
A Database Model for Querying Visual
Surveillance Videos by Integrating Semantic and

Low-Level Features?

Ediz Şaykol, Uğur Güdükbay, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University
06800 Bilkent, Ankara, Turkey

{ediz, gudukbay, oulusoy}@cs.bilkent.edu.tr

Abstract. Automated visual surveillance has emerged as a trendy ap-
plication domain in recent years. Many approaches have been developed
on video processing and understanding. Content-based access to surveil-
lance video has become a challenging research area. The results of a
considerable amount of work dealing with automated access to visual
surveillance have appeared in the literature. However, the event models
and the content-based querying and retrieval components have significant
gaps remaining unfilled. To narrow these gaps, we propose a database
model for querying surveillance videos by integrating semantic and low-
level features. In this paper, the initial design of the database model, the
query types, and the specifications of its query language are presented.

1 Introduction

In a traditional surveillance system, human operators monitor multiple
guarded environments simultaneously to detect, and possibly prevent, a
dangerous situation. As a matter of fact, human perception and reason-
ing are limited to process the amount of spatial data perceived by human
senses. These limits may vary depending on the complexity of the events
and their time instants. The acceleration in communication capabilities
and automatic video processing techniques, and the reasonable cost of the
technical devices have increased the interest in visual surveillance appli-
cations in the recent years. Many approaches related with content-based
retrieval and automatic video processing and understanding (e.g., auto-
matic video shot detection, event classification, low-level feature based
querying, etc.) have been developed in the mean time with the advances
in visual surveillance technology. These advances have led to the inte-
gration of automatic video processing and content-based retrieval with
? This work is supported in part by Turkish State Planning Organization (DPT) under

grant number 2004K120720, and European Commission 6th Framework Program
MUSCLE Network of Excellence Project with grant number FP6-507752.

visual surveillance systems. Due to the highly variable nature of visual
surveillance videos, a need has arisen for robust scene processing and
event recognition.

In our work, the main focus is on indoor monitoring, and a framework
for querying surveillance videos by integrating semantic and low-level fea-
tures is developed. Regarding this issue, some powerful systems (e.g., [1–
4]) exist in the literature. Besides system-level integration, some methods
have been proposed for smaller units (e.g., detecting scene changes [5, 6],
moving object detection and tracking [7]). As far as the database index-
ing and retrieval parts are concerned, the researchers generally designed
simple database structures for events. The event descriptors stored in a
database generally contain the start and finish times, and the salient ob-
ject labels. Indexing at the object feature level is not as frequent as the
event level. In [8], the authors proposed an approach for traffic surveil-
lance and stored object motion in the database. There are also some ap-
proaches that deal with the color information of the video objects (e.g., [2,
4]). However, their use is either to keep track of the video objects or to
classify the video objects.

The main contribution of the proposed framework is the querying
capability by integrating semantic features (i.e., events, sub-events, and
salient objects) and low-level object features (i.e., color, shape, and tex-
ture) for surveillance videos. To the best of our knowledge, no systems ex-
ist that are embedding object-based low-level features (e.g., color, shape,
and texture) to the indexing and retrieval module in visual surveillance
domain. Moreover, the framework provides support for effective query
specification (e.g., query-by-example, query-by-sketch) and retrieval as
opposed to keyword-based database searches. In the following, we de-
scribe our motivations and the basic assumptions we made in our work.

– Enriching the querying module with low-level object features (color,
shape, texture) is more meaningful for indoor surveillance. We might
need to query an event to detect an intruder in a supermarket by
specifying the color of his coat, texture on his shirt, etc. This low-level
feature enrichment would possibly decrease the rate of false alarms.
For the intruder detection example, it is possible that there exist many
innocent people making the same type of actions (events) in the su-
permarket at that time, causing a significant post-processing for the
retrieved persons to find the intruder, or generate false alarms.

– Static camera and constant light source are assumed for the sake of
simplicity in terms of database modeling. These assumptions fit most
to indoor environments than the other categories. Although there are

some recent approaches assuming inputs from two fixed cameras for
indoor environments [9], the way of processing object motions is very
different and sophisticated (e.g., contour matching and tracking in
3D) for multi-camera surveillance approaches.

– The pre-processing steps for event/object indexing into the database
for querying are more straightforward in indoor monitoring.Complex
background scenes are rare and the object motions (e.g., motions of
humans) are generally expectable. This is basically because of the fact
that indoor environments are generally simpler than others.

The rest of this paper is organized as follows: Section 2 summarizes
some related studies. The proposed database model is presented in Sec-
tion 3. Finally, Section 4 concludes the paper.

2 Related Work

Video Surveillance and Monitoring (VSAM) system presented in [3] is
one of the complete prototypes for object detection, object tracking and
classification, as well as calibrating a network of sensors for a surveillance
environment. In that work, a hybrid algorithm was developed, which is
based on an adaptive background subtraction by three-frame differenc-
ing. The background update scheme is based on a classification of pixels
(either moving or non-moving) performed by a simple threshold test. A
model is provided on temporal layers for pixels and pixel regions in order
to be robust for detection of stop-and-go type of object motions. The
background maintenance scheme we employ is similar to that of VSAM.
However, in our framework, the extracted background is also used for
both event annotation and object tracking.

Stringa and Regazzoni [1, 10, 11] proposed a real-time surveillance sys-
tem employing semantic video-shot detection and indexing. Lost objects
are detected by the help of temporal rank order filtering. The interesting
video shots are detected by a hybrid approach based on low-level (color)
and semantic features. The authors have adapted a change-detection mod-
ule that processes the background image and the current image to detect
the stationary object regions. Retrieving all the clips related to an alarm
is the basic way of querying the system. The authors also mention about
more complex query types including color and/or shape properties of
the dangerous object. However, no details are provided for the storage
of these low-level object features and their indexing and usage within
complex queries. In our framework, we extract object-based low-level fea-

tures, and provide a scenario-based querying scheme for complex querying
including color and shape descriptors of the objects.

In [12, 13], an object-based video abstraction model was proposed. The
authors employed a moving-edge detection scheme for video frames. The
edge map of a frame is extracted first by using Canny edge-detector [14].
The extracted edge map is compared with the background edge map and
the moving edges and regions are detected at the end of this process.
They employed a semantic shot detection scheme to select object-based
keyframes. When a change occurs in the number of moving regions, the
current frame is declared as a keyframe indicating that an important
event has occurred. This scheme also facilitates the detection of impor-
tant events. If the number of moving objects remains the same for the
next frame, then a shape-based change detector is applied to the con-
secutive frames. A frame-based similarity metric is also defined to detect
the distance between two frames. Our framework employs the strategy of
moving object counting mentioned in [12] with rule-based extensions to
help the event annotation process.

In [8], Jung et al. proposed a content-based event retrieval framework
for traffic surveillance videos using semantic scene interpretation tech-
niques. They employed an adaptive background subtraction and update
mechanism, where the background image eventually contains the tempo-
ral median values of pixels. One of the important aspects of the work is
that they designed the database indexing and retrieval in an object-based
manner. However, since their primary concern is traffic surveillance, the
object trajectories and motion descriptors are stored in the database.
Their query interface supports query-by-example, query-by-sketch, and
query-by-weighting on the trajectory descriptors. The database is searched
exhaustively to find the best matches for a given query. Our framework
also includes object-based querying by providing examples or sketches.
However, our querying module also enables specification of more complex
queries including low-level and directional descriptors.

Lyons et al. [15] developed video content analyzer (VCA), the main
components of which are background subtraction, object tracking, event
reasoning, graphical user interface, indexing, and retrieval. They adapted
a non-parametric background subtraction approach based on [16]. A fi-
nite state model was designed for object tracking. VCA discriminates
people from objects and the main events recognized are as follows: en-
tering scene, leaving scene, splitting, merging, and depositing/picking-up.
The retrieval component was designed to retrieve video sequences based
on event queries. The event categories are very similar to those we use

in our framework. However, as an additional feature, our framework also
enables object-based querying that can be refined by providing low-level
and/or directional descriptors.

Brodsky et al. [4] designed a system for indoor visual surveillance
especially in the retail stores and in the houses. They assumed a stationary
camera and used background subtraction technique described in [15]. The
pixels detected as foreground are grouped into connected components and
tracked throughout the scene. Object tracking module handles merging
and splitting of moving objects by making use of a color model extracted
for each moving object. A list of events that the object is participated
are stored for each object, where the events are simply entering, leaving,
merging, and splitting. The system also includes a classification module
to distinguish people, pets, and other objects. One of the distinctions of
this system and our framework is the use of color feature. In this system,
the color feature of the objects is mainly used for reassigning labels for
moving connected components, whereas, as an extension, we also provide
object-based querying based on color and/or shape features.

Haritaoğlu et al. [17] proposed a real-time analysis of people activi-
ties. Their model uses a stationary camera and background subtraction
to detect the regions corresponding to person(s). Their system, called
W 4, uses shape information to locate people and their body parts (head,
hands, feet, and torso). The system operates on monocular gray-scale
video data, and no color cues are used. The creation of models of the
appearance of person(s) helps the tracking process through people inter-
action (e.g., occlusions), and simultaneous activities of multiple people.
The system uses a statistical background model holding bimodal distri-
bution of intensity at each pixel to locate people. The system is capable
of detecting single person, multiple persons, and multiple person groups
in various postures.

In the literature, most of the systems have focused on (unattended) ob-
ject detection and tracking moving object. Extracted event information,
based on the object tracking and shot detection modules, is generally
stored in a database and exhaustively searched when a query is submit-
ted based on event information (e.g., [15]). From another perspective,
retrieving the video sequences related to a generated alarm is the basic
way of querying the system (e.g., [1]). In [1], the authors also mentioned
more complex query types including color and/or shape properties of the
salient objects. The querying module of [8] supports query-by-example,
query-by-sketch, and query-by-weighting on the trajectory descriptors of
moving objects.

Object
Extraction
and Tracking

Module

Shot
Boundary
Detection
Module

Event
Information
Extraction

Module

Event and
Object
Database

Database Population Process

Querying & Retrieval Process

Video

Visual
Query

Interface

Query
Processing

Module

Content-
based

Retrieval
Module

Fig. 1. The overall architecture of the framework.

3 A Database Framework for an Integrated Querying of
Visual Surveillance

We propose a framework which provides an integrated environment for
querying indoor surveillance videos by semantic (event-based) and low-
level (object-based) features. The overall architecture of the framework
is shown in Figure 1. The queries are handled by query processing mod-
ule, which communicates with both the feature database and the content-
based retrieval module. The database contains event and object features
extracted by automated tools. The visual query interface is used to sub-
mit queries to the system and to visualize the query results. The users
should be able to specify event queries enriched with low-level features
for objects and directional descriptors for events.

3.1 Object Extraction and Tracking Module

A fully-automatic object detection and tracking module is designed and
implemented, which employs an adaptive background maintenance scheme,
similar to the one proposed in [3]. At the pixel-level, the algorithm tries to
identify the moving object pixels. The adaptive background subtraction
technique is combined with a three-frame differencing technique to deter-
mine the moving object pixels as a region and also to detect stop-and-go
type of object motions. According to the three-frame differencing algo-
rithm, an object is assumed to be moving if the intensities of the object

have changed between current and previous frames, and between current
and next-to-previous frames.

Video data can be considered as a sequence of frames. Let If (x, y) de-
note the intensity value of a pixel at (x, y) at frame f . Hence, Mf (x, y) = 1
if (x, y) is moving at frame f , where Mf (x, y) is a vector holding mov-
ing pixels. A threshold vector Tf (x, y) for a frame f is needed for de-
tecting pixel motions. The basic test condition to detect moving pixels
with respect to Tf (x, y) can be formulated as follows: Mf (x, y) = 1 if
(|If (x, y)−If−1(x, y)| > Tf (x, y)) and (|If (x, y)−If−2(x, y)| > Tf (x, y)).

The (moving) pixel intensities that are larger than the background
intensities (Bf (x, y)) are used to fill the region of a moving object. This
step requires a background maintenance task based on the previous inten-
sity values of the pixels. Similarly, the threshold is to be updated based
on the observed moving pixel information at the current frame. A statis-
tical background and threshold maintenance scheme is employed in the
module as follows:

B0(x, y) = 0, (1)

Bf (x, y) =

{
αBf−1(x, y) + (1− α)If−1(x, y), Mf (x, y) = 0,
Bf−1(x, y), Mf (x, y) = 1,

(2)

T0(x, y) = 1, (3)

Tf (x, y) =

{
αTf−1(x, y) + (1− α)(k × |If−1(x, y)−Bf−1(x, y)|), Mf (x, y) = 0,
Tf−1(x, y), Mf (x, y) = 1,

(4)

where k is set to 5 in Eq. 4. As argued in [3], Bf (x, y) is analogous to
local temporal average of pixel intensities, and Tf (x, y) is analogous to k
times the local temporal standard deviation of pixel intensities computed
with an infinite impulse (IIR) filter. A snapshot of object extraction and
tracking module is shown in Figure 2.

3.2 Shot Boundary Detection Module

Object tracking and event classification tasks directly benefit from the
extracted video shots. Moving objects generally enter or leave the scene
at shot boundaries. Hence, the shot boundary detection module is partic-
ularly designed for detecting video shot boundaries, hence cuts. The shot
boundary detection algorithm employed can be summarized as follows:
Let fi and fi−1 denote two consecutive frames in a video clip. Let If

denote the intensity histogram of a frame f . For a consecutive frame pair

Fig. 2. Object extraction and tracking module user interface. Top-left image is the
original image, top-right is the intensity layer image, bottom-left is the background layer
image, and bottom-right is the object layer image where moving object pixel region can
be seen.

(fi−1, fi), let di denote the histogram intersection [18] distance between
Ifi−1 and Ifi . By using histogram intersection technique, di can be found
by

di = 1− SIfi
,Ifi−1

= 1−
∑n

i
min(Ifi [i], Ifi−1 [i])

min(|Ifi |, |Ifi−1 |)
, (5)

where |Ifi
| denotes the L1-norm (i.e., length) of an histogram Ifi

. If
di ≥ t1, then i is introduced as a shot boundary, or a cut. The value for
t1 is estimated by trial-error technique and it is found that 0.3763 gives
best results for the video clips tested so far. A further improvement is
made on the algorithm to increase the success rate. The algorithm starts
with a lower t1 value and extracts shot boundary candidates first. Then,
it computes pixel-wise distance dp

i between fi−1 and fi, where i is a shot
boundary candidate. If dp

i ≥ t2, then i is introduced as a shot boundary.
The experiments show that t1 = 0.3 and t2 = 0.13 give promising results.

3.3 Event Information Extraction Module

This module is intended to ‘annotate’ video frame intervals based on
event labels, objects appearing within the interval, and low-level feature
descriptions for the event objects. There are some specific types of events,
which are important for indoor visual surveillance to detect suspicious
events. A person depositing or picking up an object and two people crossing
over are examples for two important events. People/object entering or
leaving the scene, people/object joining or splitting can be considered as
sub-events to detect suspicious events [15].

The inputs to this module are the moving objects (or moving object
groups) at a frame. While detecting moving object groups, our object
tracking algorithm benefits from the algorithm discussed in [7]. A moving
object group is identified as a moving object until the objects in the
group are separated. Counting the number of moving objects also gives
an important clue for detecting the events, since the number of moving
objects changes at the time of the events. We also keep track of spatial
(directional and topological) relations among the moving objects within
the event detection algorithm.

Figure 3 illustrates the detecting of events. For example, deposit event
is detected as follows: The object tracking module detects A and B as a
moving object group first at time T1. Then, they are identified as two
separate moving objects by the same module through some algorithms
used in [7]. Hence, at time T2, the objects A and B are detected as they
are moving separately. At time T2+1, the only detected moving object
is A. Therefore, a potential deposit event is detected at frame T2. The
spatial relations among the moving objects are tracked in addition to the
outputs of object tracking module, which helped the detection process.
The detection process for the other types of events are similar to the
deposit event. Refinements on this event detection algorithm have been
carried out continuously to end up with a better scheme.

The event information extraction module can be summarized as fol-
lows: based on the above depositing event example, the event is detected
at time T2. Hence, the event information is stored based on the status at
time T2. This type of information storage is reasonable because the status
at the time of the suspicious event is of interest while querying. For each
frame that an event is identified, the objects appearing on that frame (A
and B in this example) are stored in Event and Object Database along
with their low-level features and the spatial relations among them. The
low-level object features stored are color vector and shape vector, which
is a composition of angular span and distance span [21].

A

B

A

B

A

1 moving object group

…

 T1 T2 T2+1

2 moving objects 1 moving object

(a)

A A

B

A

1 moving object

…

 T1 T2 T2+1

2 moving objects 1 moving object group

A

B

(b)

A

B

A

B

A

B

2 moving objects

 T1 T2 T2+1

1 moving object group 2 moving objects

(c)

Fig. 3. Detection of Events. (a) Deposit, (b) Pick Up, and (c) Crossover.

3.4 Query Processing Module

One of the most important tasks in automated visual surveillance is the
query processing module. Basically textual searches for event queries are
supported in the existing systems. Some systems support object queries
as well to some extent. It is observed that there might be a need for
enhancing object queries with color and/or shape descriptions. In addition
to this enhancement, allowing directional relation specifications among
objects within suspicious events might be helpful in some domains.

Query Types: The main contribution of the querying module in our
system is providing support to a wide range of event and object queries.
A classification of the types of queries handled can be listed as follows:

– Single Object Queries,
• Object Entering/Leaving Scene,

– Multi-Object Queries,
• Object Depositing/Object Picking Up,
• Objects Crossing Over.

We plan to extend the framework to support queries based on sus-
picious events in surveillance videos. By adding low-level and/or spa-
tial sub-queries, more complex queries can be submitted to the system.
Spatial sub-queries are more meaningful for queries involving multiple
objects. However, low-level sub-queries can be supplied for each object.
In real-life applications, low-level sub-query specification with high-level
descriptors might be sufficient (e.g., a man with a black coat entering
scene).

Query Language: An SQL-based querying language, which we call Vi-
sual Surveillance Query Language (VSQL), is designed to provide support
for integrated querying of indoor visual surveillance videos by spatial, se-
mantic, and low-level features. The query processing module extends the
querying capability by allowing low-level object feature specifications as
well as spatial relationships among the objects. In short, VSQL provides
support for semantic (suspicious event), spatial (relationships among ob-
jects), and low-level (object features at a specific suspicious event) sub-
queries for visual surveillance domain. Semantic sub-queries can be cou-
pled with either spatial or low-level, or both, to form complex queries. A
grammar for VSQL is presented in Appendix A.

VSQL identifies two single-object event conditions (enter, leave), and
three multi-object event conditions (deposit, pickup, and crossover) in a
scenario. The moving objects are classified into four categories, namely
person, object, pet, other, by a classification tool, which is developed out-
side the scope of the work in this paper [7]. The query processor counts
the number of moving objects specified in a query by tracing the enter
event conditions. A timegap value can be specified between event condi-
tions. The order of the events is considered to be unimportant if a timegap
value is not specified for an event condition pair of the same type (i.e.,
pair of single-object conditions or pair of multi-object event conditions).

Query Processing: The event and object information is stored in the
database is based on the frames at which an event is detected. This in-
cludes the low-level features of the objects appearing on that frame and
the spatial relations among them. By keeping the directional relations
among the objects, event querying can be refined by specifying direc-
tional predicates in the query. For example, while querying an event of
‘a person depositing an object’, the query can be enriched by directional
predicates so that ‘a person depositing an object to his west’ can also be
queried. Moreover, since the low-level features of moving objects are also
stored, more detailed queries can be submitted to the system effectively.

Based on the observation that rule-based model is effective for query-
ing video databases [19, 20], a rule-based model is designed for query-
ing visual surveillance videos. Our framework is to provide support for
scenario-based queries which are very difficult to handle in real-time sys-
tems. The submitted queries are sent to Prolog, which processes the
extracted event and object information is stored in the database (i.e.,
knowledge-base) based on a set of rules. Prior to the processing by Pro-
log, the query string is passed through lexical analyzer and a parse tree
is created. We are planning to embed a similarity-based metric in this
querying process, which will be used as a confidence value for the user.

3.5 Content-Based Retrieval Module

In this section, some real-life querying scenarios are provided. We as-
sumed a lobby of a hotel as our indoor environment for these scenarios.
Since our system focuses on database querying and retrieval issues, it is
assumed that there is a need to query the suspicious situation given in
the scenarios. A real-time visual surveillance system has to detect such
cases and inform the human operator for more security. It is also possible
that the human operator does not see any danger in the situation at the
time of the event. However, he may be informed later on that a danger-
ous situation has happened in one of the events triggered by the system.
Based on this argument, the assumption of the need to query suspicious
situations is not superficial.

Scenario 1: A person with a black coat enters a lobby.

select objectA from 1 where

objectA = objdata(class = person, color = black) and enter(objectA)

The event is a simple object appearance type of query. It is assumed that
the dominant color of the person is black, which is the color of his coat.

Scenario 2: A person enters a lobby with a bag, deposits his bag, and
leaves the lobby.

select segment from 1 where

objectA = objdata(class = person), objectB = objdata(class = object)

and enter(objectA) enter(objectB) deposit(objectA,objectB) leave(objectA)

The event described in this scenario is very crucial because unattended
bags are one of the primary sources of suspicious situations in indoor
environments. Additional descriptors for both person and bag improve the
quality of the retrieval. Directional descriptors can be added as well since
the directional relations are stored. Hence, the query phrase ‘deposits his
bag’ can be refined by ‘deposits his bag to his west’, which might give
better results. Then, the deposit condition will be as follows:

deposit(objectA,objectB,west)

Scenario 3: A person enters a lobby with a bag, after 3 seconds another
person enters the lobby, two persons meet and exchange the bag, then they
leave the lobby.

select segment from 1 where

objectA = objdata(class = person), objectB = objdata(class =

object),

objectC = objdata(class = person) and

enter(objectA) enter(objectB) 3 enter(objectC)

crossover(objectA,objectC) deposit(objectA,objectB)

pickup(objectC,objectB) leave(objectA) leave(objectC)

This scenario is an example of a ‘cross-over’, and generally real-time sys-
tems detect such events and inform human operators. If we consider a
quite crowded lobby, the number of crossovers is relatively large. Hence,
providing additional descriptors for persons and/or bag (both low-level
and directional) decreases the number of possible results of querying.
This directly shortens the time and helps the security persons to catch
the intruders.

Scenario 4: A person with a black coat enters a lobby with a yellow bag,
deposits the bag, another person with a white coat enters the lobby, picks
up the bag.

select segment from 1 where

objectA = objdata(class = person, color = black),

objectB = objdata(class = object, color = yellow),

objectC = objdata(class = person, color = white) and

enter(objectA) enter(objectB) deposit(objectA,objectB)

enter(objectC) pickup(objectC,objectB)

This scenario describes a sequence of deposit and pickup events without
crossover. Color descriptors are added for all of the objects acting in
the scenario. The leaving times of the persons are not of interest for the
querying of the event.

As mentioned in the scenarios, the suspicious events can be queried by
adding low-level features to (moving) objects and/or directional relations
for the event. This type of querying improves the retrieval quality and
decreases the search space. These gains are more meaningful when the
number of events to be searched in the database is relatively large.

4 Conclusion

In this paper, we propose a database model for an integrated querying
of visual surveillance videos by semantic and low-level features. The ap-
plication domain chosen is indoor monitoring environment video, which
fits most into our assumptions and which is simpler than other complex
environments. The system has a database population process that ex-
tracts necessary event and object information for effective querying. An
SQL-based querying language is designed to express the query types. A
wide range of event and object queries including semantic, spatial, and
low-level is supported.

As the database modeling process is evolving, improvements will be
made both in terms of database population and querying-and-retrieval
processes. The design and implementation of the query processing module
is an ongoing project, hence the above improvements will be employed
accordingly to handle a wide range of query set effectively.

References

1. Stringa, E., Regazzoni, C.: Real-time video-shot detection for scene surveillance
applications. IEEE Trans. on Image Processing 9 (2000) 69–79

2. Foresti, G., Marcenaro, L., Regazzoni, C.: Automatic detection and indexing of
video-event shots for surveillance applications. IEEE Trans. on Multimedia 4
(2002) 459–471

3. Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tol-
liver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video
surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Carnegie Mel-
lon University, The Robotics Institute (2000)

4. Brodsky, T., Cohen, R., Cohen-Solal, E., Gutta, S., Lyons, D., Philomin, V., Tra-
jkovic, M.: Visual surveillance in retail stores and in the home. In: Video-Based
Surveillance Systems: Computer Vision and Distributed Processing, Kluwer Aca-
demic Pub. (2001) 51–65

5. Latecki, L., Wen, X., Ghubade, N.: Detection of changes in surveillance videos.
In: IEEE Conf. on Adv. Video and Signal Based Surv. (AVSS’03). (2003) 237–242

6. Stefano, L.D., Mattoccia, S., Mola, M.: A change-detection algorithm based on
structure and colour. In: IEEE Conf. on Adv. Video and Signal Based Surv.
(AVSS’03). (2003) 252–259

7. Töreyin, B., Çetin, A., Aksay, A., Akhan, M.: Moving object detection in wavelet
compressed video. Signal Processing: Image Communication 20 (2005) 255–264

8. Jung, Y., Lee, K., Ho, Y.: Content-based event retrieval using semantic scene in-
terpretation for automated traffic surveillance. IEEE Trans. on Intelligent Trans-
portation Systems 2 (2001) 151–163

9. Eaton, R., Scassellati, B.: ViSIT: Visual surveillance and interaction tracking. In:
http://zoo.cs.yale.edu/classes/cs490/02-03a/ross.eaton/. (Social Robotics
Laboratory, Yale University, accessed at February 27, 2005)

10. Stringa, E., Regazzoni, C.: Content-based retrieval and real time detection from
video sequences acquired by surveillance systems. In: Int. Conf. on Image Process-
ing. (1998) 138–142

11. Regazzoni, C., Sacchi, C., Stringa, E.: Remote detection of abandoned objects in
unattended railway stations by using a DS/CDMA video surveillance system. In
Regazzoni, C., Fabri, G., Vernezza, G., eds.: Advanced Video-Based Surveillance
System, Boston, MA: Kluwer (1998) 165–178

12. Kim, C., Hwang, J.: Fast and automatic video object segmentation and tracking
for content-based applications. IEEE Trans. on Circuits and Systems for Video
Technology 12 (2002) 122–129

13. Kim, C., Hwang, J.: Object-based video abstraction for video surveillance systems.
IEEE Trans. on Circuits and Systems for Video Technology 12 (2002) 1128–1138

14. Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern
Analysis and Machine Intelligence 8 (1986) 679–698

15. Lyons, D., Brodsky, T., Cohen-Solal, E., Elgammal, A.: Video content analysis for
surveillance applications. In: Philips Digital Video Technologies Workshop. (2000)

16. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background
subtraction. In: Int. Conf. on Computer Vision and Pattern Recognition, Workshop
on Motion. (1999)

17. Haritaoğlu, İ., Harwood, D., Davis, L.: W4: Real-time surveillance of people and
their activities. IEEE Trans. on Pattern Analysis and Machine Intelligence 22
(2000) 809–830

18. Swain, M., Ballard, D.: Color indexing. Int. J. of Comp. Vis. 7 (1991) 11–32
19. Dönderler, M., Şaykol, E., Arslan, U., Ulusoy, Ö., Güdükbay, U.: BilVideo: Design

and implementation of a video database management system. Multimedia Tools
and Applications (accepted for publication) (2005)

20. Dönderler, M., Ö.Ulusoy, Güdükbay, U.: Rule-based spatio-temporal query pro-
cessing for video databases. The VLDB Journal 13 (2004) 86–103

21. Şaykol, E., Sinop, A., Güdükbay, U., Ulusoy, Ö., Çetin, E.: Content-based retrieval
of historical Ottoman documents stored as textual images. IEEE Trans. on Image
Processing 13 (2004) 314–325

A Grammar for Visual Surveillance Querying
Language(VSQL)

Visual Surveillance Query Language (VSQL) is designed to provide sup-
port for integrated querying of indoor visual surveillance videos by spatial,
semantic, and low-level features.

/* main query string */

<query> := select <target> from <range> [where <querycondition>] ‘;’

/* main query string components */

<target> := event | <objectlist> | segment

<objlist> := [<objlist> ‘,’] <objlabel>

<range> := all | <videolist>

<videolist> := [<videolist> ‘,’] <vid>

<querycondition> := <objectassignmentlist> and <scenario>

<objectassignmentlist> := [<objectassignmentlist> ‘,’] <objectassignment>

<scenario> := [<scenario> <timegap>] <eventcondition>

<eventcondition> := <entercondition> | <leavecondition>

| <depositcondition> | <pickupcondition> | <crossovercondition>

<objectassignment> := <objlabel> <objoperator> <objcondition>

/* single object query conditions */

<entercondition> := enter ‘(’ <objlabel> ‘)’

<leavecondition> := leave ‘(’ <objlabel> ‘)’

/* multi object query conditions */

<depositcondition> := deposit ‘(’ <multiobjcondition> ‘)’

<pickupcondition> := deposit ‘(’ <multiobjcondition> ‘)’

<crossovercondition> := crossover ‘(’ <multiobjcondition> ‘)’

<multiobjcondition> := <objlabel> ‘,’ <objlabel> [‘,’ <directional>]

<directional> := west | east | north | south | northeast | southeast

| northwest | southwest

/* object condition */

<objcondition> := objdata ‘(’ <objdesclist> ‘)’

<objdesclist> := [<objdesclist> ‘,’] <objdesc>

<objdesc> := class ‘=’ <classvalue> | <colordesc> | <shapedesc> | <texturedesc>

<colordesc> := color ‘=’ <colorlabel> | <colorvector>

<shapedesc> := [<shapedesc> ‘,’] <shapepair>

<texturedesc> := texture ‘=’ <textureid>

<colorvector> := [<colorvector> ‘,’] <colorpair>

<colorpair> := ‘(’ <intvalue> ‘,’ <doublevalue> ‘)’

<shapepair> := ‘(’ <intvalue> ‘,’ <doublevalue> ‘)’

/* primitive types */

<vid> := (1-9)(0-9)*

<timegap> := null | <intvalue>

<objlabel> := (a-z)(A-Za-z0-9)*

<objoperator> := ‘=’ | ‘‘!=’’

<classvalue> := person | object | pet | other

<intvalue> := (1-9)(0-9)*

<doublevalue> := <intvalue> ‘.’ <intvalue>

<colorlabel> := red | green | blue | yellow | white | black | orange | violet

<textureid> := (1-9)(0-9)* /* enumerated set of texture patterns */

