
Visual Analysis of Large Multi-Field AMR Data on GPUs Using
Interactive Volume Lines

Stefan Zellmann*

University of Cologne
Serkan Demirci†

Bilkent University
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Figure 1: Coupled interactive volume lines (IVL) and large volume visualization. (a) shows 3D renderings of four fields of an
astrophysical simulation (from left to right: density, temperature, pressure, and velocity magnitude). Our prototype interactively links
such large-scale AMR data with 1D volume line plots (polyline plot representation in (b), and bar plot representation in (c)).

ABSTRACT

To visually compare ensembles of volumes, dynamic volume lines
(DVLs) represent each ensemble member as a 1D polyline. To com-
pute these, the volume cells are sorted on a space-filling curve and
scaled by the ensemble’s local variation. The resulting 1D plot can
augment or serve as an alternative to a 3D volume visualization
free of visual clutter and occlusion. Interactively computing DVLs
is challenging when the data is large, and the volume grid is not
structured/regular, as is often the case with computational fluid dy-
namics simulations. We extend DVLs to support large-scale, multi-
field adaptive mesh refinement (AMR) data that can be explored
interactively. Our GPU-based system updates the DVL representa-
tion whenever the data or the alpha transfer function changes. We
demonstrate and evaluate our interactive prototype using large AMR
volumes from astrophysics simulations.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics; Human-centered
computing—Visualization—Visualization application domains—
Scientific visualization

1 INTRODUCTION

We propose an interactive implementation of Weissen-
böck et al.’s [13] dynamic volume lines (DVLs). DVLs
visualize ensemble volumes in 1D as a set of polylines. While
ensemble or multi-field volume rendering may suffer from visual
clutter and self-occlusion, DVLs present a viable alternative
for visual exploration or can augment an existing 3D volume
visualization. A fundamental problem with DVLs and similar plots
is that many cells of the volume map to only a few pixels of the
output viewport, leading to overdraw. The number of cells can be
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several orders of magnitude higher than the number of pixels that
the line segments of the polylines project to, resulting in a linear
mapping of cells to pixels that compresses regions where the data is
not as interesting.

Weissenböck et al. concentrate on the visual analytics aspects of
DVLs and have proven their efficacy to this end, yet the authors’
work focused on smaller structured-regular volumetric data sets
(on the order of 643 cells). When scaling to larger volume sizes
and unstructured or hierarchical grid types, interactively computing
DVLs becomes a challenge we address in this paper.

Another aspect that remains unexplored by Weissenböck et al.’s
work is that the spatial arrangement (and hence the local variation) of
the volume ensemble changes when the alpha transfer function of an
ensemble member is updated. However, interactive transfer function
updates are an essential aspect of scientific volume visualization,
and the data structures and algorithms involved in computing and
updating DVLs must be carefully chosen not to prohibit this type of
interaction.

We, therefore, concentrate on the performance and interactivity
aspects of computing dynamic volume lines on the GPU. More
specifically, we contribute

• an extension of dynamic volume lines for AMR volumes where
the cell size depends on the refinement level,

• a GPU implementation that allows to interactively update the
volume lines in the presence of user-editable transfer functions
per ensemble member, and

• an application that allows interaction with the 3D view and the
1D plot through brushing and linking.

An overview of the visualizations our system supports is given in
Fig. 1 (here exemplified using a multi-field data set).

2 BACKGROUND AND RELATED WORK

This section reviews related works on large-scale volume visualiza-
tion and adaptive mesh refinement (AMR) data. Additionally, we
provide a background summary of the dynamic volume lines method
by Weissenböck et al. [13] as our main related work on the visual
analytics side.
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2.1 Large-Scale Volume Data

Our paper concentrates on large volume data. While our prototype
does include a 3D rendering component, in this section, we focus on
data representation more than on the rendering side.

Although large structured volumes are still commonplace in some
areas [5], unstructured or hierarchical representations are ubiquitous
in the computational sciences. While unstructured meshes [8, 9]
are pretty standard, many codes use adaptive mesh refinement
(AMR) [3] to concentrate the computation on the relevant regions in
space. The resulting data can be block-structured, overlapping grids,
Octrees, or similar hierarchies.

Recent challenges with AMR visualization include smooth in-
terpolation in 3D [11], GPU acceleration structures [12], and time-
dependent data [16]. A common approach for representing AMR
data is the one adopted by Wald et al. [12], where AMR cells “snap”
to the logical grid; that hypothetical uniform grid has a resolution
that when resampling the volume, the finest AMR cells occupy ex-
actly one logical cell. Each AMR cell is unambiguously defined by
its lower corner on the logical grid, and its refinement level L. By
defining 0 to denote the finest level, the cell size can be computed as
Cw = 2L. This representation omits the AMR hierarchy itself.

One common way to organize volumes is through space-filling
curves (e.g., Morton [14,15] or Hilbert codes [1,7]). In 3D rendering,
the main incentive for that, as in the works cited here, is to build
acceleration structures. Generally, space-filling curves cluster cells
in 1D that are also nearby in 3D.

2.2 Dynamic Volume Lines

We extend the dynamic volume lines (DVL) method by Weis-
senböck et al. [13] to support large-scale AMR data. We provide a
summary of their method in this section.

DVLs present volumes as 1D plots where the x-dimension maps
to cell IDs and the y-dimension maps to intensity. The method is re-
stricted to structured-regular volumes, i.e., all cells are cubes/voxels
of the same size. One way to assign x-values is in a row- or column-
major order. This approach loses spatial locality, as cells are only
grouped if they are neighbors on the same row (or column); yet
when they are adjacent in the vertical or depth direction, they are
likely to be further apart in 1D due to the row (or column) sized
stride.

Space-filling curves can provide better proximity-preserving map-
pings. Weissenböck et al. use Hilbert curves. Cells are represented
by their centroids, which are quantized, e.g., to 20-bit per dimen-
sion, so that a 64-bit bitmask can represent them. The Hilbert codes
represent the quantization grid cell that the centroids map to.

An obvious problem when plotting volumes in 1D is that there
are several orders of magnitude more cells than pixels in the x-
dimension. Using a linear mapping is wasteful because it can result
in homogeneous or empty regions represented as straight lines that
convey no useful information.

Weissenböck et al.’s objective is to compare ensembles of vol-
umes. Interesting features are determined by comparing correspond-
ing points of the ensemble. The authors propose scaling the cells
along the x-axis using per-cell importance. However, their focus is
on grayscale volumes and not on alpha transfer functions as we do.
The difference between the maximum and minimum intensity of the
whole ensemble gives the per-cell local variation of the ensemble:

Vh = max
∀m∈M

(
I(m,h)

)− min
∀m∈M

(
I(m,h)

)
, (1)

where h is the cell’s Hilbert code, M is the ensemble of volumes,
and I(m,h) is the intensity of ensemble member m and the AMR
cell that corresponds to h. From that, the authors obtain the local
importance scale for the x-coordinate:

f (h) =

(
Vh

max
(
Vh
)
)P

. (2)

P is a user-defined parameter to control the steepness of the result-
ing curve; a minimum importance is enforced (set to 0.025 by the
authors).

Computing a prefix sum of floating point values over the per-cell
importance and quantizing that on the 1D grid given by the width of
the plot area provides x positions to plot the cells as line segments.
This nonlinear mapping compresses regions with low data variation,
devoting more screen space to regions with high data variation.

The concept of exploring spatial or volume data in 1D also in-
spired other works. Franke et al. [4], e.g., use 1D plots to conserve
neighborhood relations of geospatial regions. Zhou et al. [18] use the
minimum spanning tree of a circuit graph over structured-regular vol-
ume ensembles to generate similar 1D plots as the volume lines our
paper focuses on. In contrast to using Hilbert codes directly—and
similar to DVLs with their importance-based nonlinear mapping—
Zhou et al.’s approach is also data-driven.

3 METHOD

We extend Weissenböck et al.’s dynamic volume lines to support
multi-field AMR data. In contrast to Weissenböck et al., we assume
that the intensities I(m,h) come from an RGBα transfer function.
They do not focus on interactive parameter updates, such as transfer
function, exponent P, and minimum importance; they mention that
Hilbert code computation takes several seconds for 643 cell data
sets. While Weissenböck et al. focused on volumes a couple of
Megabytes in size, we target Gigabyte-sized data.

3.1 Extension to AMR
To compute DVLs for AMR data, we need to extend the Hilbert
code and x-coordinate generation to support non-uniformly sized
cells. First, we note that Weissenböck et al. assume that cells have
uniform size; even if the cells were non-uniform, the Hilbert codes
do not reflect this because they only provide the cells’ order and
not their spacing. To account for coarser cells to also span a wider
region of space as in a 3D rendering, we need to consider each cell’s
size when computing the nonlinear x-axis scale. For that, we extend
Eq. (2) to include the AMR cell width as follows:

f (h) =

(
Vh

max
(
Vh
)2Lh

)P

, (3)

where Lh ∈N0 is the AMR level of the cell corresponding to Hilbert
code h, and 0 is the finest level. Another sensible choice would be
to not scale the cells by their (uniform) width but by their volume.

We deliberately apply the cell-size dependent scale when com-
puting the importance, not the x-positions themselves, because the
order of operations is not commutative. We compute the floating
point prefix sum over the importance values:

F(h) =
h

∑
i=0

f (i), (4)

to obtain x-coordinates x f1 =
F(h−1)

F(max(h)) ×W , x f2 =
F(h)

F(max(h)) ×W
for plots of size W pixels.

3.2 Projecting Cells to 1D
We are now able to compute pairs (x f1,x f2) of x-coordinates per
AMR cell; we note that these x-coordinates have sub-pixel accuracy,
and although we apply the nonlinear mapping using cumulative
importance, in general, a multitude of x-coordinates will project to
single pixels. We now discuss how to map these coordinate pairs to
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InclusiveScan RasterizeCells
ApplyWeights

AssignImportance

ApplyTransFunc

Fields X AMR Cells AMR Cells Pixels

RasterizeLines

per field

f ie lds

per field

Figure 2: CUDA kernels executed on volume line updates. Blue indicates kernels processing each AMR cell and scalar field. Gray indicates kernel
execution per AMR cell (these get executed per field). Orange boxes indicate kernels executed per (horizontal) raster point (also per field). As a
rule of thumb, the number of work items generally decreases from left to right. Transitioning from “Fields × AMR Cells” to “AMR Cells” is realized
using loops but requires no synchronization. Transitioning from “AMR Cells” to “Pixels” uses atomic operations on CUDA global memory.

obtain x-coordinates per horizontal pixel x ∈W and how to obtain
“y-values” for these. Given such pairs (x,y), we can draw line strips
with control points per pixel in the x dimension.

For that, we create a set of W bins—one for each pixel in the plot’s
x-dimension—whose values we initialize to 0. We then project the
pairs (x f1,x f2) to integer coordinates in the range [0,W −1], iterate
over these, and increase the overlapping bins by the value of the
corresponding AMR cell. We also maintain a per-bin counter that
we increment whenever we increase the bin value. After all the pairs
(x f1,x f2) are processed, we iterate over the bins and divide each by
its bin counter, obtaining the average intensity value of all the AMR
cells that project to the bin.

This procedure borrows from the basis function method by
Wald et al. [11], only that we use a box-shaped basis function in-
stead of the tent-shaped basis used by Wald. Pairs (x f1,x f2) that
span multiple bins (hence multiple pixels in the x-dimension) will
noticeably turn the plot into a step function. As for our data, many
line segments will map to single bins only; we do not consider this
to be an issue, and we here choose simplicity over generality.

3.3 Interactive Transfer Function Updates
We extend Weissenböck et al.’s method to support interactive RGBα
transfer functions that apply to 1D and 3D rendering alike. The
requirement that transfer function updates be interactive implies that
(re)generating volume lines must also be interactive.

Transfer functions are applied on two occasions: once when com-
puting the importance (cf. Section 3.1), which requires intensities
from the transfer function, and once per bin, after dividing the bin
values by their basis weights. We normalize the input (field) intensity
and compute RGBα values to apply the transfer function. The alpha
value determines the height of the bins and y-values of the polyline
at these positions. The RGB value (or, alternatively, a uniform color
from a global map) is used to colorize the polylines.

3.4 Computing the Maximum Local Ensemble Variation
The term max

(
Vh
)

from Eq. (2), the maximum of the local ensemble
variations for each Hilbert code h, needs to be recomputed whenever
an ensemble member’s transfer function changes. This can be im-
plemented on GPUs using parallel reduce over all cells or a kernel
atomically updating a single value in GPU main memory.

To avoid this costly operation, we compute this value using the
transfer functions and field data ranges, resulting in a more conser-
vative, yet in practice very close approximation to max

(
Vh
)
.

We compute ranges [im, jm] where im, jm ∈ [0,N−1] and im ≤ jm
for each ensemble member m ∈ M and transfer function size N.
These allow us to iterate only over the transfer function values
present in the data. That way, we compute the global range [i, j]:

i = min
∀m∈M

(im), j = max
∀m∈M

( jm), (5)

and from that

Va = max
∀m∈M

(
A(m,a)

)− min
∀m∈M

(
A(m,a)

) ∀a ∈ [i, j] (6)

as an approximation to Vh. In Eq. (6), the term A denotes a lookup
to the transfer function to retrieve the alpha value.

3.5 Brushing and Linking

We connect the DVL and 3D views using brushing and linking.
When selecting regions of interest (ROIs) in the 1D plot, the corre-
sponding cells in the 3D view are highlighted (cf. Fig. 3). We use the
ROIs’ first and last Hilbert codes as selection ranges for that. In the
3D shader, the ROIs also manifest as Hilbert codes and not as lists
of cells in world space. This compact representation comes at the
expense of transforming the center of the cell that we are sampling
to Hilbert space to test it against the ROIs.

In the case of structured-regular volumes, finding the cell bounds
is simple; since the cells have the same size, the corresponding
Hilbert code implicitly allows us to derive their (uniform) size. For
AMR data, the cell centroid’s Hilbert code is not sufficient; instead,
when we check if a sample falls inside an ROI, we must explicitly
locate cells to know the ROI’s exact size.

4 GPU IMPLEMENTATION WITH CUDA

We implement what we call interactive volume lines (IVLs)—the
GPU-accelerated version of dynamic volume lines—using NVIDIA
CUDA. The CUDA kernels involved are shown in Fig. 2, corre-
sponding to the algorithm phases from Section 3. We now discuss
how to assemble these building blocks and identify their bottlenecks.
The Hilbert codes and the order of the 1D AMR cells never change
once they are established. What does change in user interaction is
the spacing between cells that we need to recompute interactively.

We compute the term Va from Eq. (6) on the CPU since the
transfer function color map and other parameters are passed to our
application through the host in any case and because the amount of
computation needed does not necessitate running this operation in
parallel. With Va computed, execution transitions to the GPU.

A kernel with one thread per AMR cell (AssignImportance in
Fig. 2) computes the importance from Section 3.1. The kernel loops
over each field, assigning each cell its transfer function and cell-size-
dependent importance from Eq. (3). This requires exclusive read and
write accesses (EREW) only. For Eq. (4), we use the InclusiveSum
algorithm from the CUB library (ExclusiveScan in Fig. 2). GPU
prefix sums can be realized with EREW accesses [6].

We run another kernel with one thread per cell (RasterizeCells
in Fig. 2) to determine the subpixel x-coordinates x f1,x f2 from the
prefix sum array and update the bins and weights (cf. Section 3.2).
The number of bins is much smaller than the number of AMR cells
for typical data sizes. We use CUDA atomic operations for the
projection; hence, this kernel is not EREW. Due to the input size
and the atomics, this is the most costly kernel of the algorithm.

The ApplyWeights and ApplyTransFunc kernels (cf. Fig. 2)
are EREW. They divide the bin values by their weight (cf. Sec-
tion 3.2) and apply the transfer function to obtain y-coordinates.
Both kernels use W (number of bins) threads. We finally run a
kernel (RasterizeLines in Fig. 2) rasterizing the polylines us-
ing CUDA surfaces. We implemented modes to draw the IVLs as
polylines (Fig. 1b) or as bar charts (Fig. 1c).
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a

b

c-i d-i

c-ii

d-ii

Figure 3: Our prototype, used with brushing and linking. Interactive
transfer function updates (a) affect 3D rendering and the IVL plots
shown in (b). Here we selected the two regions (c-i) and (d-i) in the IVL
plot that are connected to the 3D view through brushing and linking
and are highlighted using dimming ((c-ii) and (d-ii)).
Table 1: Execution times for the CUDA kernels from Fig. 2 and the
data set from Fig. 1.

Kernel Execution Time (ms)

AssignImportance 3
InclusiveScan 0.4
RasterizeCells 55
ApplyWeights < 0.01
ApplyTransFunc < 0.01
RasterizeLines 0.2

5 PROTOTYPICAL USER INTERFACE

To implement a prototype, we started with the open-source code of
Zellmann et al. [17] and added multi-field support and a 1D user
interface with Dear ImGUI [2]. We show the user interface demon-
strating brushing and linking in Fig. 3. We note that the application
is at an early stage and does not implement all the features proposed
by Weissenböck et al. [13], such as mouse-over handling or support
for the histogram heatmap and functional boxplots. Fundamentally,
the computations required are of the same order as those required for
the IVLs, so implementing them remains an engineering exercise.

6 EVALUATION

We evaluate our method on an Intel Xeon system with 64 GB RAM
and an NVIDIA A6000 GPU. We use the dens, temp, pres, and
velmag fields of the Molecular Cloud data set by Seifried et al. [10],
which was simulated with FLASH [3]. Technically, the data is multi-
field and not an ensemble; the fields are correlated. The data set
spans four AMR levels with a total of 35.8 M cells. If not noted
otherwise, we set P = 1 (cf. Eq. (3)) and the minimum importance
to 0.025. GPU memory for the whole data set—including auxiliary
data (our application uses OptiX to accelerate 3D rendering)—is
reported by nvidia-smi to amount to 3.6 GB.

We present kernel execution times in ms. in Table 1. The algo-
rithm is bottlenecked by the RasterizeCells kernel (projection
from cells to bins using atomics), executed once per field.

We test if the performance of the RasterizeCells kernel de-
pends on the input parameters. While keeping the other parameters
fixed, we vary P in 0.0− 5.0 (Fig. 4, left), and the minimum im-
portance in 0.0− 0.25 (Fig. 4, right). We observe that there is a
measurable, yet very subtle (1-2%) trend that parameters that favor
higher IVL compression lead to slightly faster execution times.

We count the atomicAdd’s to determine their costs, and report
the bin minima and maxima as well as quartiles for the same test
from before (cf. Fig. 5). We observe that when P and the minimum
importance increase, the number of atomicAdd’s per bin becomes
more uniform. We never encountered single threads that run extraor-

Figure 4: Execution times of the RasterizeCells kernel (cf. Fig. 2)
as a function of parameter P (left) and of minimum importance (right).

Figure 5: Atomic operations performed per bin by the RasterizeCells
kernel (cf. Fig. 2) as a function of parameter P (left) and of minimum
importance (right). We show the minimum and maximum count as
well as the quartiles across bins.

Figure 6: Comparison of exact max(Vh) computation (red) vs. our
approximation from Section 3.4 (blue).

dinarily long. In fact, during development, we tested if parallelizing
the kernel using one cudaStream per field lowered total execution
time, but found that it fully occupies the GPU at all times.

We finally compute the difference between the exact max(Vh)
used by Weissenböck et al.’s [13] vs. our approximation from Sec-
tion 3.4, using a sweep of 107 randomly chosen different transfer
function configurations. We report the results in Fig. 6.

7 CONCLUSIONS AND FUTURE WORK

We presented interactive volume lines, a high-performance variant
of Weissenböck et al.’s [13] dynamic volume lines. For non-trivial
volume data (e.g., unstructured or AMR), visual analytics performed
on the whole set of cells becomes a complex data handling task. We
presented a carefully crafted GPU implementation of this algorithm.

For large-scale volumes, as demonstrated in this paper, it does
matter if an operation is performed on the whole set of cells, on bins
of a 1D grid in screenspace, or on the RGBα transfer function array,
and which type of write accesses are performed. The GPU control
flow we eventually developed resulted in a balance between faith-
fully recreating the algorithm and avoiding severe implementation
bottlenecks.

Our paper points to future work. One conceivable optimization
is to make the kernel that the algorithm is bottlenecked on become
hierarchical over the input cells to perform the projection in more
local memory regions. This is one of many interesting similarities
between optimizations used for 3D volume rendering (e.g., accelera-
tion structures like the one by Wald et al. [12]) and optimizations
that apply to IVLs. In fact, we found that on the engineering side,
similar abstractions apply in 1D and 3D alike (e.g., basis functions
used for interpolation, 1D bins that resemble pixels, etc.).

One less obvious future work lies in the algorithm’s GPU memory
consumption: 1D and 3D rendering share neither the data itself nor
other auxiliary data structures that accelerate rendering. Instead, the
whole input data is replicated in memory. It would be interesting to
explore if the two rendering modes could share some or even all the
data to overcome this limitation.

Another open question (that this paper does not seek to answer) is
how useful volume lines are for large volumes; our intuition is that
they work best for smaller data, to reduce noise and outliers in the
1D plots. A formal evaluation is out of scope here. We note though
that an obvious extension would be a zoom interaction that, when
selecting a ROI through brushing and linking, also zooms in on the
1D plot and devotes more screen space to the selected AMR cells.
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