GE 461
Introduction to
Data Science
Spring 2023

Applications: Computer Vision

Hamdi Dibeklioğlu
Computer Vision

According to Hollywood
Computer Vision

Scene → Sensor → Interpreter → Interpretation

- Mountain
- Lake
- Trees
- Sky
Human Vision

Scene → Sensor → Interpreter → Interpretation

Mountain
Lake
Trees
Sky
Computer Vision
Computer Vision

Computer vision tries to get computers to extract information from images
Human Vision

• Can you name some things that influence what we see?
Human Vision

• Can you name some things that influence what we see?
 • What objects are where in the world (and how they are deformed)
 • Lighting conditions of the environment
 • Position and orientation of the eyes (viewpoint)
 • Your own brain!!!
Human Vision

Dorsal or “where” stream

Spatial processing

location
movement
spatial
transformations
spatial relations

color
texture
pictorial detail
shape
size

Object processing

Ventral or “what” stream
Human Vision
Human Vision

• Count the red crosses

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
Human Vision

• Count the red crosses

```
  O X O X O X X
  X O X X X O X
  O X X O X X O
  X X O X O O X
  O X X O X X X
  X O X X X O X
  O X X O X X O
  X O X X X O X
  X X X O O X X
  X O X X X O X
```
Human Vision
Human Vision
Human Vision

• Computer vision is much more difficult than you might initially think:
 • Your brain needs 25% of the cortex just to solve vision
 • The general computer vision problem is still largely unsolved

• Main problem: vision needs to deal with enormous variations in the signal
 • Some of these variations are relevant and others should be ignored
Gap between “pixels” and “meaning”
Computer Vision: History

• An MIT undergraduate summer project*, in 1966, aimed to solve background/foreground segmentation and object detection/classification.

• It has been 57 years and we still work on the same problems.

*Seymour A Papert. The summer vision project, MIT, 1966.
Computer Vision

- Making useful decisions about real physical objects and scenes based on images (Shapiro & Stockman, 2001)
- Extracting descriptions of the world from pictures or sequences of pictures (Forsyth & Ponce, 2003)
- Analyzing images and producing descriptions that can be used to interact with the environment (Horn, 1986)
- Designing representations and algorithms for relating images to models of the world (Ballard & Brown, 1982)

Slide Credit: Rajesh Rao
Computer Vision

• How do we describe the variations within the *class* “chair”?

• Invariance to some variations can be obtained using hand-crafted models

• *We generally try to learn* invariance to the remaining variations from *examples*
Object Recognition

- Observation: chairs contain relatively lots of edges

Slide Credit: L. van der Maaten
Basics: What is an image?

• Assume an image as a function, $f: \mathbb{R}^2 \rightarrow \mathbb{R}$:
 • $f(x, y)$ gives the intensity at position (x, y)
 • Realistically, an image is defined over a rectangle:
 • $f: [a, b] \times [c, d] \rightarrow [0,255]$

• Color image = Three functions combined together:
 • $f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$
Basics: An image as a function

Bright regions are high, dark regions are low

Slide Credit: Rajesh Rao
Basics: Digital Images

- In computer vision we operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to the nearest integer)
 - Each sample is a pixel (picture element)
 - If we assume each pixel as 1 byte, values range from 0 to 255
Basics: Preprocessing

- Range transformation (pixel processing):
 \[g(x, y) = h(f(x, y)) \]
- Example: ?
Basics: Preprocessing

- Range transformation (pixel processing):
 \[g(x, y) = h(f(x, y)) \]

- Example: Noise filtering

![Original Image](image1.png) \(f \) \[h \] \[g \]
Basics: Preprocessing

• Domain transformation (geometric transform):
 \[g(x, y) = f(h_x(x, y), h_y(x, y)) \]

• Example: ?
Basics: Preprocessing

- Domain transformation (geometric transform):
 \[g(x, y) = f(h_x(x, y), h_y(x, y)) \]

- Example: Rotation / Translation

Slide Credit: Rajesh Rao
Basics: Analysis Pipeline

Input → Feature extraction (hand-crafted) → Learning algorithm (your favorite classifier) → Output

Car
Not a car

Input → Feature extraction - Classification → Output

Car
Not a car
Surveillance

- Face Recognition
- Object Detection
- Tracking
Surveillance

• Anomaly Detection
• Action & Activity Recognition
Autonomous Vehicles
Autonomous Vehicles

- Detection & Segmentation
- Tracking
Autonomous Vehicles

- Future Prediction
Autonomous Vehicles

- Gaze Estimation
- Mood Recognition
- Fatigue Monitoring
Photography

- Face Detection / Smile Shutter
- Focus Tracking
- Image Stabilization
- Color Enhancement
Special Effects (3D)
Map & 3D Model Generation

- 3D reconstruction
- Structure from motion
Weather Forecasting

- Spectral image analysis
- Image segmentation
Robotics
Quality Control & Monitoring
Healthcare

- Facial expression analysis
- Pose estimation
- Medical image analysis
- Motion magnification
- Subtle motion tracking
Neuromarketing

- Gaze estimation / tracking
- Facial emotion recognition
- Age & gender estimation
- Appreciation recognition
Visual Search

• https://lens.google.com/
Gaming / Human Computer Interaction

- Pose and motion tracking
- Gesture recognition
Sports Analytics
Image Analytics: Identity Recognition / Tagging

- Face detection
- Face recognition
- Kinship recognition
Image Analytics: Captioning

- a yellow plate topped with meat and broccoli.
- a zebra standing next to a zebra in a dirt field.
- a stainless steel oven in a kitchen with wood cabinets.
- two birds sitting on top of a tree branch.
- an elephant standing next to rock wall.
- a man riding a bike down a road next to a body of water.
Image Synthesis/Modification
Style Transfer
DEAREST GABBY
I MISS YOU THIS MORNING I READ A NEW PSYCHOLOGICAL SCIENCE STUDY ABOUT THE PROSOCIAL WELL-BEING BENEFITS OF HANDWRITTEN THANK YOUSTHE APPRECIATION EXPRESSION AND APPRECIATION TURNS OUT YOU AND I ARE BOTH INDEPENDENT FREE SPIRITS FOR THIS ENGRAVED BEARbaugh TRULY A BEAR OF LOVE!
And many more applications…

Your limitation - it’s only your imagination