
Out-of-core Constrained Delaunay
Tetrahedralizations for Large Scenes

Ziya Erkoç, Aytek Aman, Uğur Güdükbay, and Hang Si

Abstract Tetrahedralization algorithms are used for many applications such as Ray
Tracing and Finite Element Methods. For most of the applications, constrained
tetrahedralization algorithms are chosen because they can preserve input triangles.
The constrained tetrahedralization algorithms developed so far might suffer from
a lack of memory. We propose an out-of-core near Delaunay constrained tetrahe-
dralization algorithm using the divide-and-conquer paradigm to decrease memory
usage. If the expected memory usage is below the user-defined memory limit, we
tetrahedralize using TetGen. Otherwise, we subdivide the set of input points into
two halves and recursively apply the same idea to the two halves. When compared
with the TetGen, our algorithm tetrahedralizes the point clouds using less amount of
memory but takes more time and generates tetrahedralizations that do not satisfy the
Delaunay criterion at the boundaries of the merged regions. We quantify the error
using the aspect-ratio metric. The difference between the tetrahedralizations that
our approach produce and the Delaunay tetrahedralization are small and the results
are acceptable for most applications.

1 Introduction

Tetrahedralization has many applications, ranging from finite element simulations
to ray tracing accelerations. There are notable tetrahedralization algorithms in the
literature. Yet, these algorithms are not appropriate for applications that require
the use of very large meshes that do not fit into the memory. Besides, some
of these applications require the faces of the input mesh to be preserved after

Z. Erkoç · A. Aman · U. Güdükbay (�)
Department of Computer Engineering, Bilkent University, Ankara, Turkey
e-mail: ziya.erkoc@bilkent.edu.tr; aytek.aman@cs.bilkent.edu.tr; gudukbay@cs.bilkent.edu.tr

H. Si
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
e-mail: si@wias-berlin.de

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_7

113

114 Z. Erkoç et al.

the tetrahedralization is complete. This kind of tetrahedralization algorithm is
called constrained tetrahedralization. Constrained tetrahedralization algorithms
guarantee that the input mesh is contained in the surface of the output tetrahedral
mesh. This property is especially important for tetrahedralization-based ray tracing
accelerators, not to disturb the surface geometry [4]. Although these algorithms
are quite powerful and can complete the tetrahedralization process in a reasonable
amount of time, their usage is limited by the available memory. These algorithms
might fail when the tetrahedralization of an object requires a large amount of
memory. For instance, a bridge model consisting of tens-of-millions of vertices
can be analyzed using the Finite Element Method. Besides, a ray-traced scene may
contain up to a few hundred million faces [8]. Those examples might require an
excessive amount of memory.

We propose an out-of-core divide-and-conquer constrained tetrahedralization
algorithm that will take the memory-constraint specified by the user into account
and will not exceed it. Our algorithm divides the mesh into two pieces recursively
as long as the expected memory usage is above the given constraint. When the given
mesh is small enough to satisfy memory requirement it is tetrahedralized. Since our
algorithm does not guarantee satisfying Delaunay property for every tetrahedron,
it is a near Delaunay tetrahedralization algorithm. Yet, this approximation may be
reasonable for applications such as tetrahedralizations as acceleration structures for
Ray Tracing [4]. In their paper, Lagae and Dutré show that if tetrahedralization
algorithms that are used in ray tracing relax the Delaunay criterion, the construction
time decreases but the rendering time increases. Hence, our algorithm offers a trade-
off between these two timings.

2 Related Works

There are many triangulation algorithms in the literature. However, these algorithms
cannot tetrahedralize large models that do not fit into the memory in a constrained
fashion.

Smolik and Skala put forth a divide-and-conquer tetrahedralization algorithm
that works both in CPU and GPU [6]. They also develop an out-of-core version
of their algorithm and observe a decrease in memory usage, thereby being able to
tetrahedralize large objects with the same available memory. Yet, their algorithm
is not a constrained tetrahedralization. They divide the input point cloud into a 3D
grid and simultaneously tetrahedralize each grid cell and finally merge the cells.
Our approach is different because we, before all, have developed a constrained
tetrahedralization algorithm. Yet, dividing the object into grids may not be possible
for constrained tetrahedralization because triangles should not extend to more than
one grid cell, which is not possible with their algorithm. Hence, we divide the object
into two at any time instead of dividing it into many small pieces.

Cignoni et al. propose a divide-and-conquer algorithm to triangulate meshes
of any dimension [3]. However, they do not describe an out-of-core extension of

Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 115

their algorithms. Besides, their algorithm is not a constrained tetrahedralization
algorithm. Our divide-and-conquer algorithm differs from DeWall in the non-
recursive part. Their algorithm applies a merge step before recurring. In this
early-merge step, their algorithm uses a dividing plane, and by selecting the
closest vertices at either side of this plane, it creates an initial tetrahedralization.
Specifically, they choose these vertices so that the generated tetrahedra has the
smallest circumsphere radius to satisfy the Delaunay criterion. Therefore, at this
step, all the tetrahedra generated intersects that virtual plane. Then, it applies the
same recursively for the other two sides. Our method is different from theirs in
the sense that we do not select an area to be initially tetrahedralized; we just cut the
mesh into two and tetrahedralize the parts. DeWall performs three tetrahedralization
operations at each recursive step, one for around the plane, one for the left, and one
for the right side. However, we only tetrahedralize left and right without allocation a
middle region to be tetrahedralized. This approach comes with a cost for us because
we do not have a middle-region like DeWall. Hence, we cannot guarantee that the
Delaunay criterion is satisfied for the tetrahedra around the cutting plane.

Blelloch et al. [1] present a parallel Delaunay triangulation algorithm. Their
algorithm uses the divide-and-conquer paradigm like ours. They utilize parallelism
at the pre-recursive step to reduce the overall run-time cost. They experimented on
various point distributions and observed significant improvements. Our algorithm
is different because ours is a constrained triangulation algorithm that takes into
account not only the input points but also the input triangles. Besides, while we
aim to reduce the memory usage by compromising run-time, Blelloch et al. want to
improve the run-time performance. Since they introduce parallelism, they need to
include new data structures, which require an extra set of data stored in the main
memory. Therefore, developing a parallel algorithm might defy our purpose of
creating a memory-efficient algorithm.

Si developed a constrained Delaunay tetrahedralization algorithm [5]. This
algorithm is both fast and robust. However, it requires a significant amount of
memory for the tetrahedralization process because it is not an out-of-core algorithm.
We compare our algorithm to TetGen because our algorithm depends, at its core, on
it. We aim to create a memory-efficient version of TetGen to tetrahedralize large
meshes that do not fit into the memory by applying an out-of-core approach on top
of it.

3 Algorithm

3.1 Overview

Our algorithm is an out-of-core divide-and-conquer algorithm for constrained
tetrahedralization. It, at its core, makes use of the TetGen software [5]. Our
algorithm divides the input mesh into two as long as the memory is not enough

116 Z. Erkoç et al.

Algorithm 1 Our algorithm
1: procedure TETRA(vertices, faces)
2: if CALCULATE_EXPECTED_MEMORY(vertex_count) ≤ memory_limit then
3: TETGEN(vertices, faces)
4: else
5: left_vertices, left_triangles, right_vertices, right_triangles
6: = CLIP(vertices, faces)
7: left_mesh_file = TETRA(left_vertices, left_triangles)
8: right_mesh_file = TETRA(right_vertices, right_triangles)
9: output_mesh_file = MERGE(left_mesh_file, right_mesh_file)

10: return output_mesh_file
11: end if
12: end procedure

for it. We calculate the expected memory usage using linear regression. If the
mesh fits into the memory, then we use TetGen with the mesh as input to generate
the tetrahedral mesh. Otherwise, we divide the mesh into two pieces by a plane
passing through the mean of the most variant axis. We then recursively apply the
same procedure to the two parts. When the tetrahedralizations of the parts are
complete, we merge these tetrahedral meshes into one tetrahedral mesh as the last
step. Algorithm 1 provides thee pseudo-code of the algorithm.

Further, our algorithm can generate a bounding box for the input object so that
the space around the object can be tetrahedralized, which is especially convenient
for Ray Tracing accelerators.

3.2 Expected Memory Calculation

We observe the memory consumption of TetGen with several models and generated
a linear regression model to predict the memory consumption of an input object.
The first two columns of Table 1 show the vertex count of each object and the real

Table 1 Memory requirement observations for TetGen in Megabytes (MB). We provide the actual
memory requirements and the estimated values for various models of different vertex counts using
our linear regression model

Vertex count Actual memory requirement Expected memory requirement

1440 7.03 9.70

2880 13.97 16.28

34,560 167.67 161.04

112,220 514.80 515.91

172,971 792.97 793.51

Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 117

memory usage when that object is tetrahedralized. We set up a linear regression
model using this data and we ended up with the following equation:

y = 4.57 × 10−3X + 3.12,

where y is the expected memory requirement in Megabytes (MB), and X is the
number of vertices of the input mesh. In the table, the last column corresponds to
the expected memory requirement calculated using the above equation.

3.3 Subdivision Stage

To decrease the problem size, the input mesh must be divide into two pieces at
each recursion level. We are dividing the input using the plane that passes through
the mean of the most variant axis. Dividing the object requires a significant effort
because after the division the cut surfaces of each object must match so that the
resulting tetrahedral mesh of each side matches. Matching triangles will guarantee
a match in the resulting tetrahedral mesh because we are applying constrained
tetrahedralization.

To this end, we use the clip function of CGAL [7]. It takes input mesh and a
plane as input, and slices the mesh using the plane and returns the positive side. It
also allows us to triangulate the open-surface. We use it the following way: we first
clip the object and get the surface triangulation. Then, for the second half, we again
clip the object but not triangulate the surface. Instead, we just copy the triangulation
of the first part and paste it to the second part. In that way, we guarantee that the
triangulation at both sides will match. However, copy-pasting may lead to duplicate
vertices and open borders. Therefore, we propose a repairing algorithm to eliminate
these defects.

The way we clip the object prevents the tetrahedra near the clipping plane to
breach the Delaunay criterion. This is because after each part is tetrahedralized
we cannot guarantee that the circumsphere of the tetrahedra around the plane will
contain points from the other side. Since while one half is tetrahedralized the other
half is not considered, the Delaunay criterion might be violated. Yet, the magnitude
of the violation depends on the number of tetrahedra around the plane and the
number of times the object is divided. While choosing the plane, we make sure that
the most variant axis is chosen, to also decrease the number of tetrahedra around the
plane.

3.4 Repairing Stage

We introduce steps that we apply to eliminate defects in the meshes produced during
the subdivision stage. Two defects that may arise during the clipping stage are

118 Z. Erkoç et al.

overlapping vertices and overlapping edges. Specifically, both problems occur
because of copying the triangulation of the left side and pasting it to the right side.
Faces cannot overlap because we copy the triangles generated for the left side to the
open-boundary of the right side.

Overlapping vertices occur because when we copy the triangulation, the vertices
of the left surface triangulation might coincide with the border vertices of the right
mesh. We can repair overlapping vertices by iterating through all of the triangles
around the dividing plane and checking if any of its vertices have any duplicates.
If this is the case, we keep only one of the vertex and ignore the other one.

Edges may overlap after copying the triangulation from one side to the other.
When a vertex from the left side does not have the corresponding vertex at the right
side; then, this vertex would coincide with one of the edges of the right side. The clip
function does not insert the same vertices to both sides, which causes this problem.

Figure 1a shows an example of overlapping edges. There are three triangles:
ABC, BED, and DEC. Here ABC is an existing triangle of the mesh, but during
the clipping operation, we can add the other two faces so that two halves match as
described above. The problem here is the edge BC overlaps both the edges BD and
DC. To fix this, we form triangles ABD and ADC and remove ABC (see Fig. 1b).
We repair only the right side because we copy the triangles of the left side over the
right side. Hence, only the topology of the right side is disturbed.

We repair overlapping edges as follows. We iterate over all edges in the right
mesh that are close to the dividing plane. For each face in this region, we iterate over
all of the vertices of the mesh on the right. If the edge contains a vertex between its
terminal points, it means that this vertex is leading to an overlapping edge. We make
use of the point-line segment distance to find the overlapping between a vertex and
edge. Afterward, the triangle containing this edge is fixed, as shown in Fig. 1.

Fig. 1 Handling overlapping edges. (a) Overlapping edges. (b) After repairing overlapping edges

Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 119

Algorithm 2 Merge procedure
procedure MERGE(left_mesh_file, right_mesh_file)

Concatenate vertices and tets
CONCATENATE_VERTICES(left_mesh_file, right_mesh_file, output_mesh_file)
CONCATENATE_TETS(left_mesh_file, right_mesh_file,output_mesh_file)
Find missing neighbors
left_centroids = GET_CENTROIDS(left_mesh_file)
left_centroids_grid = GENERATE_GRID(left_centroids)
right_centroids = GET_CENTROIDS(right_mesh_file)

for each right_centroid ∈ right_centroids do
if right_centroid ∈ left_centroids_grid then

ADD_NEIGHBOUR(right_tet, left_tet, output_mesh_file)
end if

end for
return output_mesh_file

end procedure

3.5 Merging Stage

The merge step is another non-trivial step for our algorithm because it is the place
where we finally produce the resulting tetrahedral mesh. In the merge step, we first
merge two tetrahedral meshes into one mesh as depicted in Algorithm 2. That step
simply involves concatenating two text files. Secondly, we also extract neighbor
relations between tetrahedra. In the end, we generate a final output_mesh_file
consisting of vertex locations, tetrahedra, and neighborhood information between
tetrahedra. We put a non-trivial effort to find neighborhood information across the
two pieces of the object after subdivision. After we cut the object into two pieces
and tetrahedralize each piece, the neighbor relations around the cut faces are missing
and we find those as well.

3.5.1 Spatial Hashing

We use three-dimensional Spatial Hashing. Specifically, the dimensions of the hash
grid we have used are 50 × 50 × 50 corresponding to 125,000 cells. We begin by
putting the centroid of faces of the left piece that coincide with the cut plane, into the
3D grid. Then, we iterate over the faces of the right piece and find if their centroids
match any of the centroids of the left piece by finding the corresponding cell and
iterating through the centroids inside of it. If there is a match, it means that two
tetrahedra share a common triangle and they must be neighbors. Then, we save this
new neighborhood information.

120 Z. Erkoç et al.

3.5.2 Merging Time Complexity

Let VL, VR be the number of vertices, FL, FR be the number of faces and TL,
TR be the number of tetrahedra of left and right pieces. Merging files will
take θ(VL + VR + TL + TR) time. The time complexity of finding missing
neighbour relations through Spatial Hashing will take θ(FL +FR) time on average.
Specifically, we, first, iterate through all faces of left piece to putting the centroids
in the grid taking θ(FL) time. Then, we iterate through all faces in the right piece,
θ(FR) time, and for each face we search the centroid inside the grid which takes
θ(1) time thanks to hash structure. Hence, overall, it takes θ(FR) ∗ θ(1) = θ(FR)

time. As a result, overall time complexity of, merge step is θ(VL +VR +TL +TR +
FL + FR). The time complexity function can be further simplified using the fact
that V <= 3 ∗ F and V <= 4 ∗ T to end up with θ(VL + VR).

4 Experimental Results

4.1 Runtime and Memory Results

In this section, we present the results of constrained tetrahedralization of several
objects using both our algorithm and TetGen to provide the statistics of memory
consumption and execution times. Our algorithm performs differently based on the
intersection of the cutting plane with any object in the input mesh. If the plane
touches an object, then our algorithm will run a repairing procedure. Otherwise,
it skips the repairing procedure. We conduct the experiments on a high-end
computer with an Intel Xeon E5-2620 2.10 GHz processor and 64 GB of RAM.
In the experiments, for simplicity, we divide the input mesh into two parts but not
further. For each experiment, we monitor the Windows Task Manager and record
the peak memory usage. Hence, we report the physical memory usage.

Table 2 shows the statistics of computation time and memory consumption where
each row contains the results of the experiment specified in the first column. We
provide details about each experiment in the sequel.

Experiment 1: In that scene, because the plane that divides the scene into two
halves intersects the armadillo, we apply the time-costly repairing step. This scene
can be tetrahedralized with both methods. Figure 2a shows the resulting mesh.

Experiment 2: In this experiment, we encapsulate the armadillo with a bounding
box so that the space around the armadillo can be tetrahedralized. This experiment
also requires a repair step because the plane intersects the bounding box. Figure 2b
shows the resulting mesh where the armadillo is at the center of the bounding box.

Experiments 3, 4, and 5: In these three experiments, the plane does not intersect
any object, and hence the repairing stage is not applied. Consequently, both methods
can tetrahedralize this scene. Figure 2c–e show the resulting mesh for Experiments
3, 4, and 5, respectively.

Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 121

Table 2 Experimental results on the computer with Intel Xeon E5-2620 2.10 GHz processor and
64 GB of RAM. Execution time is in seconds (s) and the memory usage is in Megabytes (MB)

Experiment No. No. TetGen Ours

no. vertices faces Time Memory Time Memory

1 172,969 345,938 37.26 850 429.44 483

2 172,969 345,938 66.54 947 456.67 564

3 345,938 691,876 43.96 1 700 138.20 922

4 1,346,688 2,693,376 294.93 6605 727.89 3584

5 1,704,146 3,408,292 380.74 8359 642.10 4537

6 17,682,248 35,364,496 91,101.46 53,160 7047.26 46,614

7 27,164,160 54,328,320 N/A N/A 22,221.27 58,964

(a) (b) (c)

(d) (e)

Fig. 2 Generated tetrahedral meshes. (a) Experiment 1. (b) Experiment 2. (c) Experiment 3.
(d) Experiment 4. (e) Experiment 5

Experiment 6: This experiment takes around 117 min and consumes 47 GB
of RAM with our algorithm. On the other hand, TetGen tetrahedralizes in 25 h
using around 53 GB of memory. TetGen frequently make use of virtual memory to
complete its task. Memory footprint shows that its virtual memory usage goes up to
90 GB (out of 130 GB). Yet, this requires an abundance of disk accesses that slows
down the process. We observe that TetGen made around 200 page-faults per second,
which is the main reason for the slowdown.

122 Z. Erkoç et al.

Experiment 7: This experiment takes around 6 h and consumes around 59 GB
of RAM with our algorithm. Yet, TetGen cannot successfully tetrahedralize after 4
days of execution and force the computer to restart. TetGen uses almost all of the
physical memory and consumes all of the 130 GB of virtual memory, which still is
not sufficient for its execution. Hence, it cannot achieve to complete the task.

In our experiments, we observe that our method can tetrahedralize using less
memory than TetGen. In some experiments, TetGen either takes more time to
complete than ours or cannot complete its execution at all. TetGen continuously
allocates memory as much as it needs without considering the availability. Hence,
the operating system consistently provides it with memory as long as it fits into
physical and virtual memory. There are two memory thresholds for TetGen. These
are available physical and virtual memories. When these memories are sufficient,
TetGen runs fast, as expected. If the physical memory is exhausted, the operating
system allocates from virtual memory. In this case, TetGen starts making page faults
because its working set cannot fit into physical memory. It directs a large portion
of memory accesses to disk, which slows down TetGen. Finally, if the memory
requirement of TetGen exceeds even the virtual memory, then the operating system
can no longer provide memory to the TetGen, and the computer freezes and restarts
itself. This phenomenon happens because TetGen lacks a mechanism to track the
expected memory usage and readjust itself to stay below the memory threshold,
whereas our algorithm has this mechanism.

4.2 Quality Results

In this section, we present results on the quality of the tetrahedra generated by our
algorithm by comparing it with the results of TetGen. We use the aspect ratio
metric used to measure the quality of tetrahedron in TetGen [5]. We calculate
this metric by dividing the longest edge by the smallest height. A low aspect ratio
implies high-quality tetrahedralization. As seen in Table 3, the average tetrahedron
quality of TetGen is higher than our method in all cases. In torus knot, the result
of TetGen is around three times better than ours, while in Armadillo, it is 1.76
times, and in Neptune, 1.48 times better on the average. Although our algorithm
could generate better quality tetrahedra for Armadillo and Neptune according to the

Table 3 Experimental results on the quality of the tetrahedral mesh based on the aspect ratio
metric

Model No. No. TetGen Ours

name vertices faces Min. Max. Ave. Min. Max. Ave.

Torus knot 1440 2880 1.90 125.74 7.52 2.01 10,365.34 22.20

Neptune 112,224 224,448 1.30 536.49 8.72 1.28 250,088.04 12.92

Armadillo 172,969 345,938 1.30 262,232.06 7.31 1.27 260,203.69 12.84

Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 123

minimum aspect ratios, overall, our tetrahedral meshes seem to be of worse quality.
We expect this quality degradation because of the increase in the surface area of the
object and the number of tetrahedra on the surface as we divide the point cloud into
two parts. The circumspheres of these tetrahedra might extend outside the object
boundary because it will not contain any point, thereby satisfying the Delaunay
criterion. Hence, the quality of these tetrahedra might be reduced without breaching
the constrained Delaunay criterion (see [2] for constrained Delaunay criterion).

5 Discussion and Future Work

We propose an out-of-core constrained tetrahedralization algorithm for tetrahedral-
izing large three-dimensional scenes. We have shown that our algorithm uses the
memory more efficiently than TetGen and can tetrahedralize meshes that TetGen is
unable to do because of insufficient memory. In essence, TetGen does not aim to use
memory efficiently. Its main goal is computational efficiency. Therefore, TetGen
tetrahedralizes meshes faster than our method if the main memory is sufficient. Our
algorithm uses a divide-and-conquer approach and TetGen. In this way, we could
create a memory-optimized version of TetGen by compromising the execution time.

Our algorithm divides the scene into two halves at each step, tetrahedralizes
them, and finally merges them into a single tetrahedral mesh. Yet, our algorithm
does not guarantee that the tetrahedra around the cut region satisfy the Delaunay
criterion. In other words, the circumspheres of some tetrahedra around the cut
region might contain vertices of other tetrahedra. In fact, we observed that the
overall quality of the tetrahedral meshes generated by our algorithm is lower than
TetGen. Hence, We are looking forward to adding a refinement process to satisfy the
Delaunay criterion around the division region. When we add this step, tetrahedral
mesh construction time will be longer, but the quality of the tetrahedra around the
cut region will increase.

Although we use TetGen to apply constrained tetrahedralization, the clip proce-
dure may introduce new vertices and faces on the objects in the scene where they
intersect the plane. Nevertheless, it only divides a face into smaller parts, and hence
the faces on the final tetrahedral mesh cover the input triangle soup.

Our algorithm works faster if the dividing plane does not intersect with any
of the objects. If the dividing plane intersects the objects in the input mesh, the
tetrahedralization requires costly repairing operation. If we choose the dividing
plane carefully, we can tetrahedralize the mesh faster. Hence, a better dividing plane
finding algorithm would be employed to avoid the intersection of the dividing plane
with the objects in the scene. The dividing plane does not need to be planar; it could
be an arbitrary polynomial surface or a curved surface.

Currently, our algorithm does not take the mesh density into account. Its
performance in the case of a mesh with high varying density is dependent on the
behavior of TetGen. A possible extension to tetrahedralize meshes of highly varying

124 Z. Erkoç et al.

density is to take the mesh density function as input and balance the partitions during
the subdivision stage in terms of mesh density.

Acknowledgments This research is supported by The Scientific and Technological Research
Council of Turkey (TÜBİTAK) under Grant No. 117E881.

References

1. Blelloch, G.E., Miller, G.L., Talmor, D.: Developing a practical projection-based parallel
Delaunay algorithm. In: Proceedings of the 12th Annual Symposium on Computational
Geometry, SCG ’96, pp. 186–195. ACM, New York (1996)

2. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)
3. Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay

triangulation algorithm in Ed . Comput.-Aided Des. 30(5), 333–341 (1998)
4. Lagae, A., Dutré, P.: Accelerating ray tracing using constrained tetrahedralizations. Comput.

Graph. Forum 27(4), 1303–1312 (2008)
5. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw.

41(2), 1–36 (2015)
6. Smolik, M., Skala, V.: Fast parallel triangulation algorithm of large data sets in E2 and E3 for

in-core and out-core memory processing. In: Proceedings of the International Conference on
Computational Science and Its Applications, ICCSA ’14, pp. 301–314. Springer, Berlin (2014)

7. The CGAL Project: CGAL User and Reference Manual, 5.0.2 edn. (2020). https://doc.cgal.org/
5.0.2/Manual/packages.html

8. Woop, S., Schmittler, J., Slusallek, P.: RPU: a programmable ray processing unit for realtime
ray tracing. ACM Trans. Graph. 24(3), 434–444 (2005)

