
Data Collection, Storage,
Management, and Processing

(centralized and distributed)

GE461 - Introduction to Data Science
Spring 2024

Last update: Feb 18, 2024

1

Outline

• Getting data
• Storing data
• Data management
• RDBMs and SQL
• Pandas
• Other data models
• Key-Value Stores and Column Stores
• Distributed Storage
• Parallel Processing frameworks
• MapReduce
• Spark

2

Getting data

•We can download files manually (simply via a browser).
• Various formats (txt, binary, CSV, JSON, XML, xls,…)

•We can write a program that scraps web.
•Downloads pages and files reached via web links.

• A client program queries data from a database (DB)
• Program issues SQL requests to a DB server.

• A client program queries an API (usually web based API)
• REST API is common
• SOA (service oriented architecture) is another alternative
• Source of data can be a DB server or some other program

3

Web scraping: HTTP queries

•We can download pages from web servers
• Underlying protocol is HTTP

• Below is a python code

4

import requests
response = requests.get("http://w3.cs.bilkent.edu.tr")
some relevant fields
print (response.status_code)
print (response.content) # or response.text
print (response.headers)
print (response.headers['Content-Type'])

Page is downloaded to local disk

Web
Server

App

HTTP

Page address

Web scraping: HTTP queries –
Parameters

• Uses the GET method of the HTTP protocol
• A URL can have parameters
• http://www.google.com/search?q=bilkent&num=5
• q and num are parameters

• In python we do:

5

plist = {"q":”bilkent", "num":”5"} # parameter list
resp = requests.get("http://www.google.com/search” , params=plist)
print (resp.status_code)
print (resp.content)

http://www.google.com/search?q=bilkent&num=5

Web API: HTTP commands

•We can query web applications via Web API
and get data.

•HTTP commands (methods) used
•GET is the most common
• URL specified

• But there are other HTTP
methods that can change
some state on the server

HTTP POST
HTTP PUT
HTTP DELETE

6

API providing
twitter services

GoogleTwitter

Our
Application

API providing
google services

Web API

• There are web APIs for a lot of Services
• Services: applications running in remote servers and

accessed via web servers.
•We can query a server (service) as if we are querying a web

page server.
• The service running on a server should be programmed to

provide such an API.
• REST is one such API standard

7

Service
(program running in

a server
Client

HTPP Get

Data

REST

• REST (Representational State Transfer) API is commonly
used.
• Set of rules that developers follow when they create their

APIs.
• REST is a simple architecture style to transfer data (resources)

over HTTP.
• 1. Uses standard HTTP interface and methods (GET, PUT,

POST, DELETE)
• 2. Stateless – the server does not remember what is done

(stores no state).

8

REST

• You query a REST API with standard HTTP requests
• You include parameters in the query.

• For example, GitHub API uses GET/PUT/DELETE to let you
query or update elements in your GitHub account
automatically.

9

RESTful key elements

• Resources (and URI)
•Data objects

• Request Verbs
•What to do with data

• Request Headers
• Additional instructions

• Request Body
•Data

• Response Body
•Data

10

Service

(Data
Objects)

Client
A
P
I

We write
code to
process GET,
PUT, POST,
DELETE
(service handlers)

We identify our
resources with URIs

We map them (URIs) to service
endpoints (request handlers)

RESTful Service
an example

11

REST request handler
Direct the GET/PUT
request to correct
service handler for

the URI

REST service handler
Process request and

prepare JSON
response

Database handler
Access database

resource

REST
Client

Request (GET, PUT, or Post)
Incudes URI

Response
(JSON, XML, or HTML)

RestController.php

MobileRestHandler.php

Mobile.php
SimpleRest.php

• Example: A server stores
information about mobile
phones. Wen can query the
information.

Mapping URIs to Handlers

• In .htaccess file in the server, we put the following rules:

• #RewriteRule ^mobile/list/$ RestController.php?view=all
• #RewriteRule ^mobile/show/([0-9]+)/$ RestController.php?view=single&id=$1

[nc,qsa]

In this way we redirect (map) the query on a URI to the correct
request handler function (with proper parameters).

12

URI suffix request handler

13

RestController.php

one parameter in GET is “view”

“view” can be ”all” or single”

another parameter is “id”

14

MobileRestHandler.php

Mobile.php

Server side – request processing

16

.htaccess file RestController.php

MobileRestHandler.php

Mobile.php Data is here

request handler

service handler

directs to the service handler

accesses DB if needed

map URI to Request Handler()

Data Format:
JSON

• JSON: JavaScript Object
Notation
•Open-standard file and data

format
• Uses human-readable text

to transfer data objects that
consists of attribute-value
pairs or array data types

17

https://en.wikipedia.org/wiki/JSON

XML

• XML: Extensible Markup Language
• XML defines a set of rules for encoding documents

and data in a format that is both human readable and
machine-readable.
• Textual data format
• Arbitrary data structures can be represented in XML.

18

<?xml version="1.0" encoding="UTF-8"?>
<note>

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Do not forget exercising</body>

</note>

https://en.wikiversity.org/wiki/XML

Structure of the data

• Structured data (has schema describing the structure)
•DB Tables

• Semi-structured data
•Documents
• XML, JSON

• Unstructured data (no schema)
• Text files, plain text, media (images, videos)

19

Databases and Data Management
Systems

•Database: A collection of data
•Database Management System
• Software that stores, manages and facilitates access to

data. (Oracle, MySql, Sqlite, …)
• Traditionally: relational databases
• Supports transaction processing
• Bank accounts, student records, customer records,

inventory records, ….
•Modern needs and usage varies (NoSQL databases, etc.)
•Hadoop, Spark

• Cloud databases.

20

File system

•We can store data in files.
• This may be good enough for a lot of applications.
• But not all applications.

• File system is not a database
• Two people (processes) accessing a file may cause

inconsistency.
• Sudden power off will cause loss of data
•No query support
•No transaction concept and support.

21

Relational DBMSs and
SQL

22

Relational Database

•Models a real world data environment
• Entities (students, courses, instructors)
• Relationships (taking the course, giving the course, is advisor

of, etc.)
• RDMBs work with tables (relations)
• Relation: a table (with rows and columns)
• Schema: describes columns, fields.

• A table (also called a relation) stores information about
objects or relations of the same kind (same set of attributes)
• Rows are called tuples (records); must be unique
• Columns are attributes

23

Table

• Rows (tuples). A relation is a set of tuples.
• Columns (attributes)
• Relation (Table) name is Student.
• It has 4 attributes
• It has 3 tuples.
• These 3 tuples are an instance of the Student Relation.

24

ID Name Dept CGPA
1 Ali CS 3,50
2 Veli CS 3,20
3 Ahmet CS 3,80

attributes

tuples

Student

Multiple Tables

• A database typically has multiple tables.
• Student table,

Course table,
Department table,
Instructor Table,
Offerings table,
Enrollment table, ..

25

ID Name Dept Credits
CS342 Operating Systems CS 4
GE461 Data Science GE 3
EEE202 Circuit Theory EEE 4
CS202 Data Structures CS 3
IE202 Optimization IE 3
ME101 Mechanical Systems ME 4

Course

Schema

• Schema for a database describes the tables and their
attributes.
• It is fixed.
• It is the logical design.
• It is then populated with data (instances).
•Data + Schema = Database.

26

Schema

• Example Schema
•Department (id, name, building)
• Student (id, name, dept, CGPA)
• Course (id, name, dept, credits)

• Some tables are for objects: Student table
• Some tables are for relations: Enrollment

27

Keys

• Primary Key: the attributes used to identify tuples in a table uniquely
• Foreign Key: an attribute in a table that is the primary key in another table.

28

ID Name Building
CS Computer Science EA
EE Electrical Engineering EE
IE Industrial Engineering EA
ME Mechanical Engineering EA

MATH Mathematics SC

Department

ID Name Dept Credits
CS342 Operating Systems CS 4
GE461 Data Science GE 3
EEE202 Ciruit Theory EEE 4
CS202 Data Structures CS 3
IE202 Optimization IE 3
ME101 Mechanical Systems ME 4

Course

Primary key

Primary key

Foreign key

Query Language

•Query language is language to request information from a
database
• Procedural or declarative
• SQL : structured query language (declarative)
•Most common, but not the only one.

29

Query Language

• Can be used to
• Create / delete a database (data definition)
• Create / delete a table (data definition)
• Insert, delete, update tuples (data manipulation)
•Query table(s) (retrieve data) (data manipulation)
• Select some set of tuples from a table
• Join multiple tables

30

SQL

• SQL has two main parts:
•DDL (data definition language);
•DML (data manipulation language)

• Supported data types
• char(n)
• varchar(n)
• int
• real, float(n)
•…

31

SQL

• CREATE TABLE Department (id varchar(20),
name varchar(20),
building varchar(20),
primary key (id));

• CREATE TABLE Student (id int,
name varchar(20),
dept varchar(20),
cgpa float,
primary key (id),
foreign key (dept) references Department;

• INSERT INTO Student VALUES (4, ‘Can’, ‘CS’, 3,75);

32

SQL

• To retrieve data from a table or from multiple tables, we can
form and execute SQL queries.

• Basic structure for SQL queries:

SELECT <columns> FROM <tables> WHERE <predicate>

• SELECT name FROM Course
• SELECT dept FROM Course
• SELECT name, dept FROM Course
• SELECT name FROM Course WHERE dept == ‘CS’

33

Inter-table relationships

• Several types of inter-table relationships
• 1. One-to-one
• 2. (One-to-zero/one)
• 3. One-to-many (and many-to-one)
• 4. Many-to-many
These relate one (or more) rows in a table with one (or
more) rows in another table,
• via a foreign key

Stu Cou
1:M 3

b
c
e

3,b
3,c
3,e

Student
Table

Course
Table

Enrollment
Table

34

Joins

•Merge information in multiple tables together.
• Join operations merge multiple tables into a single

table/relation (can be then saved as a new table or just
directly used)
• Four typical types of joins:
• Inner
• Left (outer)
• Right (outer)
• Full (outer)

• You join two tables on columns from each table, where
these columns specify which rows are kept.

35

A B

C

Example: joining instructor and
department

36

ID Name Building
CS Computer Science Building-X
EE Electrical Engineering Building-X
IE Industrial Engineering Building-X
ME Mechanical Engineering Building-X
MATH Mathematics Building-Y
PHYS Physics Building-Y
ECON Economy Building-Z

Department

Instructor
ID Name Dept Title

id101 Cem CS C
id102 Mustafa CS A
id103 Emre EE B
id103 Ayse CS A
id105 Ozgur IE C
id106 Dilek ME A
id107 Ahmet POLS B
id108 Atakan IR C
id109 Remzi PSYC A

Example: joining instructor and
department

37

ID Name Dept Title Name (Department) Building
id101 Cem CS C Computer Science Building-X
id102 Mustafa CS A Computer Science Building-X
id103 Emre EE B Electrical Engineering Building-X
id103 Ayse CS A Computer Science Building-X
id105 Ozgur IE C Industrial Engineering Building-X
id106 Dilek ME A Mechanical Engineering Building-X

SELECT * FROM Instructor INNER JOIN Department
ON Instructor.dept == Department.id;

Or

SELECT * FROM Instructor, Department
WHERE Instructor.dept == Department.id;

Resulting relation (can be used or can be saved)

INNER JOIN: only matching rows included. Unmatched rows are not included.

Example: left (outer) joining the
instructor and department tables

38

ID Name Dept Title Name (Department) Building
id101 Cem CS C Computer Science Building-X
id102 Mustafa CS A Computer Science Building-X
id103 Emre EE B Electrical Engineering Building-X
id103 Ayse CS A Computer Science Building-X
id105 Ozgur IE C Industrial Engineering Building-X
id106 Dilek ME A Mechanical Engineering Building-X
id107 Ahmet POLS B NULL NULL
id108 Atakan IR C NULL NULL
id109 Remzi PSYC A NULL NULL

SELECT * FROM Instructor LEFT JOIN Department
ON Instructor.dept == Department.id;

We have all rows of the Instructor Table (LEFT TABLE)

Join alternatives

39

Google image search for left join

SQL Lite

• SQLite: an actual relational database management system
(RDBMS)
• Unlike most systems, it is a server-less model, applications

directly connect to a file.
• Allows for simultaneous connections from many applications

to the same database file (but not quite as much
concurrency as client-server systems).
• All operations in SQLite use SQL (Structured Query

Language) commands issued to the database object.

40

Client-Server DBMS vs
Serverless DBMS

41

Figure from : developia.org/sqlite

Client – Server Architecture
For example: MySQL server

Serverless DBMS
For example: SQLite

SQLite implementation in the library

File contains the
whole database

(all tables)

Use of SQL in Python

42

import sqlite3

conn = sqlite3.connect('ders.db') / # create or open db
c = conn.cursor() # obtain a handle to the connection

query = "CREATE TABLE Student (id varchar(10) \
PRIMARY KEY, name varchar(20), dept varchar(10), \
cgpa REAL NOT NULL);"

c.execute(query)
conn.commit()

query = "INSERT INTO Student VALUES (?, ?, ?, ?);”
c.execute(query, ‘2222’, ‘Ali’ , ‘CS’, ‘3.5’))
conn.commit()

SQL in Python

43

query = "SELECT * FROM Student;”
c.execute(query)

rlist = c.fetchall() # fetch the rows into a list
for i in range(len(rlist)): # print the list

print (rlist[i][1]) # one row at a time

query = "SELECT * FROM Student WHERE Student.dept == ‘CS’ ;”
c.execute(query)

query = "SELECT * FROM Instructor, Department WHERE \
Instructor.dept == Department.id;” # JOIN

c.execute(query)

Pandas

• Pandas is a “Data Frame” library in Python, developed for
manipulating in-memory data with row and column labels (as
opposed to, e.g., matrices, that have no row or column labels)

• Pandas is not a relational database system, but it contains
functions that mirror some functionality of relational databases.
For example: merge mimics join.

44

Data
Frame
(Table)

Column labels

Ro
w

 la
be

ls

Important data structures of Pandas

• Series:
• Array (of objects of the same type) (1D)
•Homogenous array that can be indexed.

• DataFrame:
• Table structure (2D)
• Columns
• Column types can be different
• For one column: all values are of the same type (a Series)

45

Pandas

• Fast and efficient DataFrame object with default and
customized indexing.
• Tools for loading data into in-memory data objects from

different file formats.

46

From: https://www.tutorialspoint.com/python_pandas/

Pandas

• Label-based slicing, indexing and subsetting of large data sets.
• Columns from a data structure can be deleted or inserted.
•Group by data for aggregation and transformations.
•High performance merging and joining of data.
• Time Series functionality.

47

Pandas

48

Column index

Row index

// Column Labels

Pandas

• Pandas is not RBMS, no primary key concept
• It has index concept.
•Operations in Pandas are typically not in place (that is, they

return a new modified DataFrame, rather than modifying an
existing one; by default)
•We can use the “inplace” flag to make them done in place
• If we select a single row or column in a Pandas DataFrame, it

will return a “Series” object,
• A Series object is like a one-dimensional indexed array

(sequence of values and their indices).

49

Pandas: some data frame methods

df.head(): some number of rows from beginning.
df.tail(): some number of rows from end.
df.iloc[i,j]: access the entry (value) at the ith row and jth column

x = df.iloc[0,1] // will access “Ali”. [0,0] will access “id1”.
df.loc[rowindexlabel, columnindexlabel]: access the entry at the specified
row and column

x = df.loc[3, “Dept”]
will access “ME”

Other Data Models
and

Big Data

51

Other Data Models

• RDMS is good for storing transactional and/or structured
data.
• Bank account data
• Employee data
• Student data

•New classes of data intensive applications
• Search
• Email
• Browsing
• Instant messaging
• Social media
•Online retail

•NoSQL databases (not only SQL)

52

Big Data

• If non-big data:
• Singe machine solutions are good.

• For big data (TeraBytes, PetaBytes of data), a single
computer/server will not provide enough storage capacity,
with acceptable reliability and performance.
•We need a cluster of machines to store and process big

data.
•How can we store and process data in a cluster?

53

What is a Cluster?

54

Rack Rack

ToR switch

a Computer/Server
(Compute Node)
with local storage

Compute node: processor(s), with its main memory, cache, and local disk (storage)

Many servers in a rack.
Connected with a switch.

Many racks
connected by
other switches

Distributed File System (DFS)

• To exploit cluster computing, files must look and behave
somewhat differently from the conventional file systems found
on single computers (Linux FS, NTFS, FAT32 are local file
systems).
• This new file system, often called a distributed file system or

DFS is typically used as follows.
• Files can be enormously big, possibly terabytes in size.
• Files are rarely updated. They are mostly read. New data is

appended from time to time.
• A single file’s content is stored in multiple computers and is

also replicated.
• Example: HDFS (Hadoop File System) or GFS (Google File

System).

55

Data Stores
Key-Value Stores

• Key/Value Stores (NoSQL)
• Can store very large data
• Key-value sets stored
• Example: customer id, purchased items, date.

• Performance is critical
• Eventual consistency is fine.
•No fancy reports.
•Data analysis and recommendation
•Query set depends on the application
• Just keys and values, no schema

• Example systems:
• Amazon Dynamo DB.
• Apache Cassandra.

56

From wikipedia

Other data stores:
Column Family Stores

• A big table of rows and columns (billions of rows, billions of
columns possible): sparse
• Columns are grouped into Column Families
• Column Families:
• Typically stored together (physically)
• Can have different columns for each row
• Can have duplicate items in any column

•No schema or type enforcement
• All data treated as byte strings

• Indexed by row (row key)
• Rows are grouped into tablets (chunks)

• Rows usually kept in sorted order wrt row key

57

Example: Google BigTable

Other data stores: Column Family
Stores

58

from: CS109 Harvard

How data internally stored

C1 C2 C3
R1 X (t3, t2, t1)
R2 X X
R3 X (t1) X
R4 X (t2, t1) X
R5 X

Table
X denotes an existing value

Ri is a row key (string)
CFi: is a column family name
Ci is a column name (string) (also called column key)

CF1 CF2

R1 CF1:C1 t3 X
R1 CF1:C1 t2 X
R1 CF1:C1 t1 X
R3 CF1:C1 t1 X
R4 CF1:C1 t2 X
R4 CF1:C1 t1 X

R2 CF2:C2 t1 X
R2 CF2:C3 t1 X
R3 CF2:C3 t1 X
R4 CF2:C2 t1 X
R5 CF2:C3 t1 X

This is how data can be
stored internally in two files.

Logical View Physical View

59

CF1 CF2

How data internally stored

• Bigtable cells which do not contain a value consume no disk
space.
• Sparse table.

• For each valid cell value, we store both the row key and the
column name.
• For each cell, we can keep different versions of cell data

(time stamped).
• To learn which column names are there in the table, we have

to do a full scan of the table. Schema just gives created
column families, not column keys.
• For each key-value pair, we keep the associated lengths as

well.
• key length, value length (both variable size).

KeyLen KeyValueLen Value

60

Example: HBase

HBase: Open source Hadoop implementation of Bigtable. It is a
NoSQL database system.

Physical

Conceptual

61

Table and Tablets

62

rowA
rowB
rowC
rowD
rowE
rowF
rowG
rowH
rowI
rowJ
rowK
rowL

tablet

tablet

tablet

Rows are kept always in sorted order wrt row key

Table and Tablets

rowA
rowB
rowC
rowD

rowE
rowF
rowG

rowH
rowI
rowJ
rowK
rowL

tablet

tablet

tablet

Tablet
server

Tablet
server

Tablet
server

GFS

C
lients

63

BigTableArchitecture

Master Node Chubby

Tablet Server Tablet Server

Tablet Tablet Tablet Tablet Tablet Tablet

GFS Chunkserver GFS Chunkserver

SSTable SSTable SSTable SSTable SSTable SSTable

GFS
SSTable

(replica_
SSTable
(replica) 64

Locating tablets and data

65

Example: locating data with row key = 900

Index
servers

Tablet Server

Tablet

Index

Index

Document Stores

• A Key/Value store where value is a document with structure
• Structures for documents:
• JSON
• XML
• PDF
•DOC

• Search for and within documents possible.

66

MapReduce

67

Distributed Big Data Processing

• Big Data is distributed on many machines
• Local processing preferable, but not always sufficient and

possible.
•MPI was used in the past
• Explicit data handling.

•New frameworks are available.
•MapReduce Framework (Google, Hadoop)
•Distributed data storage file system (GFS or HDFS)
•Distributed big data table (BigTable or HBASE)
•Distributed processing language/framework (MapReduce)

• Spark Framework

68

MapReduce Framework

•MapReduce:
• A programming model and associated implementation for

processing and generating large datasets.
•Hadoop system has it as its programming model.
•Hadoop system has also a file system (HDFS) and a

NoSQL database system (Hbase).
• An application specifies a map() function and a reduce()

function for a computation to be done.
•Many real world tasks expressible with this model.
• A program written with this model is automatically

parallelized and executed by the Framework on a large
cluster of machines.

69

Programming Model

• Computation
• Input: A set of input key/value pairs
•Output: a set of output key/value pairs

• User of MapReduce library specifies
• a map() function
• a reduce() function

70

Programming Model

•Map function:
• Takes: an input key/value pair (e.g., doc-name, doc-

content)
• Produces: a set of intermediate key/value pairs
• All intermediate values with the same intermediate key

are grouped.
• Reduce function:
• Takes: an intermediate key and a set of values associated

with that
• Produces: a smaller set of values resulting from the

merging of all the values associated with the key (for
example, sum, count, etc.).

71

MapReduce Computation

72

k1, v1 list(k2,v2)

k2,list(v2)

list(k2,v2)

list(v2)

Example: word-count
counting words in a set of documents

73

m() and reduce() functions below

Programming

•We write an application program in which
•We write map() and reduce() functions
• Specify the input files
• Specify the number of map workers (machines) (N)
• Specify the number of reduce workers (machines) (R)
• Specify output files

• Framework will do the rest (parallel processing)
• Partition the input into M splits (for M map-tasks)
•Handle each split via the map() as a task
• Schedule tasks to machines (workers)
• Sort at the reduce-workers before the reduce()
• Reduce and write the results to output files (sorted order)

74

Application Examples

• Distributed Grep:
• Map() function emit a line if it matches a supplied pattern
• Framework sorts the lines at Reducer Machines.
• The reduce() function is an identity function (does nothing)

• Count of URL access frequency
• Logs of web page requests
• Map() output is <URL, 1>.
• Framework sorts the <URL, 1> pairs at Reducer Machines.
• Reduce() adds together all values for the same URL and emits <URL,

total-count> pair.
• Distributed Sort
• Files containing records to be sorted
• Map() extracts key from each record and emits <key, record>
• Framework sorts the <key, record> pairs at Reducer Machines.
• Reduce() emits all pairs unchanged.

75

Application Examples

• Reverse Web-Link Graph
• Map() outputs <target, source> pairs for each link to a target URL

found in a webpage that has name (URL) as source
• Framework sorts all <target,source> pairs at Reducer Machines.
• Reduce() concatenates the list of all source URLs associated with a

given target URL and emits the pair: <target, list(sources)>
• Inverted Index
• Map() parses each document and emits a sequence of <word,

document-ID> pairs.
• Framework sorts the <word,document-ID> pairs (at Reducer

Machines).
• Reduce() accepts all pairs for a given word, sorts the corresponding

document IDs and emits a <word, list(document ID)> pair.

76

Execution Overview

• 1) SPLIT: MapReduce library in user program splits the input files into M
pieces (splits) of typically 16-64 MB each. Then it starts many copies of
the user program on the machines of the cluster. Hence each machine
runs a copy of the program.

• 2) SCHEDULE: One of the copies of the program is special – master. The
rest are workers that are assigned work by the master. There will be M
map-tasks and R reduce-tasks to be assigned. Master picks up idle
workers and assign each either map or reduce task.

• 3) MAP: A worker that is assigned map-task reads the content of the
corresponding input-split, parses key-value pairs and passes each pair to
the user-defined map() function. map() function produces intermediate
key-value pairs and buffers them.

77

Execution Overview

• 4) INTERMEDIATE FILES: Periodically, buffered pairs are written to local
disk, partitioned into R regions by the partitioning function. The location
of these files are passed to master, which forwards them later to the
reduce workers.

• 5) SORT AND GROUP: When a reduce worker is notified by the master
about these locations (assigned a reduce task), it uses RPC to read the
buffered regions (files) from map-worker local disks. When a reduce
worker has read all data, it sorts by intermediate key so that all
occurrences of the same key are grouped together. If memory is not
enough, external sort can be used.

78

Execution Overview

• 6) REDUCE: The reduce worker iterates over the sorted intermediate
key-value pairs and for each unique intermediate key encountered, it
passes the key and the corresponding set of values to the user-defined
reduce() function. The output of reduce() is appended to a final output
file for this reduce partition.

• 7) FINISH: When all map and reduce tasks have been completed, the
master wakes up the user program. At this point, the MapReduce() call
in the user program returns back to the user code.

At the end, R final output files are there (one per reduce task).

79

80

sort reduce

map

map

map

Small Example: word count

this is a good school
cloud is nice today
sky and cloud nice school
the cloud computing blue
blue come true
sky is the limit
disk space the limit
nice output come today
hello cloud what nice is

this is a good school
cloud is nice today
sky and cloud nice school
the cloud computing blue
blue come true
sky is the limit
disk space the limit
nice output come today
hello cloud what nice is

Split 0

Split 1

Split 2

Assume we have the following input data which is a sequence of lines
of arbitrary words.

Splitting the Input DataInput Data

81

Assume M = 3, R = 2

Small Example

this is a good school
cloud is nice today
sky and cloud nice school

disk space the limit
nice output come today
hello cloud what nice is

the cloud computing blue
blue come true
sky is the limit

map task 0

map task 1

map task 2

this 1
a 1
school 1
today 1
sky 1
and 1
school 1

is 1
good 1
cloud 1
is 1
nice
cloud 1
nice 1

the 1
blue 1
blue 1
true 1
sky 1
the 1

cloud 1
computing 1
come 1
is 1
limit 1

disk 1
space 1
the 1
today 1
what 1

limit 1
nice 1
output 1
come 1
hello 1
cloud 1
nice 1
is 1

Machine M1

Machine M2

Machine M3
82

hash(key) mod R

M = 3, R = 2

R1 R2

Small Example

M1

M2

M3

R1

R2

Shuffle over Network

intermediate
data

83

sort

sort

local
files

Small Example

this 1
a 1
school 1
today 1
sky 1
and 1
school 1

the 1
blue 1
blue 1
true 1
sky 1
the 1

disk 1
space 1
the 1
today 1
what 1

a 1
and 1
blue 1
blue 1
disk 1
school 1
school 1
sky 1
sky 1
space 1
the 1
the 1
the 1
this 1
today 1
today 1
true 1
what 1

receive sort
shuffle

reduce

a 1
and 1
blue 2
disk 1
school 2
sky 2
space 1
the 3
this 1
today 2
true 1
what 1

output

GFS file

reduce worker R1

Network

84

Small Example

is 1
good 1
cloud 1
is 1
nice 1
cloud 1
nice 1

cloud 1
computing 1
come 1
is 1
limit 1

limit 1
nice 1
output 1
come 1
hello 1
cloud 1
nice 1
is 1

cloud 1
cloud 1
cloud 1
cloud 1
come 1
come 1
computing 1
good 1
hello 1
is 1
is 1
is 1
is 1
limit 1
limit 1
nice 1
nice 1
nice 1
nice 1
output 1

receive sort
shuffle

reduce

cloud 4
come 2
computing 1
good 1
hello 1
is 4
limit 2
nice 4
output 1

output

GFS file

reduce worker R2 85

Small Example

Result (Output) Files

a 1
and 1
blue 2
disk 1
school 2
sky 2
space 1
the 3
this 1
today 2
true 1
what 1

cloud 4
come 2
computing 1
good 1
hello 1
is 4
limit 2
nice 4
output 1

Sorted. Stored in GFS (a distributed file system).

86

Partitioning Function

• User specifies the number of reduce tasks (i.e., output files) that he
desires: R.
• Data gets partitioned across these tasks using a partitioning function on

the intermediate key
• Default function: hash(key) mod R
• User can specify a different function.
• Example:
• hash(hostname(URLkey)) mod R
• to have all entries belonging to a host in the same output file.

87

Additional Study Material
(optional)

88

Spark

89

•MapReduce limitations (processing for big data)
•Not good for iterative operations (Machine Learning

algorithms): slow
•Not good for interactive big data applications: slow
•Difficulty in programming directly
•Not good for every application
•Good for batch applications working on big data

• Specialized systems built
• Pregel, GraphLab, Storm.

• Spark’s goal was: to generalize MapReduce to support new
apps with same engine
• Still can work like map-reduce
• But can do much more very efficiently (x10 or more)

90

Spark features

•Handles batch, interactive and real-time jobs with a single
framework
•Native integration with Java, Scala, Python
• Programming at a higher level of abstraction
•More general
•Map/reduce is just one set of constructs

• It is a cluster computing framework. But can run on a single
node (machine) as well.
• Scalable (more nodes can be added to the cluster and

Spark can utilize them)
• Fault tolerant (node failures handled transparently)

91

Spark

•Main abstraction in Spark is RDD (resilient distributed
dataset)
• RDD represents a read-only collection of objects (data

items) partitioned across a set of machines. Partition can be
rebuilt if it is lost.
•Data item (element) can be of various types.

• Users can explicitly cache an RDD
across machines and reuse it in multiple
MapReduce-like parallel operations.
• RDD has enough information about how it was

derived from other RDDs (lineage) to be able to
rebuild just that partition. Fault tolerance.
• There is a base RDD (on disk)

92

a machine (node)

Spark

93

Cluster
ManagerApp

Program

cluster nodes

cluster nodes

cluster nodes

cluster nodes

data item

RDD description

RDD

• RDDs can only be created through deterministic operations
(transformations) on either (1) data in stable storage or (2)
other RDDs.
•map, flatmap, filter, join

• RDDs do not need to be materialized at all times. RDD has
enough information about how it was derived from other
datasets (its lineage) to compute its partitions from data in
stable storage.
• Users can control two other aspects of RDDs: persistence

and partitioning.
• Caching
• Partitioning across machines on a key, etc.

94

Programming Interface

• For the programmer, each dataset (RDD) is represented as an
object (language object) and transformations are invoked using
methods on these objects.
• Scala can be used.
• Python can be used.
• Java can be used

• Programmers start by defining one or more RDDs through
transformations on data in stable storage
•map, fiter, …
• >>> linesRDD = sc.textFile ("world.txt")

• They can then use these RDDs in actions, which are operations
that return a value to the application or export data to a
storage system.
• count, collect, save, …

95

RDDs can be stored or cached

• Programmers can call a persist() method to indicate which
RDDs they want to reuse in future operations.
• Spark keeps persistent RDDs in memory by default, but it

can spill them to disk if there is not enough RAM.
•Or can just put into the disk.

• The cache() method is similar, but default is Memory_Only.

96

Example: mining console logs

• Suppose that a web service is experiencing errors and an
operator wants to search terabytes of logs in the Hadoop
filesystem (HDFS), a distributed file system, to find the
cause. Using Spark, the operator can load just the error
messages from the logs into RAM across a set of nodes and
query them interactively. The operator would first type the
following Scala code:

97

Example: mining console logs

98

querying

Extract and
load error
messages

Lineage Graph

Data in DFSBase RDD

RDD

RDD

RDD

RDD

Extracting and querying error messages
(illustrated)

100

Strata conference slides, 2013

RDD generation

• Spark can create RDDs from any file stored in HDFS or
other storage systems supported by Hadoop, e.g., local file
system, Amazon S3, Hypertable, HBase, etc.
• Spark supports text files, SequenceFiles, and any other

Hadoop InputFormat, and can also take a directory or a glob
(e.g. /data/201404*)

101

Our Program
Cluster

Spark Framework

Generating RDDs in Python

102

Turn a local collection into an RDD
sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Strata conference slides, 2013

RDD from another other RDD

• Transformations create a new dataset from an existing one
• All transformations in Spark are lazy: they do not compute

their results right away – instead they remember the
transformations
• applied to some base dataset
• optimize the required calculations
• recover from lost data partitions

103

nums = sc.parallelize([1, 2, 3])
Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1, 4, 9}
Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => {4}
Map each element to zero or more others
nums.flatMap(lambda x: range(0, x)) # => {0, 0, 1, 0, 1, 2}

Strata conference slides, 2013

Operations: Transformations

104

Operations: Transformations

105

Operations: Actions

106

Operations: Actions

107

RDD operations (Summary)

108

Spark Runtime

109

Spark Runtime

110

1. Our Program connects to a cluster manager
which allocate resources across applications
2. acquires executors on cluster nodes –
worker processes to run computations
and store data
3. sends app code to the executors
4. sends tasks for the executors to run

How fault tolerance achieved

111

A text-file example to form RDD

•We can dowload a textfile from Internet
• Ebook from Gutenberg project.

• Assume the downloaded ebook (Short History of the
World) is put into a txt file world.txt

112

word.txt

113

word.txt

114

…

Process text file

•We can now process this file. For example, to obtain all
words in the book into a list, or to count the words.

• To obtain words, in our Python program we write:
• distFile = sc.textFile(“world.txt")!
• distFile.map(lambda x: x.split(' ')).collect()

115

Word count

Python code:
from operator import add
f = sc.textFile(“world.txt”)
words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))
words.reduceByKey(add).collect()

116

flatMap Map

Word count

• Spark can persist (or cache) a dataset in memory across
operations
• Each node stores in memory any slices of it that it computes

and reuses them in other actions on that dataset – often
making future actions more than 10x faster
• The cache is fault-tolerant: if any partition of an RDD is lost,

it will automatically be recomputed using the
transformations that originally created it

117

Accumulators

• Accumulators are variables that can only be “added” to
through an associative operation
• Used to implement counters and sums, efficiently in parallel
• Spark natively supports accumulators of numeric value types

and standard mutable collections, and programmers can
extend for new types
•Only the driver program can read an accumulator’s value,

not the tasks

118

Accumulators

•We can define and use an accumulator variable. All functions,
no matter in which node they are executed, can add into the
accumulator variable.

119

Create the variable

We are accessing to the accumulated value

We are executing the function on each
dataset element x

There are 4 elements
in the datasetWe define

a function

Spark libraries/frameworks

• Spark Streaming
• Stream analytics

•MLlib
•Distributed machine learning

framework

•GraphX
•Distributed graph processing

framework

120

References

1. Database System Concepts. Silberschatz et al. 6th edition. 2011.
2. CS109 Data Science, Harvard.
3. CMSC320 Introduction to Data Science, UMD.
4. 15-388/688 Practical Data Science, CMU.
5. CS194 Introduction to Data Science, UC Berkeley.
6. CSCI 1951A. Data Science, Brown.
7. Cloud Computing: Theory and Practice, D. Marinescu, Morgan Kaufmann,

2013.
8. MapReduce: Simplified Data Processing on Large Clusters, J. Dean and S.

Ghamawat, OSDI, 2004.
9. Mining of Massive Datasets, J. Leskovec, A. Rajaraman, J. Ullman.
10. CS240A, UCSB.
11. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
12. In-Memory Cluster Computing, Zaharia et al., NSDI 2012.

121

References

• https://phppot.com/php/php-restful-web-service/
• Sqlite3: https://www.sqlite.org/index.html
• RDMBs and Pandas:

https://www.textbook.ds100.org/ch/09/sql_intro.html
• https://www.textbook.ds100.org/ch/03/pandas_intro.html
• https://medium.com/swlh/pyspark-on-macos-installation-and-use-

31f84ca61400

122

https://phppot.com/php/php-restful-web-service/
https://www.sqlite.org/index.html
https://www.textbook.ds100.org/ch/09/sql_intro.html
https://www.textbook.ds100.org/ch/03/pandas_intro.html
https://medium.com/swlh/pyspark-on-macos-installation-and-use-31f84ca61400

