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1 | INTRODUCTION

A significant amount of computational time is dedicated to finding the nearest surface that a ray hits in ray tracing. With
the introduction of path tracing! for global illumination, the importance of fast nearest hit tests increased. Path tracing is a
form of ray tracing that uses the Monte Carlo method to generate realistic images. Path tracing requires a large number of
lightpaths to be simulated. The quality of the rendered image in path tracing depends directly on the number of simulated
lightpaths.

Given a scene and a ray, a naive way to find the nearest hit requires ®(N) computational cost, where N is the number
of primitives in the scene. This computational cost is high for most of the ray-tracing algorithms. To speed up ray-surface
intersection tests, various spatial acceleration structures, such as regular grids, octrees, k-d trees, bounding volume hier-
archies, are proposed in the literature. Such spatial acceleration structures reduce the number of ray-surface intersection
tests by eliminating some of the candidate primitives. In ray tracing, one can achieve substantial gains by using such
acceleration structures.

One alternative spatial acceleration structure is tetrahedralizations. Lagae and Dutré? proposed the use of constrained
tetrahedralizations as spatial acceleration structure. Aman et al.> showed that tetrahedralizations perform better than the
other structures for near-hits. Although constrained tetrahedralizations are alternatives to well-known acceleration struc-
tures, tetrahedralization algorithms’ shape quality requirements like minimum dihedral angle and non-self-intersecting
geometry make their usage limited in real-world ray-tracing applications. We propose a BVH-Tetrahedral mesh hybrid
acceleration structure (BTH), which combines the strengths of BVH and tetrahedralizations. The main contributions are
as follows.
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1. We propose a hybrid acceleration structure, BTH, composed of a BVH and tetrahedralizations at the leaf nodes. We
describe how we construct and traverse the proposed hybrid structure.

2. We propose methods to find an approximate nearest-hit cost for the tetrahedralization acceleration structure.

3. We show how we can adapt the hybrid structure to dynamic scenes.

The organization of the paper is as follows. Section 2 summarizes the existing acceleration structures, their strengths,
and weaknesses. Section 3 introduces construction and nearest-hit traversal algorithms for the BTH acceleration struc-
ture. We also describe the nearest-hit cost approximation methods for the tetrahedralization acceleration structure used
by the BTH construction algorithm. Section 4 shows how we can adapt the BTH structure for dynamic scenes. Section
5 presents the experimental setup and results of the experiments. Section 6 provides conclusions and future research
directions.

2 | BACKGROUND AND RELATED WORK
2.1 | Regular grids

One of the basic nearest hit acceleration structures is uniform grids. Uniform grids* subdivide the scene space into
uniform-sized cells. Each cell stores a list of primitives that occupy the cell. Multiple cells can contain the same primitive
if the primitive spans various cells. The nearest-hit traversal algorithm on grids, often referred to as the three-dimensional
digital differential analyzer (3D-DDA) algorithm, visits each cell along the ray. As each cell is traversed, all of the prim-
itives in the cell’s list are tested for intersections. The traversal stops when a cell contains a primitive that intersects the
ray. Since cells are tested in ray’s order, starting from the cell that ray’s origin resides in, along the ray’s direction. Clearly
and Wyvill> showed that for scenes with N evenly distributed small, equally sized primitives, optimal case is to subdivide
each axis into {/ﬁ cells, with minimum average @(f/ﬁ ) time and O(N) space complexity.

2.2 | k-dtrees

In k-d trees,’ a scene is recursively subdivided into two parts in such a way that the number of primitives on each side
of the dividing plane is more or less equal. A primitive is associated with a half-space if the half-space contains a part of
the primitive. If a primitive lies in both half-spaces, it is included in both sub-trees. The nearest-hit traversal in k-d trees
starts from the root. In each split, half-spaces are tested for intersection in the ray’s traversal order. Traversal descends
through the tree until a terminal node is reached. If a terminal node is encountered, each primitive inside the terminal
node is tested for intersection. The intersection nearest to the ray’s origin is reported.

Surface area heuristic (SAH)”® is the most commonly used heuristic for the construction of k-d trees. SAH estimates
the expected cost of the nearest-hit test for a long uniformly distributed random ray. Given a split s, we calculate the SAH
cost as

Ci

SAG) (n; SA(D) + n, SA(r)) + C, (@8]

Costsay(s) =

where the SA function calculates the node’s bounding box’s surface area. C; constant is the cost of the ray-primitive
intersection, C; constant is the cost of traversing a node. n; and n, are the numbers of primitives in the left and right
half-spaces. The SAH-based k-d tree construction further improved in.’

2.3 | Bounding Volume Hierarchies

One famous spatial acceleration structure is Bounding Volume Hierarchy (BVH). BVHs are composed of a hierarchy of
partitions. Each partition is represented by a volume that encloses all primitives in that partition. Unlike other accelera-
tion structures, BVHs partition primitives instead of subdividing the scene space; hence, bounding volumes can intersect.
Because BVHs partition primitives, primitives are not duplicated in BVHs, unlike k-d trees. Bounding volumes in the
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hierarchy provide a simple method for finding the nearest hit. If a ray does not pass through a bounding volume, prim-
itives represented by this bounding volume are not tested. Therefore, the nearest-hit algorithm recursively traverses the
hierarchy in depth-first order. If the algorithm encounters an inner node, the algorithm checks whether a ray passes
through the bounding volume. If the ray does not pass through the bounding volume, the algorithm does not traverse its
children. If the algorithm encounters a leaf node, it checks each primitive with the ray for an intersection. Since BVHs
bounding volumes can intersect, the algorithm does not stop when the first intersection is found. The algorithm needs to
test all possible nodes before finding the nearest hit.

Goldsmith and Salmon” proposed SAH and used incremental insertions for construction. Incremental construction
using SAH leads to poor quality BVHs. Miiller and Fellner!® used SAH to build a BVH in a top-down manner. Wald et al.!!
used centroid-based SAH partitioning to improve top-down construction with @(Nlog?(N)) average construction time.
Streamed binning idea from k-d trees!? are applied to BVHs by Wald!? to improve the runtime of the construction
algorithm.

2.4 | Tetrahedralizations
Tetrahedralizations are 3D equivalents of triangulations in a plane. Similarly, constrained tetrahedralization of a set of
points, line segments, and faces is a tetrahedralization that conforms to given constraints. Many tetrahedralization algo-
rithms assume that input constraints are formalized as Piecewise Linear Complex (PLC).!*# Recently, Hu et al.’s TetWild!>
tetrahedralization algorithm can generate tetrahedral meshes from triangle soup. Although their approach accepts any
kind of geometry that a triangle soup can represent, it generates an approximate tetrahedralization of the input geometry.
In the ray-tracing context, the constrained tetrahedralization of the scene is used as an acceleration structure. Faces
in the scene are considered constrained faces in tetrahedralization. Nearest-hit tests in the tetrahedralization structure
are similar to grids. Starting from the source tetrahedron, a tetrahedron containing the ray’s origin, each tetrahedron is
traversed in order using shared faces, one tetrahedron at a time. Unlike grids, instead of storing input faces inside cells,
in constrained tetrahedralization, input faces are stored as some of the tetrahedra’s faces. The traversal ends when a ray
hits such a face, and the face is reported as the nearest hit. To determine the next tetrahedron in traversal, Lagae and
Dutré? used the scalar triple product method. Maria et al.'® used Pliicker coordinates for determining the next tetrahedron
to improve traversal efficiency. Aman et al.3 proposed tetrahedralization representations for ray tracing. They proposed
Tet32, Tet20, and Tet16 tetrahedron storage schemes, along with nearest-hit traversal algorithms. Their traversal method
uses the projected 2D ray’s coordinates to traverse a tetrahedralization efficiently.

3 | BOUNDING VOLUME HIERARCHY-TETRAHEDRALIZATION HYBRID
STRUCTURE

The Bounding Volume Hierarchy-Tetrahedralization Hybrid (BTH) acceleration structure is composed of a BVH where
some leaves of the hierarchy contain tetrahedralizations of the primitives instead of primitive lists (see Figure 1 (a)).

Top Level BVH

FIGURE 1 The proposed
BVH-based hybrid

acceleration structures.

(a) BVH-Tetrahedralization
hybrid (BTH) structure.

(b) Two-Level BVH-BTH
structure

Tetrahedralization
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An axis-aligned bounding box encloses each tetrahedralization leaf node. Traversal in BTH structure is similar to BVH
traversal. We recursively traverse each node until we reach a leaf node. In the leaf node, if we have a tetrahedralization,
we traverse the tetrahedralization. Otherwise, we check each primitive in the leaf for an intersection. Since the faces
visited in tetrahedralizations are sorted according to the ray direction, we can exit the traversal early once we find a hit
in a tetrahedralization. BTH combines the strengths of BVH and tetrahedralization.We can construct BTH for the scenes
where scenes cannot be completely tetrahedralized. In BTH, a part of the geometry to be tetrahedralized can be selected
and used as a leaf node. The construction of BTH is faster than that of tetrahedralizations due to the non-linear complexity
of tetrahedralizations.

3.1 | Construction
We build a BVH using the existing SAH-based methods. Then, we transform the built BVH structure into a BTH structure.
We first construct a complete BVH for the given geometry. Then we select some nodes of the BVH structure to be a
tetrahedralization structure. We trim the selected nodes and construct tetrahedralizations for the nodes. We explain the
three steps of the top-down construction algorithm (see Procedure CONSTRUCTBTHTOPDOWN in Figure 2) as follows:
First Step: We use the binned BVH construction method!® to construct a BVH in a top-down fashion. We use the
SAH heuristic to build the BVH for the scene.
Second Step: We mark the suitable nodes that can be tetrahedralized. We choose not to tetrahedralize the
geometries with self-intersecting primitives as it is costly. In this step, we mark the BVH nodes that do not contain
self-intersecting primitives. We call such nodes as suitable nodes. We mark these nodes by a recursive algorithm that

1: procedure CONSTRUCTBTHTOPDOWN (primitives)
2 bvh < CONSTRUCTBVHTOPDOWN(primitives)
3 MARKSUITABLENODES(bvh)
4: bth < CONSTRUCTTETRAHEDRALIZATIONS(bvh)
5 return bth
6: end procedure
1: procedure MARKSUITABLENODES(node) 1: procedure BVHCOLLISION(node,, node,)
2 if node is a leaf node then 2: if node,.bounding_volume and
3 if node.primitives has no self intersection then node,.bounding_volume do not overlap then
4: MARKSUITABLE(node) 3: return
5: end if 4: end if
6 else 5: if node, and node, are leaf nodes then
7 | < node.left_child 6: CHECKINTERSECTION(node,, node,)
8: r < node.right_child 7: else
o: MARKSUITABLENODES(/) 8: if descend node, then
10: MARKSUITABLENODES(r) 9: BVHCOLLISION(node,.left_child, node,)
11: if / and r are suitable then 10: BVHCOLLISION(node,.right_child, node,)
12: if Lprimitives and r.primitives not intersect then 11: else
13: MARKSUITABLE(node) 12: BVHCOLLISION( node,, node,.left_child)
14: end if 13: BVHCOLLISION( node,, node,.right_child)
15: end if 14: end if
16: end if 15: end if
17: end procedure 16: end procedure
1: procedure BTHINTERSECT(node, ray)
1: procedure CONSTRUCTTETRAHEDRA (node) 2 if node is a leaf then
2 if node is marked then 3 if node is a tetrahedralization then
3 if Cost,,(node) < Costg,,(node) then 4: 7, < Find first tetrahedron
4 PRUNE(node) 5: TETRAHEDRAINTERSECT(ray, node, t,)
5: TETRAHEDRALIZE(node.primitives) 6 else
6: return 7 for all primitive in node do
7 end if 8: INTERSECT(primitive, ray)
8 end if 9: end for
9: if node is not a leaf node then 10: end if
10: CONSTRUCTTETRAHEDRA (node.left_child) 11: else
11: CONSTRUCTTETRAHEDRA (node.right_child) 12: BTHINTERSECT(node.left)
12: end if 13: BTHINTERSECT(node.right)
13: end procedure 14: end if
15: end procedure

FIGURE 2 Algorithms for the construction and traversal of the hybrid acceleration structure
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visits each node and checks for self-intersection (see Procedure MARKSUITABLENODES in Figure 2). The algorithm
marks the non-self-intersecting nodes starting from the leaf nodes. In leaf nodes, we check each pair of primitives for
self-intersection. If a node contains self-intersecting primitives, its parent must also include the same self-intersecting
primitives. If a node is marked as unsuitable, its parent is also marked as such. For an inner node, the algorithm
marks the node as suitable if the node’s children do not contain any self-intersecting primitives, and the children
nodes do not intersect with each other. To detect the collisions between two children nodes, we use the exist-
ing BVH structure. The BVH collision test algorithm (see Procedure BVHCOLLISION in Figure 2) checks whether
two BVH nodes are intersecting with each other.!” A descend rule is used to determine the node that should be
descended first.

We use the BVH we constructed in the previous step to find the self-intersection free nodes. A recursive algorithm
marks nodes containing no self-intersecting primitives, starting from the leaf nodes. If a node is a leaf node, we test
each pair of primitives in the node for self-intersection. For a non-leaf node, it does not contain self-intersecting prim-
itives if both children of the node are non-self-intersecting nodes and the children of the nodes do not intersect with
each other.

Third Step: We select the suitable nodes as tetrahedralization leaves. Starting from the root node, a recursive
algorithm (see Procedure CONSTRUCTTETRAHEDRA in Figure 2) traverses the BVH and selects nodes that are advanta-
geous to use as tetrahedralization leaves. Using the tetrahedralization nearest-hit cost heuristic, we determine whether
a node is beneficial to be tetrahedralized or left as a BVH node (cf. Section 3.3). Given a node, if the approximate aver-
age nearest-hit cost of traversing tetrahedralization is less than the SAH cost, we select the node as a tetrahedralization
node. If a node is chosen as a tetrahedralization node, we do not check its children. We convert the selected BVH
nodes into tetrahedralization leaves by pruning their children and constructing tetrahedralizations for the primitives
in the selected nodes. We use the axis-aligned bounding box of BVH nodes to bound each tetrahedralization. We use
Tetgen'8 software to tetrahedralize the primitive groups and use the tetrahedron representation in Reference [3] to store
tetrahedralizations.

3.2 | Traversal

The nearest-hit traversal for BTH (see Procedure BTHINTERSECT in Figure 2) is similar to the nearest-hit BVH traver-
sal. Starting from the root, we descent the hierarchy until we reach a leaf node. If the bounding box a node does not
intersect with the ray, we do not check its children for an intersection. When we encounter a leaf node, we perform
different intersection tests based on the leaf node type. If a leaf node does not contain a tetrahedralization, we test
for a ray-primitive intersection for all primitives in the node. Otherwise, we traverse the tetrahedralization using the
traversal method proposed in Reference [3]. Starting from the initial tetrahedron, we process the tetrahedralization struc-
ture, one tetrahedron at a time, until the ray hits a primitive face or exits the tetrahedralization. Nearest-hit traversal
on tetrahedralization requires determining the initial tetrahedron that the ray hits. Appendix A provides the details of
this process.

3.3 | Nearest-hit cost calculation

BTH construction algorithm builds tetrahedralizations for nodes that are advantageous to be tetrahedralized. Given a
BVH node, the algorithm constructs tetrahedralization if the average nearest-hit cost of tetrahedralization of the node’s
primitives is less than the SAH cost of the corresponding BVH branch. We calculate the approximate cost assuming the
rays are distributed uniformly in space and rays originated from the outside of the geometry. The approximate nearest-hit
cost on tetrahedralization directly depends on the number of tetrahedra traversed. We define the approximate cost of
traversing a tetrahedralization as

COStTET(nOde) = Cer X Navg(Tnode), (2)
where Cy is the cost of traversing a single tetrahedron in tetrahedralization, and Ngyg(7ro4e) is the average number of tetra-

hedra traversed during nearest-hit traversal for 7;,4.. To calculate the cost, we first calculate approximation of Nyyg(Tnode)-
Then using Equation 2 we calculate the Costrgr(node). We propose three different ways to approximate Ngg(Trode);



60f11 Wl LEY AMAN ET AL.

sampling-based cost calculation, average depth-based cost calculation, and face count-based cost calculation. Among these,
only the sampling-based calculation requires a tetrahedralization to be present. Others, approximate the cost without
requiring a tetrahedralization. Appendices B and C describe the nearest-hit cost calculation methods and the nearest-hit
cost selection process, respectively.

4 | ANIMATED SCENES

There are two approaches to updating the acceleration structure when the geometry changes in dynamic or animated
scenes. The first approach is to rebuild the entire acceleration structure. Although rebuilding provides a simple way to
adapt to the changing geometry, it can be an expensive operation for some structures. The second approach is to update
the existing acceleration structure by updating parts that changed. Although this is more efficient than rebuilding the
entire structure, updates reduce the acceleration structure’s quality, reducing the nearest-hit efficiency.

We can categorize dynamic scenes according to the types of motion that the objects perform. In scenes with hier-
archical motion, groups of primitives move in the same way. In incoherent motion, the primitives move independently
from each other. Depending on the characterization of motion, different algorithms are suitable for adapting acceleration
structures.

Because BTH includes a BVH, most of the dynamic BVH algorithms also work for BTH. When modifying a BVH update
algorithm into a BTH algorithm, we have to take care of tetrahedralization leaf nodes. One can apply small deformations
to a scene without requiring any update to the tetrahedralization.? We will describe how we can adapt BTH to dynamic
scenes that perform hierarchical motions.

41 | Two-level BTH for hierarchical motion

If the primitives exhibit hierarchical motion, we can use two-level (multi-level) hierarchies!® as an acceleration structure.
For such a two-level hierarchy, we group the primitives and build an acceleration structure for each group. Constructed
acceleration structures are the bottom-level of the two-level acceleration structure. When building bottom-level accelera-
tion structures, we use the local reference frames of the objects. Then, we construct a top-level acceleration structure for
the bottom-level acceleration structures. In two-level hierarchies, the nearest-hit traversal starts from the node at the top
level. When we reach a bottom-level node, we transform the ray into the object’s reference frame and test it for an inter-
section. When a primitive makes a rigid body motion, only the top-level needs to be rebuilt or updated since primitives
in the bottom-level acceleration structure do not change. A side benefit of two-level acceleration structures is they sup-
port instancing. When the scene contains duplicate objects, we can use the same bottom-level structure to represent the
duplicated objects.

We use BVH as the top-level and BTH as the bottom-level acceleration structure for animated scenes (see Figure 1 (b)).
For each object in the 3D scene, we construct a BTH structure. Then we combine these bottom-level structures into
the top-level using a BVH. For the construction of BVH, we used the midpoint to partition the bottom-level nodes. In
each animation frame, we rebuild the top-level BVH using updated coordinates of the objects. The midpoint partitioning
scheme allows us to reconstruct the top-level efficiently for each animation frame.

5 | EXPERIMENTAL RESULTS
5.1 | Experimental setup

We conduct experiments on a computer with six cores @3.2 GHz (Intel i7-9750H), 16 GB of main memory. We construct
the acceleration structures on a single thread. We render images at 1920x1080 resolution. For ray tracing, we used a
multi-threaded 16x16 tile-based rendering method using only primary rays. Our BTH implementation is based on the
BVH implementation of Pbrt?°® and we use TetGen!8 for tetrahedralizations. We used Aman et al.3 Tet32 and Tet20 tetra-
hedral representations and named our acceleration structures accordingly, that is, BTH32 and BTH20. For comparison,
we used BVH and k-d tree implementations of Pbrt. We used models from McGuire’s Computer Graphics Archive.?! The
Crown model is from Lubich.??
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5.2 | Results
5.2.1 | Static scenes

We used a variety of scenes to compare the BTH structure to other acceleration structures. Table 1 compares the
construction and rendering times of our hybrid acceleration structures (BTH32 and BTH20) against other structures
(BVHs and k-d trees) for a set of scenes. The scenes in this table cannot be tetrahedralized directly. Hence, we did
not compare tetrahedralization-based acceleration structures in this table. Table 2 compare the construction and ren-
dering times of our hybrid acceleration structures (BTH32 and BTH20) against other acceleration structures, including
tetrahedralization-based acceleration structures, BVHs, and k-d trees, for a set of scenes that can be directly tetrahedral-
ized without any preprocessing.

In most cases, BTH performs better than BVH, which is because of the tetrahedralization traversal cost heuris-
tic. As long as the tetrahedralization traversal cost approximation is accurate, the BTH construction algorithm selects
the tetrahedralizations that improve the rendering (ray tracing) cost. For some cases, k-d tree performs better than
BTH in terms of the rendering cost. In general, k-d tree performs worse than BTH when the scene contains a large
amount of intersecting geometry. Many intersecting geometries cause many duplicate primitives in k-d tree struc-
ture. Therefore, self-intersections affect k-d tree negatively, for both construction and rendering times. On the other
hand, self-intersections have a negligible effect on BTH. If a scene contains a high number of self-intersections, these
self-intersecting geometry is stored in BVH leaves in the BTH structure.

Compared to BVH, the BTH construction algorithm is always significantly slower than the BVH construction
algorithm because of the need for tetrahedralization. Firstly, TetGen uses algorithms with O(N?) worst-case computa-
tional complexity. Secondly, robust tetrahedralization with exact arithmetic slows down the tetrahedralization process. In
some cases, BTH outperforms the k-d tree. When a scene contains a lot of intersecting geometry, the construction of the
k-d tree takes a significant amount of computation time, which we can see in the Hairball model. Since the intersecting
geometry is stored in BVH nodes of BTH, BTH performs well.

Rendering using the hybrid BTH structure is faster than rendering with tetrahedralizations. Besides, BTH requires less
time to construct in all cases than tetrahedralizations. Another advantage of BTH over tetrahedralizations is that we can
build BTH for any 3D geometric models. On the other hand, we can construct tetrahedralizations for non-self-intersecting
geometries, or we must perform a self-intersection removal step before tetrahedralization. Experimental results show that
BTH20 has a faster rendering speed than BTH32. It is because Tet20 used in BTH20 requires less memory than Tet32 used

TABLE 1 Construction and rendering times (ms) for different acceleration structures on scenes that cannot be directly tetrahedralized.
We compare BTH32 and BTH20 with BVH? and k-d tree?

Scenes

Torus knot Armadillo

Bmw Hairball Lumberyard Crown Sponza San Miguel Vokselia

No. faces 2,880 345,938 2,505,992 385,162 2,880,000 1,020,907 3,540,310 262,267 9,980,699 1,875,632

Construction times

BTH32  103.20 496.21 3,558.79 4,293.72 14,527.30  2,873.49 24,365.30  1,944.00 18,569.90  4,690.44
BTH20  101.79 476.33 3,485.51 4,197.93 14,541.70  2,786.16 24,311.90 1,951.73 18,536.50  4,643.17
BVH 2.43 341.56 2,640.36 359.97 2,976.25  1,025.23 3,808.49 245.38 11,185.10 1,546.62
k-dtree  24.26 1,459.58 14,127.60  2,489.23  62,846.80 9,315.58 26,292.00 2,028.37 77,815.50  4,521.61

Rendering times

BTH32  14.94 80.09 145.74 92.18 274.73 444.60 241.61 378.73 550.58 186.13
BTH20  14.66 76.88 140.46 87.73 266.58 423.91 231.10 349.98 516.49 173.60
BVH 17.50 79.75 145.59 94.36 271.20 459.61 242.66 384.20 586.89 190.15

k-d tree 15.13 95.09 166.78 88.345 313.78 419.74 247.21 213.80 315.46 194.70
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TABLE 2 Construction and rendering times (ms) for different acceleration structures on scenes that can be directly tetrahedralized. We
compare BTH32 and BTH20 with tetrahedralization-based acceleration structures,> BVH? and k-d tree?

Scenes

Armadillo-2 Mix-2 Mix close
No. faces 345,938 2,505,992 2,505,992

Construction times Rendering times

Armadillo-2 Mix-2 Mix Close Armadillo-2 Mix-2 Mix Close
BTH32 2,398.8 4,473.5 4,593.5 79.54 142.37 232.23
BTH20 3,367.7 4,485.8 4,468.8 77.95 140.70 218.13
Tet32 8,392.1 89,949.7 91,551.4 150.84 312.55 363.67
Tet20 8,380.4 90,291.4 90,564.1 118.28 252.76 273.62
BVH 373.1 2,683.6 2,683.3 78.71 143.45 224.06
k-d tree 1,460.6 14,830.4 14,090.6 98.18 164.56 254.79

in BTH32. The small memory requirement of the tetrahedron representation of BTH20 leads to higher cache utilization
than that of BTH32. BTH32 and BTH20 structures require approximately similar construction times.

5.2.2 | Dynamic scenes

Figure 3 show still frames from the animations of the rotating armadillo, the random motion, and the falling hairballs,
respectively, rendered using the two-level BVH-BTH structure. Please see the supplementary video for these animations.

FIGURE 3 Still frames from the animated scenes rendered using the two-level BVH-BTH structure. First row: Rotating Armadillo.
Second row: Random Motion. Third row: Falling hairballs.
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TABLE 3 Construction and average rendering times per frame (ms) of different acceleration structures for the
animated scenes. We compare our BTH32 and BTH20 structures with BVH.% See Figure 3 for the models.

Scenes
Rotating Armadillo Random Motion Falling Hairballs
No. faces 345,938 1,020,907 12,860,699
No. objects 1 101 101
Construction times Average rendering times (per frame)
Rotating Random Falling Rotating Random Falling
Armadillo Motion Hairballs Armadillo Motion Hairballs
BTH32 2,403.3 8,831.5 37,920.2 70.88 675.51 721.06
BTH20 2,466.7 9,075.9 38,030.4 70.14 659.55 699.02
BVH 363.14 1,609.1 14,409.5 70.84 671.56 737.32

We compared the performance of the two-level BVH structure against that of the two-level BVH-BTH structure. Table 3
shows the results. In general, the proposed two-level BVH-BTH structure using BTH20 at the lower level is faster than
the two-level BVH structure.

6 | CONCLUSIONS AND FUTURE RESEARCH

We propose the BVH-Tetrahedralization Hybrid structure for accelerating the nearest-hit tests for the ray tracing
algorithm. We tested our acceleration structure with different scenes. We showed that we could improve the BVH struc-
ture’s rendering time by converting it into a BTH hybrid structure. Our experiments show that, in all cases, the proposed
BTH20 acceleration structure outperforms the BVH structure in terms of rendering times at the cost of slower construc-
tion times. We proposed two methods for approximating average nearest-hit costs for tetrahedralization structures. We
show that the proposed cost calculation methods can provide good approximations for the average nearest-hit cost on
tetrahedralized scenes.

Additionally, we can use the two-level acceleration structure for dynamic scenes with hierarchical motions. Our exper-
iments show that the two-level BVH-BTH outperforms the two-level BVH-BVH for the tested scenes where the objects
perform hierarchical movements. Some possible future work areas are as follows:

1. Adapting BTH for scenes with deforming geometries: One advantage of using tetrahedralizations in BTH is that they
do not require refitting for small deformations. For animated scenes with deforming geometry, we could use BVH
update methods to update BTH. We could also use BTH for rendering animated frames of articulated bodies with
nonrigid limbs.

2.  Exploiting ray connectivity for secondary rays: In hierarchical acceleration structures, it is hard to exploit ray
connectivity. The nearest-hit test starts from the root of the hierarchy for secondary rays. On the other hand, tracing
secondary rays is easy on tetrahedralizations. After a primary ray hits a surface, secondary rays can continue from
there without an initialization step. Similarly, we can trace secondary rays in tetrahedralizations on the leaves of a
BTH hierarchy.
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