
Appendix: Multi-level Tetrahedralization-based Accelerator for
Ray-tracing Animated Scenes

Aytek Aman1 | Serkan Demirci1 | Uğur Güdükbay1 | Ingo Wald2

1Department of Computer Engineering, Bilkent University, Ankara, Turkey
2 NVIDIA, Salt Lake City, UT, USA

A | FINDING INITIAL TETRAHEDRON

Nearest-hit traversal on tetrahedralization requires determining the initial tetrahedron that the ray hits (cf. Figure 1). If the ray’s
origin is inside the boundary of the tetrahedralized area, we use the point-location method in1 to find the tetrahedron that
contains the ray’s origin as the initial tetrahedron. If the ray originates from outside the tetrahedralization, we use the faces of
the bounding box of the tetrahedralization to find the boundary tetrahedron that the ray first hits. We first locate the point that
the ray hits on the boundary. Then we find the face that contains the intersection point. After finding the boundary face, we find
the tetrahedron that the face belongs to using a lookup table.

FIGURE 1 Finding the initial tetrahedron in a tetrahedralization. The initial tetrahedron can be found using the bounding face
that the ray hits (shaded region).

B | NEAREST-HIT COST CALCULATION

We describe three ways to approximate the average nearest-hit cost; sampling-based cost calculation, average depth-based cost
calculation, and face count-based cost calculation. For evaluating the approximation methods, we use tetrahedralizations of
models from the Thingi10k2 data set.

0Abbreviations: BVH, Bounding Volume Hierarchy; BTH, Bounding Volume Hierarchy-Tetrahedralization Hybrid Acceleration Structure; k-d tree, k-dimensional
tree

2 Aman ET AL

B.1 | Sampling-based Cost Calculation
We calculate the cost using the following Monte Carlo approach; given a tetrahedralization, we randomly sample rays that
originate at the boundary of the tetrahedralization. Then we traverse the tetrahedralization along the ray, counting the number
of tetrahedra traversed. We calculate the average number of tetrahedra traversed from sampled rays as

Nsampling(node) ≈
1
n

n
∑

0
Nrayi(node) (1)

where n is the number of sampled rays and Nrayi(node) is the tetrahedra count for the randomly sampled ray rayi. With this
approach, the approximated average tetrahedra count’s accuracy gets better as the number of sampled rays increases. Although
this approach can approximate the tetrahedra count well, it requires an existing tetrahedralization. Constructing a tetrahedral-
ization for each possible node in the BVH hierarchy is slow and not feasible. We only used this method to evaluate other
approximation methods that approximate the tetrahedra count without requiring a tetrahedralization to be constructed.

B.2 | Average Depth-based Cost Calculation
The average depth-based calculation estimates the average number of tetrahedra traversed during nearest-hit traversal by esti-
mating the rays’ average depth sampled on the boundary of the tetrahedralization. The relation between the average ray depth
and tetrahedra count is formalized using Theorem 1:

Theorem 1. Let s be a line segment starts and ends within the given tetrahedralization  . s must stab at least ‖s‖
l∗max

tetrahedra of
 , where l∗max is the length of longest edge in  .

Ns() ≥
‖s‖
l∗max

. (2)

Proof. Let � be a tetrahedron that the line segment intersects. It can be shown that the length of the intersection cannot be greater
than l�max, where l

�
max is the length of the longest edge of �. Therefore,

‖s ∩ �‖ ≤ l�max. (3)
By using Equation 3 for each tetrahedron that intersects s, we can sum all the lengths, as in Equation 4:

‖s‖ =
∑

�∈
‖s ∩ �‖ ≤

∑

�∈
l�max. (4)

Since l�max < l
∗
max for all � ∈  from Equation 4, we get Equation 5.

‖s‖ ≤ Ns()l∗max. (5)

By using Theorem 1, we can derive an approximation for the average number of traversed tetrahedra as follows:

Ndepth(node) ≈
davg

l∗avg
, (6)

where davg is the average depth of rays in the tetrahedralization and l∗avg is the average length of the edges of the constrained
faces. To estimate the average depth of rays, davg, we used the z-buffer algorithm to calculate a depth map (see Figure 2) for
each side of a bounding box of the constrained faces. The calculation of the depth map with resolution R requires (NR2) time
complexity in the worst case. Using the calculated depth map, we estimated the average depth. Although the depth map only
contains the depth of equally spaced axis-aligned rays, it is fast, and it can estimate average depth well for most of the models.
Figure 3 (a) compare the average depth- and sampling-based methods. As it is seen in the figure, the average depth-based cost

calculation method underestimates the cost. To resolve this, we modified Equation 6 as

Ndepth(node) ≈
davg

l∗avg
+ C, (7)

where C is a constant value.

Aman ET AL 3

(a) Rendering (b) Depth map

FIGURE 2 The average depth estimation using depth map. The elephant model is the courtesy of Zhou and Jacobson2.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
Relative Difference (Ndepth −Nsampling)/Nsampling

0

50

100

150

200

250

300

350

400

C
ou

nt

Ndepth Relative Difference (Compared against Nsampling)

(a)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
Relative Difference (Ncount −Nsampling)/Nsampling

0

50

100

150

200

250

300
C

ou
nt

Ncount Relative Difference (Compared against Nsampling)

(b)

FIGURE 3Comparison of the cost estimationmethods. (a) The histogram of relative difference of the tetrahedron count between
the average depth- and sampling-based estimation methods. (b) The histogram of relative difference of the tetrahedron count
between the primitive count-based and the sampling-based estimation methods.

B.3 | Primitive Count-based Cost Calculation
We observe that the average traversed tetrahedra count is related to the cube root of the number of primitives, which is similar
to the runtime complexity of regular grids (Θ(3

√

N)) shown by Clearly and Wyvill3. We define primitive count-based cost as

Ncount(node) ≈
3
√

|F |. (8)
where |F | is the number of primitives. Figure 3 (b) show the comparison of primitive count- and sampling-based methods. We
can see that theNcount can approximate the average tetrahedron count well.

C | TETRAHEDRALIZATION NEAREST-HIT COST SELECTION

The average depth and primitive count-based tetrahedralization cost methods allow us to select tetrahedralizations based on
their estimated cost automatically. Both cost estimation methods rely on Ctet, the cost of traversing a single tetrahedron in

4 Aman ET AL

(a) Ctet = 0.1 (b) Ctet = 0.2 (c) Ctet = 0.3

FIGURE 4 Tetrahedralizations of BTH constructed using different Ctet values. Different tetrahedralizations are colored
differently. Gray color is used for faces in the BVH structure.

TABLE 1BTH32 statistics for varyingCtet. “Render” is the rendering time using raytracing. “Constr” is the construction time for
the acceleration structure. “Tet_pri” is the number of primitives at the leaf nodes of the BVH that are tetrahedralized. “BVH_pri”
is the number of primitives at the leaf nodes of the BVH that are not tetrahedralized. Times are in milliseconds (ms).

Primitive count-based cost Average depth-based cost
Scenes Ctet 0.1 0.3 0.5 0.7 1.0 0.1 0.3 0.5 0.7 1.0

A
rm

ad
ill
o Render 134 137 86 80 83 137 101 81 80 81

Constr 18,592 16,297 1,298 482 479 16,777 4,368 2,151 2,024 2,044
Tet_pri 345,938 330,809 30,980 0 0 345,938 88,923 1,024 0 0
BVH_pri 0 15,129 314,958 345,938 345,938 0 257,015 344,914 345,938 345,938

Lu
m
be
ry
ar
d Render 467 492 476 489 478 481 485 482 475 480

Constr 6,155 4,800 3,179 2,552 1,971 6,322 4,516 3,420 2,686 2,349
Tet_pri 119,242 81,051 55,083 32,720 20,121 117,371 80,258 56,919 34,636 24,717
BVH_pri 901,665 939,856 965,824 988,187 1,000,786 903,536 940,649 963,988 986,271 996,190

Sp
on

za

Render 413 411 409 414 404 410 408 405 408 408
Constr 364 361 331 310 308 365 369 344 338 316
Tet_pri 4,764 4,764 2,035 0 0 4,764 4,764 2,035 2,035 0
BVH_pri 257,503 257,503 260,232 262,267 262,267 257,503 257,503 260,232 260,232 262,267

tetrahedralization. Different values of Ctet leads to different BTH structures (see Figure 4). In general, as Ctet increased, the BTH
construction algorithm selects and constructs fewer tetrahedralizations.
Although we defined Ctet as the cost of traversing a single tetrahedron, we used Ctet as a parameter for the construction of

BTH. We performed a grid search on various models to select the best value for Ctet. We used the construction and rendering
times in Tables 1 and 2 to select the best Ctet. Because BTH32 and BTH20 have different tetrahedra traversal times, we decided
to select Ctet values for them separately. For BTH32, we decided to use 0.7 for Ctet. For BTH20, we decided that 0.5 is a good
choice for Ctet. Additionally, Tables 1 and 2 show the effect of changing Ctet. As Ctet increases, more primitives at the leaves of
the BVH structure are tetrahedralized; hence, the construction of the structure takes more time.
We also utilize Tables 1 and 2 to select the cost method. These tables show that tetrahedralizations built by both the average-

depth-based cost and primitive count-based cost methods can speed-up the rendering times of BTH. Although the average
depth-based cost method’s calculation takes more computation time than the primitive count-based cost method, the rendering
times of the average depth-based cost method are usually faster than the primitive count-based cost method. In the experiments,
we only use the average depth-based method to construct BTH structures.

Aman ET AL 5

TABLE 2 BTH20 statistics for varying Ctet. Confirm Table 1 caption for details.

Primitive count-based cost Average depth-based cost
Scenes Ctet 0.1 0.3 0.5 0.7 1.0 0.1 0.3 0.5 0.7 1.0

A
rm

ad
ill
o Render 112 111 75 81 79 112.60 84.38 77.47 77.93 76.99

Constr 18,883 15,812 1,302 466 491 16,751 4,200 2,031 2,028 1,985
Tet_pri 345,938 330,809 30,980 0 0 345,938 88,923 1,024 0 0
BVH_pri 0 15,129 314,958 345,938 345,938 0 257,015 344,914 345,938 345,938

Lu
m
be
ry
ar
d Render 449 447 450 451 450 451 449 452 451 449

Constr 6,204 4,371 3,139 2,398 1,981 6,374 4,405 3409 2699 2329
Tet_pri 119,242 81,051 55,083 32,720 20,121 117,371 80,258 56,919 34,636 24,717
BVH_pri 901,665 939,856 965,824 988,187 1,000,786 903,536 940,649 963,988 986,271 996,190

Sp
on

za

Render 392 392 388 381 380 387 376 379 376 379
Constr 364 377 333 307 304 376 365 332 336 310
Tet_pri 4,764 4,764 2,035 0 0 4,764 4,764 2035 2035 0
BVH_pri 257,503 257,503 260,232 262,267 262,267 257,503 257,503 260,232 260,232 262,267

References

1. Aman A, Demirci S, and Güdükbay U. Compact Tetrahedralization-based Acceleration Structure for Ray Tracing. arxiv
preprint. 2021;arXiv:2103.02309.

2. Zhou Q, and Jacobson A. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint. 2016;arXiv:1605.04797.

3. Cleary JG, and Wyvill G. Analysis of an Algorithm for Fast Ray Tracing Using Uniform Space Subdivision. The Vis Comp.
1988;4(2):65–83.

	Appendix: Multi-level Tetrahedralization-based Accelerator for Ray-tracing Animated Scenes
	A | Finding Initial Tetrahedron
	B | Nearest-Hit Cost Calculation
	C | Tetrahedralization Nearest-Hit Cost Selection
	References

