Thompson sampling for Bernoulli bandits

Bernoulli bandits Fa = Ber(θa), Ra,t ∈ {0,1}

Prior distribution p({Fa}K
a=1) =

∏K
a=1 p(Fa), p(Fa) = Beta(1,1)

Posterior distribution p(Fa|Ht ) = Beta(1 + αa,t−1,1 + βa,t−1)

αa,t−1: number successes (1) from arm a by end of t − 1
βa,t−1: number failures (0) from arm a by end of t − 1

At each round t

1 Sample µ̃a,t from Beta(1 + αa,t−1,1 + βa,t−1) (posterior)
2 Select At = arg maxa µ̃a,t

3 Observe RAt ,t ∈ {0,1}
4 αAt ,t = αAt ,t−1 + RAt ,t , βAt ,t = βAt ,t−1 + 1− RAt ,t
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Regret bound for Thompson sampling

For Bernoulli bandits*, for every ε > 0

E [RegTS(T )] ≤ (1 + ε)
∑

a:µa<µ∗

(log T + log log T )

KL(a,a∗)
∆a + const

= O(
∑

a:µa<µ∗

log T
∆a

)

Takeaways

Exploration achieved by sampling from posterior
Adaptive exploration
Randomized policy

*Kaufmann et al. 2012 “Thompson sampling: An asymptotically optimal finite-time analysis"
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Thompson sampling in action
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Empirical comparison
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Summary

1 Studied stochastic K -armed bandit.
Ra,t ∼ Fa (unknown), indep. of other arms

2 Any consistent policy incurs at least O(log T ) regret
3 Following policies that can achieve O(log T ) regret

εt -greedy

Explores with probability εt
Uniformly explores all arms
O( K log T

∆2
min

) regret (with tuned εt )

UCB
Explores by being optimistic
Adaptively explores
O(
∑

a:µa<µ∗
log T
∆a

) regret
Thompson sampling

Explores by sampling from posterior
Adaptively explores
O(
∑

a:µa<µ∗
log T
∆a

) regret
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