
Ray-traced Shell Traversal of Tetrahedral Meshes for
Direct Volume Visualization

Alper Sahistan*

Bilkent University
Serkan Demirci
Bilkent University

Nathan Morrical
University of Utah

Stefan Zellmann
University of Cologne

Aytek Aman
Bilkent University

Ingo Wald
NVIDIA Corporation

Uğur Güdükbay
Bilkent University

(a) (b) (c) (d)

Figure 1: Renderings with secondary effects obtained with the proposed approach on an NVIDIA RTX 8000 GPU: (a) Plasma64
dataset rendered at 46.6 frames per second (fps). (b) Jets dataset rendered at 48.5 fps. (c) Fusion dataset rendered at 13.9 fps. (d)
Agulhas dataset rendered at 5.6 fps.

ABSTRACT

A well-known method for rendering unstructured volumetric data is
tetrahedral marching (tet marching), where rays are marched through
a series of tetrahedral elements. However, existing tet marching
techniques do not easily generalize to rays with arbitrary origin
and direction required for advanced shading effects or non-convex
meshes. Additionally, the memory footprint of these methods may
exceed GPU memory limits. Interactive performance and high im-
age quality are opposing goals. Our approach significantly lowers
the burden to render unstructured datasets with high image fidelity
while maintaining real-time and interactive performance even for
large datasets. To this end, we leverage hardware-accelerated ray
tracing to find entry and exit faces for a given ray into a volume
and utilize a compact mesh representation to enable the efficient
marching of arbitrary rays, thus allowing for advanced shading ef-
fects that ultimately yields more convincing and grounded images.
Our approach is also robust, supporting both convex and non-convex
unstructured meshes. We show that our method achieves interactive
rates even with moderately-sized datasets while secondary effects
are applied.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Scientific visualization; Computing
methodologies—Computer Graphics—Rendering—Ray Tracing

1 INTRODUCTION

One of the most common techniques to render scientific datasets is
direct volume rendering (DVR). Direct volume rendering is usually
performed using ray traversal, which allows for evaluating advanced
shading effects such as ambient occlusion or single or multiple
scattering. The long-established methods for unstructured meshes;
however, often use a rasterization framework to initiate and per-

*e-mail:alper.sahistan@bilkent.edu.tr

form raymarching and thus do not allow for simple integration of
these effects. A well-known method for unstructured meshes is
ray-marching via connectivity information, where each ray samples
and integrates the opacity and color information for each cell they
pass through. DVR techniques that can render unstructured volumes
come with their own challenges. We aim to tackle these challenges
while avoiding the shortcomings of raster-based approaches.

Unstructured volume traversal via face connectivity information
is often met with challenging limitations like high memory usage
and robustness issues. These issues usually hinder performance
or exceed the memory limitations of modern GPUs. We address
these challenges for non-raster frameworks using compact memory
layouts and robust ray-tetrahedron intersection methods.

To further improve visualization quality and perception, we trace
arbitrary rays to apply visual effects such as ambient occlusion, shad-
ows, shading, and border contours (see Fig. 1). These effects usually
require tracing secondary rays, cast after primary rays interact with
the scene geometry. Unlike camera rays, these secondary rays are
arbitrary; achieving these effects in raster-based pipelines is chal-
lenging [10]. In addition, existing solutions usually include extra
raster passes, hindering interactive performance.

We propose a novel approach to ray-marching unstructured
meshes that combine three main improvements:

• a compact, cache- and GPU-friendly memory layout that facil-
itates fast ray-tetrahedra intersection and efficient tetrahedra-
to-tetrahedra traversal,

• the ability to handle arbitrary, non-common-origin rays as
required for secondary effects like ray-traced reflections, shad-
ows, or ambient occlusion, and

• the ability to efficiently handle convex and non-convex datasets,
datasets with holes, curves, and discontinuities.

2 RELATED WORK

Several research works have recently proposed to exploit RTX hard-
ware for DVR [14, 20, 23, 24]. Wald et al. [23] use RTX BVHs
for point location in unstructured tetrahedral meshes, at the cost of
considerable memory consumption. The authors used these point

91

2021 IEEE Visualization Conference (VIS)

978-1-6654-3335-8/21/$31.00 ©2021 IEEE
DOI 10.1109/VIS49827.2021.00026

location kernels to accelerate a sampling-based ray marcher for tet
meshes. This work was later extended by Morrical et al. [15] to sup-
port other cell types than tetrahedra. In contrast to these approaches,
we use BVHs for just the exterior (shell) faces of tetrahedral vol-
umes. Our work is orthogonal to that by Muigg et al. [16], which is
tailored to the rasterization pipeline. They first subdivide the volume
into bricks using a kd-tree and then render these in front-to-back
order. Then they perform a depth peeling step where each brick’s
entry and exit faces are determined. In contrast to theirs, our method
allows us to trace secondary rays whose origin and direction are
different from those of viewing rays.

When raymarching through tetrahedral volumes, we need to de-
termine the next tetrahedron at every step. Several methods have
been proposed to accomplish that [1,7–9]. Our work is based on that
by Aman et al. [1] who proposed highly optimized memory layouts
to improve marching performance and reduce memory consumption.
Their method is based on projecting tetrahedra vertices into a 2-D
ray-centric coordinate system to reduce instruction count. We extend
their raymarching algorithm to support DVR.

3 METHOD OVERVIEW

In order to support high-quality DVR, we need to be able to a) find
entry faces and their associated tetrahedra, and b) to efficiently
march from one tetrahedron to the next, a method we call tetrahedra
marching, or tet marching. The process of finding entry and exit
faces on what we call the shell (the triangle mesh induced by the
generally non-convex hull of the tet mesh) we accelerate using an
OptiX bounding volume hierarchy (BVH) [11] (the shell-BVH).
Traditional raster-based approaches like the one by Muigg et al. [16]
use multiple passes for finding entry faces. Here, each pixel is
assigned the tetrahedron ID where marching starts. While powerful,
these approaches do not easily extend to non-convex meshes and
only allow for common-origin projection. This work demonstrates
how we can address these shortcomings by using a dedicated ray-
tracing framework like OptiX. These adjustments allow for arbitrary
ray / tet-mesh intersections and thus for high-quality ray-traced
shading effects that, to our knowledge, have not been demonstrated
in a tetrahedra marching framework before.

Efficient tetrahedra marching relies on the principle of ray-
connectivity between elements. In this work, all primitives are
tetrahedra, which are occasionally derived by tetrahedralizing higher-
dimensional elements. Ray-connectivity implies that each tetrahe-
dron neighbors another tetrahedron if they share one of their four
faces, which makes up a continuous path of tetrahedra on a ray
segment. If a face does not connect two tetrahedra, this makes that
face a shell-face by definition. The tetrahedra marching method
operates between these shared faces where rays go face to face until
they reach an opaque region or a termination condition is met.

Our marchers are optimized to reduce memory accesses, cache
misses, and arithmetic complexity. We exploit the fact that each
tetrahedron shares three vertices with a neighbor to minimize mem-
ory access. Furthermore, we use a specialized 2-D projection to
reduce arithmetic complexity. Furthermore, our memory scheme
stores, sorts, and compresses neighborhood and vertex information.

4 SHELL-TO-SHELL TRAVERSAL

The shell-BVH is just an ordinary BVH of triangles that we realize
using the OptiX framework to leverage hardware acceleration for
triangle geometry. The OptiX API requires us to specify the shell
triangles as one list of triangle vertices and another list of triangle
indices. Memory-wise those lists come on top of the already stored
tetrahedron data structures as proposed in Sect. 5.1. For the indices,
we use int4’s so that we can store, in addition to the triangle indices,
the index of the tetrahedron that this triangle is associated with and
that we use as an entry point for tet marching (see Sect. 5)

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

Figure 2: Shell-to-shell traversal in 2-D. Left: a non-convex tetrahe-
dral volume with the shells in purple. Right: Example path where I)
is the viewing ray. II) is a ray (blue) we cast backward to find the
entry shell-face of the current volume segment. III) takes us to the
next segment after tet marching the first segment completed. Finally,
IV) is again cast to find the entry face and V) is cast to find the exit
face for the second volume segment.

To initiate tet marching, we first need to find an entry face on the
shell. This is simple if the entry face is in front of the ray origin but
more involved when we start marching inside the volume and the
entry face is behind the ray origin. We, therefore, generally first find
the exit face by tracing a ray against the shell BVH, but with front
face culling activated. We then trace another ray in the opposite
direction, starting at the point of intersection with the exit face, to
find the entry face. We march through the segment—potentially
using early ray termination if the ray is used to compute radiance
and then exit altogether. We then extend the ray and repeat that until
all segments were processed. The process is illustrated in Fig. 2 and
in Alg. 1, which we realized using an OptiX RayGen program [12].

Algorithm 1 Shell-to-shell traversal.

1: procedure SHELL2SHELLTRAVERSAL(ray, shells, tetMesh)
2: Cdst← (0,0,0) � final color
3: α ← 0 � opacity
4: while α < 1 do
5: payload← traceRay(ray, shells, CULLFRONT)
6: if payload.hit then
7: bRay.origin← payload.hitPoint � backwards ray
8: bRay.direction←−ray.direction
9: bPayload← traceRay(bRay, shells,CULLFRONT)

10: v id0,...,2← bPayload.face0,...,2 � face vert. ids
11: Idtet← Payload.face3 � entry tet. id
12: Cvol,αvol←

marchVolume(ray, v id0,...,2, Idtet, tetMesh)
13: Cdst+=Cvol ×αvol × (1−α)
14: α+= (1−α)×αvol
15: ray.origin← bRay.origin
16: else � Nothing left to hit
17: Cdst+=Cmiss× (1−α)
18: break

5 EFFICIENT TETRAHEDRA MARCHING

We propose volume rendering variants of three memory layouts,
Tet32, Tet20, and Tet16, with their marching algorithms, originally
proposed by [1]. In the proposed structures, we store vertices in
a separate list along with scalars. These layouts aim to reduce the
memory footprint of the method while sustaining fast traversal times.
We modify their traversal algorithm to approximate the volume
rendering equation [5] and to work as a RayGen [12]. Furthermore,
we extend the algorithm to trace arbitrary rays inside the tetrahedral
mesh, allowing us to achieve advanced effects.

5.1 Memory Layouts
The tetrahedron representations that we use [1] have an exclusive-
or-sum (xor-sum) field in common. This field, called vx in Fig. 3,
allows us to reduce memory requirements, similar to [18] and [13].
We calculate the xor-sum as vxi = vi

0⊕vi
1⊕vi

2⊕vi
3. Since a⊕a = 0

we can obtain a vertex index from vxi given we know the other three.

92

In addition to the xor field, the structures contain up to three vertex
and four neighbor indices, denoted as vi and n j, respectively.

struct Tet32{

int3 v;

int vx;

int4 n; };

struct Tet20{

int vx;

int4 n; };

struct Tet16{

int vx;

int3 nx; };

Figure 3: Tetrahedra memory layouts: each integer is four bytes.
Tet32, Tet20, and Tet16 occupy 32, 20, and 16 bytes, respectively.

Tet32 layout stores all connectivity information, i.e., we use four
neighbors of the tetrahedron along with three vertices and the xor

field to obtain the 4th vertex. Tet20 layout stores all connectivity
information for a tetrahedron, i.e., four of its neighbors along with
the xor field. Because neighboring tetrahedra share three vertices
during tetrahedra marching, we obtain the unshared vertex of the
adjacent tetrahedron using the xor field. On top of that, in Tet16
representation, instead of storing the indices of the neighboring
tetrahedra, we keep values that can reconstruct indices along with
the xor field. We pre-compute these fields as nxi

j = ni
j⊕ni

3 where

j ∈ {0,1,2} and i is tetrahedron index.

5.2 Marching Algorithms
Aman et al. [1] assume that the camera is inside the volume; they
use a “source tetrahedron” to start traversal. While this assumption
is valid in their case, this is, in general, only true for DVR if the
camera is inside the mesh. Instead, we utilize the tetrahedron index
information explained in Sect. 4 to compute entry and exit faces, thus
initializing marching. Due to our compaction, without a tetrahedron
index or a source tetrahedron, tet marching cannot be initiated.

Another critical component is the intersection tests that determine
the tetrahedron to traverse next. We adopt the point projection on a
specialized basis method proposed by Aman et al. [1] where points
are projected to a 2-D ray centric space whose origin coincides with
the ray origin and whose z-axis is the ray’s direction vector. We start
marching by obtaining the missing vertex index using the xor (⊕)
field of the current tetrahedron. At each step, we get new vertices
using the xor field and perform front-to-back color compositing. The
accumulated opacity is obtained through Beer’s Law [5, 6, 19]. We
use early ray termination with a threshold of 98%.

Each memory layout given in Sect. 5.1 comes with its marching al-
gorithm, which shares the same skeleton. The differences come from
unwrapping the applied compaction schemes. Alg. 2 summarizes
the marching procedure for volume rendering. Algs. 1 and 2 can be
generalized by changing the return types and sampling function.

Algorithm 2 Tetrahedra marching. v id is the vertex index list for
the current tetrahedron, index is the tetrahedron index and tetMesh
is a list of tetrahedra, represented with one of Tet32, Tet20, or Tet16.

1: procedure MARCHVOLUME(ray, v id0,...,2, index, tetMesh)
2: Cvol,α ← (0,0,0), 0
3: v id3← tetMeshindex.VX⊕ v id0⊕ v id1⊕ v id2 � 3rd v id
4: V ′0,...,3← projectToBasis(Vertv id0,...,3) � points in ray-space

5: exitFaceId← GetExitFace(V ′0,...,3)
6: while index �=−1 AND α < 1 do
7: Cvol,α ← sample(V ′0,...,3, . . .v id0,...,3)

8: index←marchToNextTet(V ′0,...,3,exitFaceId, tetMeshindex)

9: v idexitFaceId← v id3

10: V ′exitFaceId←V ′3
11: v id3← tetMeshindex.VX⊕ v id0‘⊕ v id1⊕ v id2)
12: V ′3← projectToBasis(Vertv id3

) � project new point

13: exitFaceId← GetExitFace(V ′0,...,3)

14: return Cvol ,α

In order to connect to the next tetrahedron with Tet32, we deter-
mine which neighbor is behind the exit face based on the rank of the
exit face’s index in the current tetrahedron’s vertex index list. For
instance, let the exit face index be 42 and let the current tetrahedron’s
vertex indices be {32,20,42,10}. Then, the algorithm will pick the
third neighbor index because 42 is the third in the list.

The Tet20 representation does not explicitly store vertex indices.
Initially, we sort each neighbor index using its corresponding vertex
index, i.e., a vertex that does not share an edge with that tetrahedron.

During marching, to get the next tetrahedron, we pick nth neighbor
stored at the current tetrahedron where n is the sorted order of the
last vertex index. For instance, let the current tetrahedron’s vertex
indices be {20,10,42,32}. Then algorithm picks the rank of the last
vertex index as the next neighbor to be visited. When sorted, 32 falls
into third place; hence, the third neighbor’s index is picked.

Marching to the next tetrahedron for the Tet16 representation is
a bit more complicated since it inherits Tet20’s compaction steps
and also reduces neighborhood information. During traversal, unlike
Tet20, we also keep the index of the previous tetrahedron. In this
way, we can extract the next tetrahedron index from the nx fields
solving n j = nx j⊕n3 where j is the exit face index.

6 INCREASING RENDERING QUALITY

We describe how to implement several effects to achieve high-quality
shading by tracing secondary rays. Using our marching algorithms
that support traversal from arbitrary locations and in random direc-
tions, secondary rays naturally integrate with our framework.

6.1 Gradient Calculation
Gradients are commonly used as surface normals for local shading.
As our method supports traversal starting at arbitrary origins, central-
difference gradients [3, 5, 21] can be computed by marching six rays
in orthogonal directions starting at the sample position, giving us
accurate, high-quality gradients even if the gradient sample positions
Δx fall outside the tetrahedron that the current sample is inside. As
this exact method is relatively costly, we restrict that to high-density
regions (above 80%). Our marchers can, however, only stop at tet
faces and not at arbitrary positions, whereas the gradient sample
positions will generally fall somewhere in-between. While we could
imagine using a more exact scheme or an interpolation method as
proposed by Shirley and Tuchman [17], we found it acceptable
in practice to evaluate the gradients at the position Δx′ where the
marcher stops and then divides the sample value by Δx′. Gradient
shading with the Phong model is demonstrated in Fig. 4 and Fig. 5.

(a) (b)

Figure 4: Gradient-shaded depth cues: (a) Jets dataset with shading
off (left) and on (right) (113.3 fps vs. 70.45 fps). (b) Fusion dataset
with shading off (left) and on (right) (87.3 fps vs. 12.2 fps).

6.2 Volumetric Shadows
Another way to improve depth perception is by rendering shadows
that involve tracing arbitrary rays, thus allowing volumes to cast
shadows on surfaces. To calculate the radiance that reaches a certain
point, we cast a shadow ray from that point using shell-BVH. If
the shadow ray hits a volume shell, we start tetrahedra marching to

93

Figure 5: The Impact dataset. Left: with emission and absorption.
Right: with gradients.

accumulate transmittance. Termination conditions and traversal are
the same as Alg. 2.

Marching needs to be initiated from a shell-face. If a volume and
surface mesh intersect, we cannot simply start from the tetrahedron
containing the incident point. Because we are only interested in the
transmittance and not in the radiance emitted from the volume, the
order of tetrahedra on the shadow ray’s path does not matter. Instead
of marching in the direction of the shadow ray, we go backward,
starting from the closest back-facing shell. If the light source lies
inside the volume, we start accumulating transmittance after passing
through the light’s position. Fig. 6 (c) displays this effect.

6.3 Ambient Occlusion
Ambient occlusion (AO) can help even more with depth perception
and overall rendering quality. We use the standard ray traced AO
method, for example, proposed in [2,4]. Tracing the required shadow
rays is technically very similar to tracing rays towards point light
sources located at a distance of r. We compute AO by averaging N
hemisphere samples, the effect of which can be seen in Fig. 6 (b).

(a) (b) (c)

(d) (e) (f)

Figure 6: Shadows and ambient occlusion: (a) Plasma64 dataset
rendered with emission and absorption at 141.5 fps, (b) with AO
at 32.3 fps, and (c) with shadows at 104.1 fps. (d) Agulhas dataset
rendered with emission and absorption at 42.4 fps, (e) with AO at
4.5 fps, and (f) with shadows at 30.9 fps.

7 IMPLEMENTATION AND EVALUATION

Our implementation is based on OptiX 7 [11] and the OptiX Wrap-
pers Library (OWL) [22], which allows us to make use of NVIDIA’s
hardware ray tracing extensions. We use a ray generation program
to initiate traversal and use optixTrace to trace rays against the
shell’s triangle mesh. Our tetrahedra structures (see Sect. 5.1) reside
in arrays in GPU memory.

Experiments are performed on a workstation with an Nvidia
Quadro RTX8000 GPU and Ubuntu 18.04. We evaluate our ap-
proach on various tetrahedral volume meshes with varying memory
sizes, some of them coming with surface meshes always at 10242

Table 1: Rendering times and memory usage for various scenes,
with emission+absorption (E+A) vs. with all effects (AO, volu-
metric shadows, gradient shading). GPU memory measured with
nvidia-smi is reported for the Tet20 memory layout (for the
smaller data sets those numbers include a slight bias for constant
overhead from the desktop environment). For Impact we deactivate
shadows and AO for lack of a surface mesh.

Rendering times (fps) Memory usage

Scene Tet32 Tet20 Tet16
No. No. Mem.
Tets Shells (MB)

Jets w/ E+A 38.92 116.84 101.51
1M 14K 541

Jets w/ effects 12.87 48.54 40.77
Plasma64 w/ E+A 124.82 271.11 255.09

1.3M 49K 551
Plasma64 w/ effects 19.72 46.60 40.52
Fusion w/ E+A 38.94 109.74 96.19

2.9M 89K 593
Fusion w/ effects 5.08 13.93 11.54
Agulhas w/ E+A 7.20 22.10 22.54

201M 1.1M 5,313
Agulhas w/ effects 1.54 4.40 4.24
Impact 13.64 25.54 24.95

366M 28M 10,453
Impact w/ effects 4.00 5.68 4.56

resolution. We test each scene with all of our memory layouts with
their respective marchers (see Sect. 5.1 and Sect. 5.2).

8 SUMMARY AND DISCUSSION

We propose shell traversal-based tetrahedra marching algorithms for
direct volume rendering. Our method offers high cache coherence
while tracing arbitrary rays, generating secondary effects such as
gradient shading, shadows, and ambient occlusion. It also benefits
from NVIDIA’s ray-tracing cores to achieve hardware acceleration.

Table 1 provides the computational cost of our implementation
for the tested scenes with various secondary effects using different
tetrahedra representations. In all cases, the Tet20 and Tet16 rep-
resentations outperform the Tet32 layout. When we compare the
Tet20 and Tet16 representations, there is no significant difference in
performance. Using Tet20 or Tet16 has some practical advantages,
and we can select one depending on the memory constraints.

We also evaluate ray tracing overhead (see Table 1). We observe
that the memory overhead of OptiX scales reasonably well with the
number of shell faces. We see that the shell-face count is consider-
ably less than the total vertex count for the given scenes. Besides, the
shell traversal cost constitutes ≈ 25% of the total rendering time for
our test (≈ 75% is tet-marching plus effects). We show that, unlike
raster-based methods, applying any secondary effect that requires
tracing arbitrary rays is cheap and easy with our method.

Although our approach reduces memory consumption while al-
lowing efficient DVR, it has some limitations. Our method only
works with pure tetrahedral-meshes. Many large volumetric datasets
fail to comply with this constraint. Other types of meshes can be
tetrahedralized, but the tetrahedralization of different primitives in-
creases the memory cost. Some large datasets cannot be fit into the
Video Random Access Memory on the GPU when tetrahedralized.
Additionally, our marching procedure tends to go to the wrong tetra-
hedron and circle around when it encounters degenerate faces or
tetrahedra. After a few iterations, we break these loops; they do not
produce any noticeable artifact to our observation.

ACKNOWLEDGMENTS

This research is supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK) under No. 117E881. The
Agulhas dataset is courtesy of Dr. Niklas Röber (DKRZ); the Deep
Water Asteroid Impact is courtesy of John Patchett and Galen Gisler
of LANL. Plasma64 dataset is courtesy of AIM@SHAPE. Jets and
Fusion datasets are courtesy of the SCI Institute of the University
of Utah. Hardware for development and testing was graciously
provided by NVIDIA Corp.

94

REFERENCES

[1] A. Aman, S. Demirci, and U. Güdükbay. Compact tetrahedralization-

based acceleration structure for ray tracing. arxiv preprint,
arXiv:2103.02309, 2021.

[2] M. Ament, F. Sadlo, C. Dachsbacher, and D. Weiskopf. Low-

Pass Filtered Volumetric Shadows. IEEE Tran. Vis. Comp. Graph.,
20(12):2437–2446, 2014.

[3] C. Brownlee and D. Demarle. Fast volumetric gradient shading approx-

imations for scientific ray tracing. In A. Marrs, P. Shirley, and I. Wald,

eds., Ray Tracing Gems II. Apress Open, 2021.

[4] J. Dı́az, P.-P. Vázquez, I. Navazo, and F. Duguet. Real-time ambi-

ent occlusion and halos with summed area tables. Comp. & Graph.,
34(4):337–350, 2010.

[5] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel.

Real-Time Volume Graphics. A. K. Peters, Ltd., USA, 2006.

[6] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. In

ACM Comp. Graph., SIGGRAPH ’84, p. 165–174. ACM, New York,

NY, USA, 1984.

[7] A. Lagae and P. Dutre. Accelerating ray tracing using constrained

tetrahedralizations. In Proc. IEEE/EG Symp. Int. Ray Tracing, p. 184,

2008.

[8] M. Maria, S. Horna, and L. Aveneau. Efficient ray traversal of con-

strained Delaunay tetrahedralization. In Proc. Int. J. Conf. Comp. Vis.,
Imag. Comp. Graph. Theo. App., VISIGRAPP ’17, pp. 236–243, 2017.

[9] G. Marmitt and P. Slusallek. Fast ray traversal of tetrahedral and hexa-

hedral meshes for direct volume rendering. In EUROVIS - Eurographics
/IEEE VGTC Symp. on Vis. Eurographics, 2006.

[10] N. Max. Optical models for direct volume rendering. IEEE Trans. Vis.
Comp. Graph., 1(2):99–108, 1995.

[11] NVIDIA Corp. NVIDIA OptiX Ray Tracing Engine. Available at

https://developer.nvidia.com/optix, Accessed at 3 May 2021.

[12] NVIDIA Corporation. The Ray-Generation Program. Available

at https://developer.nvidia.com/blog/how-to-get-started-with-optix-7/,

Accessed at 3 May 2021.

[13] A. Mebarki. XOR-based compact triangulations. Computing and

Informatics, 37:367–384, 2018.

[14] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient space skip-

ping and adaptive sampling of unstructured volumes using hardware

accelerated ray tracing. In Proc. IEEE Vis., pp. 256–260, 2019.

[15] N. Morrical, I. Wald, W. Usher, and V. Pascucci. Accelerating un-

structured mesh point location with RT cores. IEEE Trans. Vis. Comp.
Graph., pp. 1–1, 2020.

[16] P. Muigg, M. Hadwiger, H. Doleisch, and E. Groller. Interactive

volume visualization of general polyhedral grids. IEEE Trans. Vis.
Comp. Graph., 17(12):2115–2124, 2011.

[17] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar

volume rendering. SIGGRAPH Comput. Graph., 24(5):63–70, Nov.

1990. doi: 10.1145/99308.99322

[18] P. Sinha. A memory-efficient doubly linked list. Linux Journal, Novem-

ber 2004. Available at https://www.linuxjournal.com/article/6828, Ac-

cessed 3 May 2021.

[19] C. M. Stein, B. G. Becker, and N. L. Max. Sorting and hardware

assisted rendering for volume visualization. In Proc. IEEE Symp. Vol.
Vis., VVS ’94, 1994.

[20] D. Ströter, J. Mueller-Roemer, A. Stork, and D. Fellner. OLBVH:

Octree Linear Bounding Volume Hierarchy for Volumetric Meshes.

The Vis. Comp., 36(10-12):2327–2340, 2020.

[21] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,

J. Günther, and P. Navratil. OSPRay - a CPU ray tracing framework for

scientific visualization. IEEE Trans. Vis. Comp. Graph., 23(1):931–940,

2017.

[22] I. Wald, N. Morrical, and E. Haines. OWL – The Optix 7 Wrapper

Library, 2020. Available at https://github.com/owl-project/owl.

[23] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci. RTX

beyond ray tracing: Exploring the use of hardware ray tracing cores

for tet-mesh point location. In Proc. High-Perf. Graph. - Short Papers.

Eurographics, 2019.

[24] I. Wald, S. Zellmann, W. Usher, N. Morrical, U. Lang, and V. Pascucci.

Ray tracing structured AMR data using ExaBricks. IEEE Trans. Vis.
Comp. Graph., 27(2):625–634, 2021.

95

