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Machine Learning in Healthcare
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• Overview of Neural Networks

• History of Machine Learning in Medicine

• Big Data in Medical Applications

• Opportunities/Challenges in Healthcare

• Utility of Machine Learning in Medical Imaging

• Example Applications in Medical Imaging
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PART I: Overview of Neural Networks
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Ar#ficial	Neuron:	A	mathema#cal	abstrac#on

Perceptron Model (McCulloch-Pitts)

Dendrites Synaptic Weights
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(nonlinear)
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Single	Neuron:	A	linear	classifier
Perceptron Model (McCulloch-Pitts)

Dendrites Synaptic Weights
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Axon

(nonlinear)
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Neural	Network:	Nonlinear	mapping

Nonlinear Decision Boundary

Inputs

Output

Single Hidden-Layer Network
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Universal	Approxima#on	Theorem

•  Early 1990s for single hidden-layer networks

•  A universal approximator

•  Model any continuous nonlinear function (given a 
sufficient number of neurons)

•  No guidance on how to find model parameters… 
Inputs

Output

Multi-Layer Neural Network
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Why	is	Deep	Learning	Hot	Today?
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Deep	Neural	Networks	



ImageNet	Object	Recogni#on	ChallengeImageNet Object Recognition Challenge
(http://image-net.org/challenges/LSVRC/)

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 
ImageNet Classification with Deep Convolutional Neural 

Networks, NIPS, 2012.
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From	Blackbox	Models	to	Dark	Magic?
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Task-Specific	Priors

Cat?

Task:

Priors:
Locally-Coded Features
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Task-Specific	Priors
Task:

Priors:

Spatially Invariant Scale Invariant

Cat?
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Ideas:	Convolu#onal	Layer

•  Filtering with a kernel in small neighborhoods: local processing

•  Parameter sharing: translation invariance
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Ideas:	Pooling	Layer

•  Pooling hidden-unit responses: translation invariance

•  Analysis at multiple-spatial scales: scale invariance
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Convolu#onal	Neural	Networks
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Network	Engineering
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PART II: History of ML in Medicine

 

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


Expert	Systems

1970’s:	MYCIN	expert	system

• 1970’s	(Stanford):	MYCIN	expert	

system	for	identifying	bacteria	

causing	severe	infections

• Proposed	a	good	therapy	in	

~69%	of	cases.	Better	than	

infectious	disease	experts	4 The Context of the MYCIN Experiments

USERI
Description
of new case

Advice &
Explanation

=~
User
inter-
face

EXPERT SYSTEM

qp~ InferenceEngine

t
qp_~ Knowledge [Base

FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

to help build a knowledge base, to explain a line of reasoning, and so forth.
The knowledge base is the program’s store of facts and associations it

"knows" about a subject area such as medicine. A critical design decision
is how such knowledge is to be represented within the program. There are
many choices, in general. For MYCIN, we chose to represent knowledge
mostly as conditional statements, or rules, of the following form:

IF: There is evidence that A and B are true,

THEN: Conclude there is evidence that C is true.

This form is often abbreviated to one of the following:

If A and B, then C

A& B--*C

We refer to the antecedent of a rule as the premise or left-hand side (LHS)
and to the consequent as the action or right-hand side (RHS).

The inference mechanism can take many forms. We often speak of
the control structure or control of inference to reflect the [’act that there
are different controlling strategies for the system. For example, a set of
rules may be chained together, as in this example:

If A, then B (Rule 1)

If B, then C (Rule 2)

A (Data)

.’.C (Conclusion)

Related Work and Goals 615

I am ready
** THIS IS A 26 YEAR OLD MALE PATIENT
My understanding is:
The age of the patient is 26
The sex of the patient is male
** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS
What is his name?
** JO
My understanding is:
The name of the patient is Jo
Respiratory-tract is one of the symptoms that the patient had
** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE
Please give me the date of admission
** MARCH 12, 1979
My understanding is:
The patient was admitted at the hospital 3 days ago
Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician’s inputs
appear in capital letters after the double asterisks.

some of the frames might rule out others, thus enabling the space of
possible inferences to be pruned. This isstie has also been raised by Char-
niak (1978). Embodying world knowledge in frames (Minsky, 1975) 
scripts (Abelson, 1973; Schank and Abelson, 1975) led to the development
of" programs that achieved a reasonably deep level of understanding, for
example, GUS (Bobrow et al., 1977), NUDGE (Goldstein and Roberts,
1977), FRUMP (DeJong, 1977) and SAM (Cullingford, 1977).

BAOBAB and the other programs mentioned so far have a common
feature: they do not interpret sentences in isolation. Rather, they interpret
in the context of an ongoing discourse and, hence, use discourse structure.
BAOBAB also explores issues of (a) what constitutes a model for structured
texts and (b) how and when topic shifts occur. However, BAOBAB is in-
terested neither in inferring implicit facts that might have occurred tem-
porally between facts explicitly described in a text nor in explaining inten-
tions of characters in stories (main emphases of works using scripts or
plans). Our program focuses instead on coherence of texts, which is mainly
a task of detecting anomalies, asking the user to clarify vague pieces of
information or disappointed expectations, and suggesting omissions. The
domain of application is patient medical summaries, a kind of text for
which language-processing research has mainly consisted of filling in for-
matted grids without demanding any interactive behavior (Sager, 1978).
BAOBAB’s objectives are to understand a summary typed in "natural med-

Dialogue	interface
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QMR	Models

1980’s:	INTERNIST-1/QMR	model
• 1980’s	(Univ.	of	Pittsburgh):	

INTERNIST-1/Quick	Medical	
Reference

• Diagnosis	for	internal	medicine

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Probabilistic	model	relating:

570	binary	disease	 variables
4,075	binary	symptom	variables	
45,470	directed	edges

Elicited	from	doctors:
15	person-years	 of	work

Led	to	advances	 in	ML	&	AI	
(Bayesian	networks,	 approximate	
inference)

[Miller	et	al.,	‘86,	Shwe et	al.,	‘91]

Problems: 1. Clinicians	entered	symptoms	manually
2. Difficult	to	maintain,	difficult	to	generalize
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Drug	Discovery

1980’s:	automating	medical	discovery

Discovers	that	prednisone	
elevates	cholesterol
(Annals	of	Internal	Medicine,	‘86)

[Robert	Blum,	“Discovery,	Confirmation	 and	Incorporation	of	Causal	Relationships	
from	a	Large	Time-Oriented	 Clinical	 Data	Base:	The	RX	Project”.	Dept.	of	Computer	
Science,	Stanford.	1981]
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1990’s:	neural	networks	in	medicine

• Neural	networks	with	
clinical	data	took	off	in	
1990,	with	88	new	
studies	that	year

• Small	number	of	
features	(inputs)

• Data	often	collected	by	
chart	review

387

where w,o is a bias weight. The ith neuron responds
to this activity by sending a signal

This type of neuron, called a perceptron, is illus-
trated in figure 1. The standard choice for the func-
tion F is the nonlinear logistic or sigmoid function

which restricts the output to be between 0 and 1. If
the incoming weighted activity is larger than the
(negative) bias weight, the activation is positive. Pos-
itive activations cause node outputs that tendj to 1.

Negative activations cause outputs that tend to 0.

Thus, the bias weight acts as a threshold above
which the node is active. For small activation levels,
the sigmoidal function is approximately linear.

Perceptrons are the basic processing element in
most neural network models. A feed-forward neural

network, called the multilayer perceptron (MLP), is
illustrated in figure 2. The network consists of sen-
sory units that make up the input layer, one or more
hidden layers of processing units (perceptrons), and
one output layer of processing units (perceptrons).
Every unit is connected to every unit in the layer
below. The input signal propagates through the net-
work a layer at a time. Because MLPs are trained
with an algorithm called error back-propagation,
they are also known as &dquo;backprop&dquo; networks.
There are many other types of networks, varying

in node models and patterns of connectivity,34 3’,‘~’4
but the MLP is the network used in nearly all med-

ical applications. Our discussion is therefore re-

stricted to MLPs.

Overall, the MLP performs a functional mapping
from the input space to the output space. The input
and output spaces are multidimensional, with one
dimension per input and output variable. The

input-output mapping is determined by the struc-
ture of the network and the values of its weights.
Changing the structure or the weights changes the
function implemented.
An MLP with a single hidden layer having H hid-

den units and a single output, y, implements map-
pings of the form

FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.

[Penny	&	Frost,	Neural	Networks	 in	Clinical	Medicine.	Med	Decis Making,	1996]

Problems: 1. Did	not	fit	well	into	clinical	workflow
2. Poor	generalization	to	new	places

Neural	Networks	in	Medicine
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Disease	Diagnosis
395

Table 1 9 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list
tP = pnor probability of most prevalent category.
$D = ratio of tramng examples to weights per output
§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the

AUROCC value Neural = accuracy of neural net, Other = accuracy of best other method

differential identification of fatty liver and two

types of hepatitis on the basis of laboratory tests. 65
CART required that the ratio of two inputs be entered
explicitly as a third input. Without this extra in-
put, CART would not classify as accurately as a neural
net.

Knowledge-based expert systems have been

widely used in the medical domain. The difficulty in
eliciting rules from experts and the inconsistency
and brittleness of resulting systems have been their
main drawbacks. Neural networks offer a more di-
rect approach but have the disadvantage that their
workings are not readily interpreted.

Curve-fitting methods such as generalized spline
fitting are similar to regression methods. A differ-
ence is that the data may be approximated by many
local functions, which are then combined to form a
single global nonlinear function.

Fuzzy-logic systems implement general nonlinear
functions, which are initialized by heuristic, expert
knowledge. They are based on readily understood
but vague linguistic rules, which are given precise
meaning via algebraic operators called &dquo;member-

ship functions.&dquo;
Curve-fittings’ and fuzzy-logic methods3° are sim-

ilar to a type of neural network called a &dquo;radial basis
function network.&dquo; This is a two-layer network with

Gaussian activation-output functions in the hidden
layer and linear functions in the output layer.

Considerable research effort is being devoted to
systems involving combinations of the above-men-
tioned methods and neural networks. A recent se-
lection of studies involving such &dquo;hybrid&dquo; systems
for medical reasoning is given by Cohen and Hud-
son. 15
Table 1 shows how accurate neural nets are in

comparison with other methods. Michie et aI.51
compare machine learning, neural nets, and statis-
tical classifiers on a variety of data sets, including
classifications of heart disease, head injury, and di-
abetes.

Conclusion

Certain issues must be addressed for neural net-
works to truly perform well in medical applications.
These include choosing input and output represen-
tations and performance measures that are suitable
for the low-prevalence categories and missing data
items often found in medical data sets. If the data
set is small, then the statistical techniques of folded
cross validation and bootstrapping allow a more ac-
curate assessment of the network’s performance.
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PART III: Big Data in Medical Applications

 

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


Sources	of	Medical	Data



Sources	of	Medical	Data

Diversity	of	digital	health	data

genomics

imaging

phone

lab tests

vital signs

proteomics 

devices

social media
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Availability	of	Medical	Data

9.4% 12.2% 15.6%

27.6%*

44.4%*

59.4%*

75.5%* 83.8%*
71.9%

85.2%* 94%* 96.9%*
96%

2008 2009 2010 2011 2012 2013 2014 2015

Certi�ed EHR

Basic EHR

00000

Percentage
of	hospitals
in	the	US	

Adoption	of	Electronic	Health	Records	
(EHR)	has	increased	9x	since	2008

[Henry	et	al.,	ONC	Data	Brief,	May	2016]
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Standard	Classes	of	Data

Medical Data
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Large,	Public	Databases	are	Emerging
Large	datasets

Laboratory	for	
Computational	
Physiology

De-identified	
health	data	from	
~40K	critical	care	
patients

Demographics,	
vital	signs,	
laboratory	tests,	
medications,	
notes,	…

President	Obama’s	initiative	to	create	a	1	million	
person	research	cohort

[Precision	Medicine	 Initiative	 (PMI)	working	Group	Report,	Sept.	17	2015]

Intensify efforts to apply precision medicine to cancer.

Knowledge to 
overcome drug 
resistance

Use of 
combination 
therapies

Innovative clinical trials 
of targeted drugs for 
adult, pediatric cancers

THE PRECISION MEDICINE INITIATIVE

NEAR TERM GOALS

WHAT IS IT?

WHY NOW?

Precision medicine is an emerging approach for disease 
prevention and treatment that takes into account people’s 
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative will generate the scientific 
evidence needed to move the concept of precision 
medicine into clinical practice.

The time is right because of:

Sequencing 
of the human 
genome

Improved 
technologies for 
biomedical analysis

New tools  
for using large 
datasets

Follow the Initiative’s progress and consider 
volunteering for this landmark effort. 

www.nih.gov/precisionmedicine

Create a research cohort of > 1 million American volunteers who will 
share genetic data, biological samples, and diet/lifestyle information, all 
linked to their electronic health records if they choose.

LONGER TERM GOALS

001101010110100
10110010101100110
0010101101010010
0100010101111010

Pioneer a new model for doing science that emphasizes engaged 
participants, responsible data sharing, and privacy protection. 

Research based upon the cohort data will:

• Advance pharmacogenomics, the right drug for the right patient at the 
right dose

• Identify new targets for treatment and prevention

• Test whether mobile devices can encourage healthy behaviors

• Lay scientific foundation for precision medicine for many diseases

Large	datasets

Core	data	set:
• Baseline	health	exam
• Clinical	data	derived	

from	electronic	health	
records	(EHRs)

• Healthcare	claims
• Laboratory	data

President	Obama’s	initiative	to	create	a	1	million	
person	research	cohort

[Precision	Medicine	 Initiative	 (PMI)	working	Group	Report,	Sept.	17	2015]

Intensify efforts to apply precision medicine to cancer.

Knowledge to 
overcome drug 
resistance

Use of 
combination 
therapies

Innovative clinical trials 
of targeted drugs for 
adult, pediatric cancers

THE PRECISION MEDICINE INITIATIVE

NEAR TERM GOALS

WHAT IS IT?

WHY NOW?

Precision medicine is an emerging approach for disease 
prevention and treatment that takes into account people’s 
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative will generate the scientific 
evidence needed to move the concept of precision 
medicine into clinical practice.

The time is right because of:

Sequencing 
of the human 
genome

Improved 
technologies for 
biomedical analysis

New tools  
for using large 
datasets

Follow the Initiative’s progress and consider 
volunteering for this landmark effort. 

www.nih.gov/precisionmedicine

Create a research cohort of > 1 million American volunteers who will 
share genetic data, biological samples, and diet/lifestyle information, all 
linked to their electronic health records if they choose.

LONGER TERM GOALS

001101010110100
10110010101100110
0010101101010010
0100010101111010

Pioneer a new model for doing science that emphasizes engaged 
participants, responsible data sharing, and privacy protection. 

Research based upon the cohort data will:

• Advance pharmacogenomics, the right drug for the right patient at the 
right dose

• Identify new targets for treatment and prevention

• Test whether mobile devices can encourage healthy behaviors

• Lay scientific foundation for precision medicine for many diseases

Large	datasets

Core	data	set:
• Baseline	health	exam
• Clinical	data	derived	

from	electronic	health	
records	(EHRs)

• Healthcare	claims
• Laboratory	data
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PART IV: Opportunities/Challenges in Healthcare

 

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


ML/DL	in	Biomedical	Domain	
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Example:	Emergency	Departments

Emergency	Department:
• Limited	resources
• Time	sensitive
• Critical	decisions
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Example:	Emergency	Departments

Triage	Information
(Free	text)

Lab	results
(Continuous	valued)

MD	comments
(free	text)

Specialist	consults Physician	
documentation

Repeated	vital	signs	
(continuous	values)
Measured	every	30	s

T=0

30	min 2	hrs

Disposition

Data	in	Emergency	Department	(ED)

Collaboration	with
Steven	Horng,	MD

Electronic	 records	 for	over	300,000	ED	visits
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How	can	Machine	Learning	Help?

Opportunities	for	machine	learning
• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation

Pathways	have	been	shown	to	
reduce	in-hospital	complications	
without	increasing	costs
[Rotter et	al	2010]

BIDMC	Cellulitis Clinical	Pathway
Flowchart	
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Automa#c	Protocol	Selec#on

Opportunities	for	machine	learning

Automating	triggers
Don’t	rely	on	the	user’s	knowledge

that	the	pathway	exists!

• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation

Our task:
Determine whether a patient
has or is suspected to have
cellulitis
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Disease-specific	Recommender	Systems
Opportunities	for	machine	learning

Automatically	place	specialized	
order	sets	on	patient	displays

Our task:
Determine whether patient
complained of chest pain,
or is a psych patient

• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation
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Minimizing	Risk

Opportunities	for	machine	learning
• Triggering	clinical	pathways
• Context-specific	displays
• Risk stratification
• Improving	clinical	
documentation

Ex	1:	Likelihood	of	
mortality	or	admission	
to	ICU

Ex	2:	Early	detection	of	
severe	sepsis

(Topic	of	next	week’s	lecture)
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Real-#me	Disease	Predic#on
Real-time	predictions	in	BIDMC	

emergency	department
Acute

Abdominal	 pain
Allergic	reaction
Ankle	fracture
Back	pain
Bicycle	accident
Cardiac	etiology
Cellulitis
Chest	pain
Cholecystitis
Cerebrovascular
accident

Deep	vein	thrombosis
Employee	exposure
Epistaxis
Gastroenteritis
Gastrointestinal	 bleed
Geriatric	fall
Headache
Hematuria
Intracerebral
hemorrhage
Infection
Kidney	stone

Laceration
Motor	vehicle	accident
Pancreatitis
Pneumonia
Psych
Obstruction
Septic	shock
Severe	sepsis
Sexual	assault
Suicidal	 ideation
Syncope
Urinary	tract	infection

[Halpern,	Horng,	Choi,	Sontag,	JAMIA	‘16]

History
Alcoholism
Anticoagulated
Asthma/COPD
Cancer
Congestive	 heart	
failure
Diabetes
HIV+
Immunosuppressed
Liver	malfunction
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Improving	Clinical	Documenta#on

Table 1. Performance of the different negation detection algorithms on 200 test sentences.

NegEx Added rules Perceptron

Precision 0.699 0.833 0.901

Recall 0.875 0.982 0.925

F1 0.777 0.901 0.913

Table 2. Performance of the linear SVMs on chief complaint prediction, without and with negation detection.  The 

Best-n accuracy measures how often the list of n most likely predicted labels actually contained all of the true chief 
complaints, and DCG stands for the Discounted Cumulative Gain, which measures the quality of the whole ranking.

many-to-one Multiclass SVM

Negation detection none perceptron none perceptron

Best-5 0.496 0.511 0.753 0.757

Best-10 0.615 0.620 0.819 0.825

DCG 0.381 0.393 0.601 0.613

Figure 1.  Screenshots  of  the  system now running at  BIDMC hospital  on  note:  69  y/o M patient  with severe  
intermittent RUQ pain. Began soon after eating bucket of ice cream and cupcake. Also is a heavy drinker. Left: the 

system correctly proposes both ‘RUQ abdominal pain’ and ‘Allergic reaction’ as possible chief complaints. Right: 
If the nurse does not see the label they want, they can start typing and see a list of suggested auto-completes. Again, 

the four most likely labels describe ‘RUQ abdominal pain’ and ‘Allergic reaction’.

References

1 W. W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G.Buchanan. A simple algorithm for identifying 

negated findings and diseases in discharge summaries. Journal of biomedical informatics, 34(5):301–310, 2001.

2  T.  Joachims.  Training  linear  svms  in  linear  time.  In  Proceedings  of  the  12th ACM  SIGKDD  international  

conference on Knowledge discovery and data mining, pages 217–226. ACM, 2006.

3  K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. The 

Journal of Machine Learning Research, 2:265–292, 2002.

Improving	documentation:	Chief	complaints

Triage	note

Predicted	
chief	

complaints Contextual	
auto-

complete

Using	for	all	55,000	patients/year	that	present	at	BIDMC	ED

Changed	workflow	to	have	chief	complaints	assigned	last.	Predict	them.
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Improving	Clinical	Documenta#on

100%

0%

Date

Percentage	of	standardized	chief	complaints
(per	week)

E-mail	notificationsEnabled	
for	all	
nurses

Enabled	predictions	
for	a	few	triage	nurses

Drop	down	list	(no	predictions)

Improving	documentation:	Chief	complaints
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At	a	Broader	Time	Scale…
Zooming	out…

Patient:

Demographic	
data:

-Age/gender
-Socioeconomic	
status,	lifestyle
-Company	code

Medical	Claims:
-ICD9	diagnosis	code
-CPT	code	(procedure)
-Specialty
-Location	of	service
-Date	of	Service

Lab	Tests:
-LOINC	code	(urine	or	
blood	test	name)
-Results	(actual	values)
-Lab	ID
-Range	high/low-Date

Medications:
-NDC	code	(drug	
name)	
-Days	of	supply
-Quantity
-Service	Provider	ID
-Date	of	fill

time

Collaboration	with:

10	years
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Temporal	Modeling	of	Disease	ProgressionTemporal	modeling	of	disease	
progression

• Find	markers	of	disease	stage	and	progression,	statistics	of	
what	to	expect	when
– What	is	the	“typical	trajectory”	of	a	female	diagnosed	with	
Sjögren’s syndrome	at	the	age	of	19?

• Estimate	a	patient’s	future	disease	progression
– When	will	a	specific	individual	with	smoldering	multiple	
myeloma	(a	rare	blood	cancer)	transition	to	full-blown	
multiple	myeloma?

– Which	second-line	diabetes	treatment	should	we	give	to	a	
patient?
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Personalized	Medicine

Me

Patient	2

Patient	1

20	years

?????

…

file://localhost/Users/Tolga/Desktop/Gray722_refined.svg
file://localhost/Users/Tolga/Desktop/Gray722_refined.svg
file://localhost/Users/Tolga/Desktop/Gray722_refined.svg
file://localhost/Users/Tolga/Desktop/Gray722_refined.svg
file://localhost/Users/Tolga/Desktop/Gray722_refined.svg


Predic#on	of	Health	Status

Me

Patient	2

Patient	1

20	years

…
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Personalized	Prescrip#ons

Me

time

???
Drug	A

Drug	B

or

Patient	1
Drug	A

Drug	C

Patient	2
Drug	B
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From	Data	Genera#on	to	Decision	Making
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Many	Challenges	Unique	to	Medicine
What	makes	healthcare	different?

• Life	or	death	decisions
– Need	robust algorithms
– Checks	and	balances	built	into	ML	deployment
– (Also	arises	in	other	applications	of	AI	such	as	autonomous	
driving)

– Need	fair and	accountable	algorithms
• Many	questions	are	about	unsupervised	learning
– Discovering	disease	subtypes,	or	answering	question	such	
as	“characterize	the	types	of	people	that	are	highly	likely	to	
be	readmitted	to	the	hospital”?

• Many	of	the	questions	we	want	to	answer	are	causal
– Naïve	use	of	supervised	machine	learning	is	insufficient
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Problems	with	“Data”
What	makes	healthcare	different?

• Often	very	little	labeled	data	(e.g.,	for	clinical	
NLP)
–Motivates	semi-supervised	learning	algorithms

• Sometimes	small	numbers	of	samples	(e.g.,	a	
rare	disease)
– Learn	as	much	as	possible	from	other	data	(e.g.	
healthy	patients)

–Model	the	problem	carefully
• Lots	of	missing	data,	varying	time	intervals,	
censored	labels
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Problems	with	Clinical	Integra#on

What	makes	healthcare	different?

• Difficulty	of	de-identifying	data
– Need	for	data	sharing	agreements	and	sensitivity

• Difficulty	of	deploying	ML
– Commercial	electronic	health	record	software	is	
difficult	to	modify

– Data	is	often	in	silos;	everyone	recognizes	need	for	
interoperability,	but	slow	progress

– Careful	testing	and	iteration	is	needed
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PART V: Utility of ML in Medical Imaging

 

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


Medical	Uses	of	Deep	Learning
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Machine	Learning	for	Diagnosis	

Top-10
Diseases

Top-10
Techniques
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Deep	Learning	on	the	Rise

Number of 
DL Studies

DL Studies
Based on 

Data Type
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Deep	Learning	for	Medical	Imaging

DL Studies
Based on 

Data Type

• Medical images are high-dimensional (volumetric and temporal) 

• Medical images are mostly interpreted by radiologists (manual labor) 

• Humans are quite poor in seeing fine-grained patterns in static images 

• Similarities medical–natural images (closely tied to computer vision)
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Imaging	Morphology	and	Func#on

Anatomical Functional Diffusion



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

X-ray  

    
Ultrasound   

 

Nuclear 
Medicine 

MRI   

Modern	Imaging	Modali#es



Ultrasound
● Uses sound pressure waves  
● We cannot hear these sounds:  > 20 kHz 
● Typically 2-18 MHz



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

Ultrasound



Ultrasound
● Higher resolution with increasing frequency  
● Cannot image too deep if the frequency is high 
● Lots of application areas: cardiology, urology, obstetrics,…

Doppler Ultrasound



X-ray

● Uses X-ray photons 
● Photons at VERY high frequency:  ~1016-1019  Hz 
● Different tissues attenuate photons differently à contrast 
● Very good at detecting bone structure 

● Projection images



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

Chest X-ray



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

Projection Through the Body



Computerized Tomography

● Extends X-ray imaging to 3D format 
● Rotate X-ray source and detectors all together 

   



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

Computerized Tomography



Nuclear Medicine

● A radionuclide is injected into the 
blood stream 

● Goes to cancer locations before 
cancer cells are hyperactive 

● Emitted Gamma rays are detected 
for imaging



Positron Emission Tomography

● Resolution is not good, but very sensitive to cancer



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

MRI



Magnetic Resonance Imaging (MRI)

Angiography

Tractography

Anatomy

functional MRI

● FLEXIBLE CONTRAST 
● Arbitrary geometries 
● Non-invasive, non-ionizing imaging 
● Relatively slow imaging



Medical Imaging Signals and Systems 
Jerry L. Prince | Jonathan M. Links

 Copyright ©2015, 2006 by Pearson Education, Inc. 
All rights reserved.

   CT                        MRI                        PET



Medical	Imaging	Pipeline



Mo#va#on

• Radiologists need to interpret an excessively large number of images 

• Their capacity to correctly interpret images is overwhelmed 

• Automated image analysis systems are needed for error reduction 

• Machine learning underpins the algorithms for such systems



PART V: Example Applications in Medical Imaging

 

https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


Examples:	Detec#ng	Micro-calcifica#ons
Ex: CAD for finding micro-calcifications in mammogram 

region

33 



Examples:	Detec#ng	Pulmonary	Abnormali#es

Ex. CAD for Pulmonary Abnormalities

35 



Examples:	Detec#ng	Pulmonary	Abnormali#es

Ex. CAD for Pulmonary Abnormalities

36 



Examples:	Segmenta#on	of	Ventricles

Ex. Automatic LV Segmentation from US

55 



Examples:	Segmenta#on	of	Ventricles

DEEP BELIEF NETWORK
Topics: deep belief network
• The idea of pre-training came from work on deep belief 

networks (DBNs)
‣ it is a generative model that mixes undirected

and directed connections between variables
‣ top 2 layers’ distribution                 is an RBM
‣ other layers form a Bayesian network:
- the conditional distributions of a layers given the one

above it are  

- this is referred to as a sigmoid belief network (SBN)

‣ a DBN is not a feed-forward network

...

...

...

...

DBN’s graphical model
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Examples:	Segmenta#on	of	Ventricles

DEEP BELIEF NETWORK
Topics: deep belief network
• This is where the RBM stacking procedure comes from
‣ idea: improve prior on last layer by

adding another hidden layer
‣ how do we train these additional layers?

...

...
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Examples:	Segmenta#on	of	Ventricles
Ex. Automatic LV Segmentation from US 

with Deep Belief Nets
56 



Examples:	Segmenta#on	of	Hippocampus

Ex. Hippocampus Segmentation Using 7T MRI
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Examples:	Segmenta#on	of	Hippocampus

Hand-Crafted Features
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Examples:	Segmenta#on	of	Hippocampus

Hierarchical Feature Extraction
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Examples:	Segmenta#on	of	Hippocampus

Qualitative Evaluations

63 



Examples:	Image	Registra#on

Ex. Registration of Brain MR Images

64 



Examples:	Image	Registra#on

Deep Learning for Image Registration
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Examples:	Image	Registra#on

Deep Learning for Image Registration
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Examples:	Tissue-Specific	Segmenta#on



Examples:	Tissue-Specific	Segmenta#on

Ex. Tissue Specific Segmentation of Brain Tumors

32

Multi-channel 3D MRI input data

Segmentation of  
tumorous tissues:

---- Active cells
---- Necrotic core
---- Edema
---- Background

DTI-qDTI-p

FLAIRT2

T1T1-gad



Examples:	Tissue-Specific	Segmenta#on

U-Net

Figures from Ronneberger (2015). (https://arxiv.org/abs/1505.04597)    



Examples:	Tissue-Specific	Segmenta#on 33

• Location
• Shape
• Intensity
• Texture
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Challenge: variability of input data



Examples:	Predic#ng	Survival	from	Histopathology



Examples:	Classifying	Re#nal	Disease



Examples:	Classifying	Re#nal	Disease



Examples:	Denoising/Dealiasing	Images

𝑥̂ = min
𝑥

𝐹𝑢𝑥 − 𝑦𝑢 2
  +   𝐶(𝑥𝑢) − 𝑥

2

Data 
consistency

Consistency 
with network

Undersampled Recovered

Reconstruction Network



Model-based	Deep	Learning:	Cascaded	CNNs



Undersampled	 Fully-sampled	

Undersampled	 Reconstruction

Tr
ai

ni
ng

 
Te

st
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g 

Deep CNN 

Examples:	Denoising/Dealiasing	images



Medical	Data	Are	Scarce



Transfer	Learning



Fine	Tuning



Examples:	Denoising/Dealiasing	images



Source Target

Examples:	Synthesizing	Missing	Images



Network	Architecture

Generator Discriminator



What	is	a	Genera#ve	Model?
Generative Modeling

• Density estimation

• Sample generation

Training examples Model samples



Genera#ve	Adversarial	Network	(GAN)
Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

GeneratorDiscriminator



Examples:	Synthesizing	Missing	Images



Examples:	Synthesizing	Missing	Images



Future	Outlook:

DL Tasks: 
• Image Reconstruction 
• Image Synthesis 
• Data Acquisition 
• Image Segmentation 
• Tumor/Lesion Detection 
• Disease Grading 
• Monitoring 
• Treatment Planning
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