
REGULAR PAPER

Aytek Aman • Serkan Demirci • Uğur Güdükbay

Compact tetrahedralization-based acceleration
structures for ray tracing

Received: 27 September 2021 / Revised: 12 March 2022 /Accepted: 3 April 2022 / Published online: 12 May 2022
� The Visualization Society of Japan 2022

Abstract We propose compact and efficient tetrahedral mesh representations to improve the ray-tracing
performance. We reorder tetrahedral mesh data using a space-filling curve to improve cache locality. Most
importantly, we propose efficient ray-traversal algorithms. We provide details of the regular ray-tracing
operations on tetrahedral meshes and the GPU implementation of our traversal method. We demonstrate our
findings through a set of comprehensive experiments. Our method outperforms existing tetrahedral mesh-
based traversal methods and yields comparable results to the traversal methods based on the state-of-the-art
acceleration structures such as k-dimensional (k-d) tree and Bounding Volume Hierarchy (BVH) in terms of
speed. Storage-wise, our method uses less memory than its tetrahedral mesh-based counterparts, thus
allowing larger scenes to be rendered on the GPU.

Keywords Ray tracing � Ray-surface intersection � Acceleration structure � Tetrahedral mesh �
Bounding volume hierarchy (BVH) � k-dimensional (k-d) tree

1 Introduction

The most common approach to speed up ray-surface intersection calculations in ray tracing is to use spatial
subdivision structures that partition the scene to enclose the polygons in different volumes. Ray-tracing
algorithms can avoid ray-triangle intersection tests if the enclosing volume for a triangle does not intersect
with the ray. Popular acceleration structures are regular grids, octrees, Bounding Volume Hierarchy (BVH),
and k-dimensional (k-d) tree. BVH and k-d tree are the most preferred acceleration structures for ray tracing,
thanks to the recent advancements in the construction and traversal methods.

A recent alternative to accelerate ray-surface intersection calculations is to use tetrahedralizations. A
tetrahedral mesh is a three-dimensional (3D) structure that partitions the 3D space into tetrahedra. Con-
strained tetrahedralizations are a special case of tetrahedralizations that take the input geometry into
account. In the resulting mesh, the components of the input geometry such as faces, line segments, and
points are preserved. Similar to their two-dimensional (2D) counterparts, tetrahedralizations can be

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12650-
022-00842-x.

A. Aman � S. Demirci � U. Güdükbay (&)
Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
E-mail: gudukbay@cs.bilkent.edu.tr

A. Aman
E-mail: aytek.aman@cs.bilkent.edu.tr

S. Demirci
E-mail: serkan.demirci@bilkent.edu.tr

J Vis (2022) 25:1103–1115
https://doi.org/10.1007/s12650-022-00842-x

http://orcid.org/0000-0003-2462-6959
https://doi.org/10.1007/s12650-022-00842-x
https://doi.org/10.1007/s12650-022-00842-x
https://doi.org/10.1007/s12650-022-00842-x
https://doi.org/10.1007/s12650-022-00842-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-022-00842-x&domain=pdf
https://doi.org/10.1007/s12650-022-00842-x

constructed in such a way that they exhibit Delaunay property, i.e., tetrahedra are close to regular. There are
three types of constrained tetrahedralizations: Conforming Delaunay Tetrahedralization, Constrained
Delaunay Tetrahedralization, and Quality Delaunay Tetrahedralization (Lagae and Dutré 2008a).

Lagae and Dutré (2008a) use constrained tetrahedral meshes for rendering typical 3D scenes. They
tetrahedralize the space between objects in a constrained manner where the triangles in the scene geometry
align with the triangles of the tetrahedral mesh. Then, they calculate ray-triangle intersections by traversing
the tetrahedral mesh. Because a tetrahedral mesh is not a hierarchical structure, ray-surface intersections are
mostly calculated by traversing a few tetrahedra. Besides, this approach has the advantages of providing a
unified data structure for global illumination, handling deforming geometry if the topology (connectivity) of
the mesh does not change, easily applying level-of-detail approaches, and ray tracing on the Graphics
Processing Unit (GPU). Despite these advantages, the state-of-the-art traversal methods for tetrahedral
meshes, such as Scalar Triple Product (ScTP), are still a magnitude or two slower than the k-d tree-based
traversal, as Lagae and Dutré (2008a) state. We aim to improve the performance of the tetrahedral mesh-
based traversal for ray tracing as follows.

– We propose a compact tetrahedral mesh representation to improve cache locality and to utilize memory
alignment.

– We sort tetrahedral mesh data (tetrahedra and points) using a space-filling curve to improve cache
locality.

– We propose an efficient tetrahedral mesh traversal algorithm using a modified basis that reduces the cost
of point projection, which is frequently used during traversal.

– We utilize the GPU to speed up the ray-surface intersection calculations.

We also propose a technique to associate vertex attributes (normals, texture coordinates, and so on) with the
tetrahedral mesh data. Through experiments, we observe that our method performs better than the existing
tetrahedral mesh-based traversal methods in terms of the computational cost. In certain scenes, especially
the scenes with challenging geometry where there are long, extended triangles, we observe a better
rendering performance than the k-d tree and BVH implementations of the pbrt-v3 (Pharr et al. 2016).
Although this method cannot replace and improve upon the state-of-the-art accelerators (such as BVH and k-
d tree) because of its disadvantages in its current form, its orthogonal strengths compared to the alternatives
make it valuable and promising. This is especially important for aggregate structures where accelerators
with different advantages can be combined to have the best of both worlds.

2 Related work

2.1 Acceleration structures

First proposed by Fujimoto et al. (1988), a regular grid partitions the 3D scene into equally sized boxes
where each box keeps a list of triangles. During traversal, some well-known algorithms such as the three-
dimensional digital differential analyzer (3D DDA) can be used to quickly determine the boxes that intersect
with the ray. Although there are compact and robust acceleration structures such as the one proposed in
Lagae and Dutré (2008b), one major disadvantage of the regular grid is its non-adaptive structure. The
majority of the grid cells may not contain any triangles, while some grid cells may have a large number of
triangles, which increases the average traversal cost.

One of the popular structures in the literature is BVHs. A BVH is a collection of hierarchical bounding
volumes that enclose the objects in the scene. BVHs improve the ray-tracing performance by culling the
scene geometry using bounding volume intersection tests. Therefore, less triangle-ray intersection tests have
to be performed compared to the brute force full scene traversal. Modern BVH construction techniques
employ Surface Area Heuristic (SAH) (Goldsmith and Salmon 1987) to construct acceleration structures
that perform well. The state-of-the-art BVHs are constructed using a greedy top-down plane-sweeping
algorithm proposed by Goldsmith et al (1990), which is extended by Stitch et al. (2009) using spatial splits.
Wodniok et al. (2017) use recursive SAH values of temporarily constructed SAH-built BVHs to reduce ray-
traversal cost further.

The octree is another spatial indexing structure that is used to accelerate ray tracing (Glassner 1984). It
divides the space into eight subspaces in a recursive manner. During ray tracing, the octree is used to index
the scene into subspaces and it is useful to determine the subspaces that intersect with the rays. After an
octree is constructed, triangles that reside in these subspaces can be queried and the closest intersection with

1104 A. Aman et al.

the rays can be found by performing a relatively small number of ray-surface intersection tests compared to
the brute force approach.

Similar to the octree, the k-d tree is also a space partitioning structure that divides the space into two sub-
spaces at each level by alternating the split axis. To reduce the average ray-traversal cost on a k-d tree, these
split planes are selected using the SAH, which is proposed by MacDonald and Booth (1990). SAH-based k-d
tree construction approaches are later improved by Havran and Bittner (2002). Wald et al. (2006) propose a
SAH-based k-d tree construction scheme with OðN logNÞ computational complexity. The k-d trees con-
structed using the SAH are adaptive to the scene geometry. This means that if a ray is not in the proximity of
any scene geometry, only a few tree nodes are traversed. This reduces the computation cost of ray tracing on
scenes where primitives in the scene are not uniformly distributed, which is a common scenario for 3D
scenes.

In many ray-tracing applications, rays share a common point such as rays that originate from the camera
or rays that are cast to the light sources after ray-surface intersections. The structures that are discussed
above do not exploit the characteristics of such rays in ray tracing. There exist better structures that take
advantage of rays that share a common point in space and creates indices accordingly. Light Buffer (Haines
and Greenberg 1986) is an approach that partitions the scene according to one light source in the scene,
which is then used for shadow testing. Hunt et al. (2008) propose the perspective tree, which is similar to the
Light Buffer that uses a 3D grid in a perspective space considering the position of the light source or the
camera as root.

2.2 Tetrahedral mesh construction and traversal

Given an input geometry, a tetrahedral mesh can be constructed using well-known algorithms in compu-
tational geometry. TetGen (Si 2015) is a commonly used tool to generate tetrahedral meshes. TetGen uses
Bowyer-Watson algorithm (Bowyer 1981; Watson 1981) and the incremental flip (Edelsbrunner and Shah
1992) algorithms. Both methods have the worst-case complexity of OðN2Þ. If points are uniformly dis-
tributed in space, the expected run-time complexity is OðN logNÞ. To ensure numerical robustness, robust
geometric predicates are used (Shewchuk 1996).

There are tetrahedral mesh-based traversal methods used for accelerating ray-surface intersection cal-
culations. Lagae and Dutré (2008a) use ScTP to traverse the tetrahedral mesh. Their method requires the
computation of three to six ScTP to determine the exit face. ScTP computation involves a cross-product
followed by a dot product on 3D vectors. Maria et al. (2017b) propose a fast tetrahedral mesh traversal
method, which uses an efficient exit face determination algorithm based on Plücker coordinates.

Our method uses an efficient traversal method that works in 2D, resulting in very few floating-point
operations per tetrahedron compared to these alternatives. Our data structures are also compact and memory
aligned. We also use a space-filling curve to further improve cache locality. Maria et al. (2017a; 2014) also
propose a new acceleration structure for ray tracing, constrained convex space partition (CCSP), as an
alternative to tetrahedral mesh-based acceleration structures. CCSP is more suitable for architectural
environments because such a partitioning of a scene contains a smaller number of convex volumes, rather
than a large number of tetrahedra.

2.3 Raycasting for direct volume rendering

Direct volume rendering methods for rendering irregular grids, mostly represented as unstructured tetra-
hedral meshes, rely on raycasting and the composition of shades of samples along the rays throughout the
volume to calculate pixel colors. For example, Silva et al. (1996; 1997) use a sweeping plane first applied in
the x-z plane, and then a sweeping line applied on the z-axis. They process these sweep lines further to
render volumetric data stored as an irregular grid. Berk et al. (2003) focus on the usage of hybrid methods to
utilize the strengths of image- and object-space methods. They rely on a next-cell operation for determining
the next tetrahedron that the ray travels, as proposed by Koyamada et al. (1992).

Garrity (1990) uses a simple traversal method where the ray is intersected with tetrahedra faces and the
closest intersection gives the exit face for the tetrahedron. Koyamada (1992) uses two (on average) point-in-
triangle tests in 2D to determine the exit face. Riberio et al (2007) use a more compact data structure for
reduced memory usage during traversal. They also utilize ray coherence to reduce run-time memory usage.
Later on, they (Maximo et al. 2008) improved this method by providing a hardware implementation with
additional arrangements of the data structure for reduced memory usage. Marmitt and Slusallek (2006) use a

Compact tetrahedralization-based acceleration structures for ray tracing 1105

method proposed by Platis and Theoharis (2003), which employs Plücker coordinates of the ray and the
tetrahedron edges to determine the exit face. They use the entry face information to reduce the number of
tests to determine the exit face. They find the exit face using 2.67 ray-line orientation tests per tetrahedron
on average.

Alternatively, cell trees (based on bounding interval geometry) Garth and Joy (2010) and tetrahedral
trees Fellegara et al. (2020) provide efficient ways to answer point location queries in tetrahedral meshes
thus can be used to speed up sampling operations in volumetric rendering. However, these techniques cannot
be used efficiently to answer ray-triangle intersection queries. Additionally, these structures are not designed
for tetrahedron traversal in a consecutive fashion.

We provide a fast and compact acceleration structure to quickly find ray-surface intersections for
rendering 3D scenes composed of polygons (surface data). As opposed to direct volume visualization
methods, our acceleration structure can handle queries for random rays scattered in different directions,
given that their origin is already located (ray connectivity). Direct volume rendering techniques are geared
toward rendering volumetric data from a specific camera position and orientation. In a recent work, our
tetrahedral ray-traversal scheme is adapted to tetrahedron traversal (marching) consecutively for direct
volume rendering methods for better cache utilization and reduced computational cost (Sahistan et al. 2021).

3 Tetrahedral mesh representation

We use a compact tetrahedral mesh representation for good cache utilization. We store tetrahedral mesh in
two arrays as in Lagae and Dutré (2008a). The first array stores the point data, and the second array stores
the tetrahedron data. Figure 1 depicts the tetrahedron data representation for typical scenarios.

Instead of using this representation, we propose three tetrahedron storage schemes that are more compact
and better suited for efficient traversal: Tet32, Tet20, and Tet16, which are 32, 20 and 16 bytes, respectively.
We store a common field, exclusive-or sum (xor-sum), in all these structures, inspired by xor linked list
structures for reducing the memory requirements of linked lists (Sinha 2005). Mebarki (2018) uses a similar
structure for compact 2D triangulations. VXi denotes the xor-sum of the vertex indices of the ith tetrahedron
and Vi

j denotes the index of the jth vertex of the ith tetrahedron. We compute the xor-sum as follows.

VXi ¼ Vi
0 � Vi

1 � Vi
2 � Vi

3

Tet32 structure contains the first three vertex indices, xor-sum of all vertex indices, and four neighbor
indices. Its memory layout is shown in Fig. 2.

With the Tet32 representation, we can use the xor operation to quickly retrieve the index of the vertex
that is not on a given face. We can get the index of the fourth point Vi

3 as follows.

Vi
3 ¼ Vi

0 � Vi
1 � Vi

2 � VXi:

This follows from the fact that xor operation is associative, commutative, and has the property X � X ¼ 0.
If the corresponding face is a part of the scene geometry, neighbor index data points to a structure, called

constrained face. We use a single bitmask to identify such faces on the neighbor tetrahedron index field
where the remaining 31 bits are used to reference either a neighboring tetrahedron or a constrained face
depending on the value of the bitmask. Constrained face structure holds a reference to the actual triangle
geometry and stores references to the neighboring two tetrahedra indices. These indices are used to recover
and initialize the tetrahedron data when scattering rays are to be traced. It should be noted that multiple
constrained faces can point to a single triangle when we allow triangles to be subdivided during tetrahe-
dralization to enable high-quality tetrahedral meshes.

The xor-based storage scheme has the following advantages:

Fig. 1 Typical tetrahedron representation in the memory. Vi
j represents the index of the j’th vertex of the i’th tetrahedron. Ni

j
represents the neighboring tetrahedron index, which is across the vertex Vi

j . Each field is an integer and four bytes long. Thus,
the full tetrahedron data occupies 32 bytes of memory

1106 A. Aman et al.

– XOR-based representations are compact thus require less memory. Hence, the cache memory can be
utilized more efficiently to reduce the rendering times. Additionally, more data can be fitted to the
memory, especially critical for GPU implementations.

– Fetching the subsequent tetrahedron data becomes straightforward. Thanks to Xor representation, only
one additional vertex needs to be fetched, and it can be fetched easily by XORing all the vertex indices
making the traversal code more straightforward and efficient.

Our alternative tetrahedral representations, namely Tet20 and Tet16, are even more efficient since their
compact nature results in better cache utilization. These representations can be used in the exact same way
during traversal since we can reconstruct full tetrahedron data given that traversal operations exhibit ray
connectivity. However, both representations require additional operations to reconstruct tetrahedron data.
These representations and operations required to reconstruct the tetrahedron data are explained in Appendix
A.

4 Tetrahedron traversal

As the first step of tetrahedron traversal, we construct a 2D basis b ¼ ðu; vÞ from the ray direction using the
method described in Duff et al. (2017). Then, we define a new 2D coordinate system C with basis b and
origin o where ro is the ray origin. We transform tetrahedron vertices to the coordinate system C to obtain
four points in 2D. We determine the exit face in the initial tetrahedron using at most four points in triangle
tests in 2D. The query point is at the origin because the ray origin is the center of the new coordinate system
C. Once we determine the exit face, we keep the 2D coordinates and indices of the points of the exit face as
p0; p1; p2 and idx0; idx1; idx2, respectively. We also fetch the next tetrahedron index using the neighbor data.

After the initialization step, we start traversing the tetrahedral mesh. We first fetch the index of the fourth
corner of the next tetrahedron (three of them are already known because two neighboring tetrahedra share
three vertices) using the following expression where XVnext denotes the xor sum of the next tetrahedron.

idx3 ¼ idx0 � idx1 � idx2 � XVnext

Using the index idx3, we fetch the vertex from the points array, transform it to the new coordinate system, C,
and use the resulting 2D point p3 to decide the exit face of the ray (cf. Algorithm 1). Because the query point
is at the origin after transformation, only four floating point multiplications and two floating point com-
parisons are sufficient. The exit face index is denoted as exit face idx and resides across the point
pexit face idx whose index is idxexit face idx. To get the next tetrahedron, we use the idxexit face idx in the
current tetrahedron data to fetch the corresponding neighbor tetrahedron index. Figure 3 illustrates the
coordinate system transformation for a ray and a tetrahedron.

Fig. 2 Tet32 structure. Each field is an integer and four bytes long. The tetrahedron data occupies 32 bytes of memory

Fig. 3 Ray-tetrahedron intersection. Left: a ray and a tetrahedron. Middle: the tetrahedron transformed into the coordinate
system defined by the ray. The ray coincides with the z-axis. Right: the tetrahedron projected onto 2D. The ray is at the origin
and points to the viewer

Compact tetrahedralization-based acceleration structures for ray tracing 1107

In Tet32, we simply search for idxexit face idx in the current tetrahedron. Since vertex and neighbor
indices correspond to each other, location of the idxexit face idx (value from 0 to 3) also reveals the location
of the neighbor to be traversed next. We describe this process in Algorithms 2 and 3.

If the neighbor index points to a constrained face or tetrahedral mesh boundaries, we terminate the
traversal. Otherwise, knowing the next tetrahedron, we discard pi and idxi by replacing its contents with the
newly fetched point data p3 and idx3. We repeat this process until a geometry is intersected or the tetrahedral
mesh boundaries are reached. In this method, no further modifications are necessary to ensure vertex
ordering because the counterclockwise ordering is always preserved for points on the exit face.

Fetching a new vertex id requires three bitwise exclusive-or operations. The coordinate system trans-
formation of the newly fetched point is six floating-point multiplications and four floating-point additions.
We decide whether a face is an exit face by using four floating-point multiplications and two floating-point
comparisons. Finally, we determine the next tetrahedron index using the appropriate method for the pre-
ferred structure.

Please confirm Appendix B for tetrahedron traversal algorithms for the alternative tetrahedral repre-
sentations Tet20 and Tet16 and Appendix C for further traversal optimization using a special basis con-
structed from the ray direction for point projection. Additionally, Appendix D provides the implementation
details about handling common ray-tracing operations.

5 Reordering tetrahedral mesh data

We reorder points and tetrahedra in memory to improve cache locality during ray traversal. For this purpose,
we use a two-step method. In the first step, we detect if there are distinct regions in the tetrahedralization.

1108 A. Aman et al.

Each closed surface in the input geometry divides the space into two regions (outside and inside regions).
These regions occur when a set of tetrahedra is completely enclosed by a set of constrained faces. Because
the rays are traced until a constrained face is encountered, the tetrahedra from different regions are not
visited in a single ray traversal, which is not the case for multi-hit traversal methods. Thus, we store the
tetrahedra that belong to the same region close together in memory. Furthermore, we reorder points based on
their positions and tetrahedra based on their center points. We map points to memory using a Hilbert curve
(see Fig. 4). Hilbert curve is a space-filling curve that can be used to map spatial data from three dimensions
to one dimension by preserving the locality. This means that primitives that are close to each other in 3D
space are also close to each other in one dimension.

6 GPU Implementation

For the GPU implementation, we use the CUDA platform. Once we build the tetrahedral mesh-based
acceleration structure, the tetrahedra and points data are copied to the GPU. We store the constrained face
data on the host computer because it is not a part of the hot data, which is frequently accessed during
traversal. Once initialization is complete, the steps to render a single frame are as follows.

1. We identify the source tetrahedron on the CPU.
2. We pass the batch of rays and the source tetrahedron to the global memory of the GPU.
3. CUDA kernels run for each ray, traversing the scene, and terminate when they hit the scene geometry.
4. We store the results of the intersection calculations in the global memory of the GPU and then passed

them to the main memory. We use these results to perform shading and to generate additional rays.

Our method can be trivially implemented for the CUDA platform. However, this trivial implementation does
not provide the best performance on the GPU in terms of computation speed. Thus, we perform the
following optimizations to make our method run faster on the GPU.

1. We project ray origin to the 2D coordinate system beforehand. When projecting the newly fetched
point, translation is performed on the 2D coordinate system instead of a 3D one. Thus, instead of using
the origin in 3D, we use projected origin in 2D. This potentially results in fewer occupied registers on
the GPU, resulting in better performance. We compute the projected origin, po, as follows:

Fig. 4 Sorting tetrahedron data. Top left: The three-dimensional scene. Top right: Unsorted tetrahedron data. Bottom left:
Tetrahedron data sorted using an Hilbert curve. Bottom right: Tetrahedron data sorted using an Hilbert curve and mesh regions.
Memory positions are coded with different colors. Tetrahedra close in memory are represented with similar colors. Tetrahedron
data are stored in a contiguous manner

Compact tetrahedralization-based acceleration structures for ray tracing 1109

po ¼ ðu � ro; v � roÞ; ð1Þ

where ðu; vÞ is the 2D basis constructed from the ray. During traversal, we can project the new point to the
2D plane as follows:

p3 ¼ ðu � vnew � pox; v � vnew � poyÞ; ð2Þ

where p3 is the projected point and vnew is the newly fetched point from the next tetrahedron.
2. We make use of CUDA textures when accessing tetrahedral mesh data. To optimize traversal in Tet20

and Tet16 structures, we use a single channel integer texture (32 bytes). To use it, the required elements
are the xor field and one neighbor field for Tet20, the xor field and one or two neighbor fields for Tet16.
We fetch and store these in local stack; potentially reducing the number of registers used.

7 Experimental results

We compare our approach to k-d tree, BVH, and the state-of-the-art tetrahedral mesh-based methods,
namely the ScTP-based traversal (Lagae and Dutré 2008a) and the Plücker coordinate-based traversal
(Maria et al. 2017b). We use the k-d tree and SAH-based BVH implementations, as described in Wald
(2007); Gunther et al. (2007). We use the original implementation provided by Maria et al. (2017b) for the
Plücker coordinate-based traversal.

We use TetGen (Si 2015) to generate the tetrahedral mesh of the 3D scene. We perform experiments on a
computer with six cores @3.2 GHz (Intel), 16 GB of main memory, and NVIDIA GTX 1060 with 6 GB of
memory. On the CPU, we render the scenes at a resolution of 1920� 1440 using multi-threading by
subdividing the image into 16� 16 tiles and assigning them to available threads. To make a fair comparison
between our method and the other state-of-the-art approaches, we render the same scene many times and
pick the best result for each method to avoid noisy measurements due to background processes.

Tables 1 and 2 show the computational costs of the construction of acceleration structures and rendering
times of different traversal methods. The test scenes in Table 2 cannot be tetrahedralized using TetGen. We
tetrahedralized them using TetWild (Hu et al. 2018) and used the remeshed geometry as input. To test the
adaptiveness of the structures in a challenging scene geometry, we include the versions of the scenes with
bounding boxes composed of large triangles. Experiments show that our method performs better than the
ScTP- (Lagae and Dutré 2008a) and Plücker coordinate-based traversal methods (Maria et al. 2017b) in all
scenes. It performs better than the BVH-based traversal in seven of the fifteen scenes and better than the k-d
tree-based traversal in six of the fifteen scenes. In the other scenes that BVH- and k-d tree-based traversal
methods perform superior to our tetrahedral mesh-based traversal, the rendering times are mostly close to
each other. While testing the state-of-the-art tetrahedral-mesh-based traversal methods of (Lagae and Dutré
2008a; Maria et al. 2017b), we sorted the tetrahedral meshes using space-filling curves for a fair compar-
ison. Although the construction times of BVH and k-d tree are lower than that of the tetrahedral meshes, the
tetrahedral mesh is constructed during preprocessing, and it does not affect the ray-tracing performance for
the scenes that do not require the update of acceleration structures. The tetrahedral mesh does not need to be
updated for dynamic scenes where the topology does not change. If the topological changes to a tetrahe-
dralization are local, the tetrahedral mesh can be updated with efficient insertion and removal operations
(Lagae and Dutré 2008a).

Table 3 shows rendering times of tetrahedral mesh-based methods for test scenes on the GPU. Tet20
representation gives the best performance, which is around 15% faster than Maria’s method while occupying
much less memory (half of the memory required by Maria’s method in the largest scene). Tet16 repre-
sentation requires even less memory but it is not as fast as Tet20 (roughly the same performance as Maria’s
method) due to more memory and arithmetic operations needed to decode compressed neighbor data.

Table 4 shows the memory costs for different acceleration structures on different scenes. Our most
compact structure, Tet16, can be stored using significantly less memory than the other tetrahedral-mesh-
based alternatives, Tet-mesh-ScTP (Lagae and Dutré 2008a) and Tet-mesh-80 (Maria et al. 2017b), which
provides two benefits. First, accelerators for much larger scenes can fit the main memory or GPU global
memory. Second, this small footprint provides much better performance by facilitating cache locality. Our
smallest accelerator data are memory aligned (16 bytes per tetrahedron). Memory usage of the k-d tree tends
to be affected considerably by the distribution of the primitives in the scene, thus resulting in a smaller or
larger accelerator size in different scenes. On the other hand, memory used for a BVH structure is always

1110 A. Aman et al.

smaller than its tetrahedra-mesh-based counterparts. It should be noted that BVHs and tetrahedra-mesh-
based accelerators exhibit orthogonal strengths, which can be combined for better results, as demonstrated in

Table 1 Computational costs of acceleration structures and rendering times for traversal methods.

Scenes

Torus knots Torus knots in a box Armadillo Armadillo in a box Neptune

Scene statistics
of triangles 77,760 77,772 345,938 345,950 448,896
of tetrahedra 270,036 270,351 1,027,749 1,021,965 1,240,582
Construction times (in seconds)
Tet-mesh-ScTP 3.596 3.638 16.733 20.252 79.822
Tet-mesh-80 3.656 3.663 16.595 20.143 79.657
Tet-mesh-32 3.753 3.643 16.659 20.262 79.536
Tet-mesh-20 3.778 3.658 16.704 20.444 79.573
Tet-mesh-16 3.640 3.524 16.546 19.919 79.846
BVH 0.078 0.079 0.391 0.396 0.474
k-d tree 0.739 0.590 1.454 1.651 2.265
Rendering times (in milliseconds)
Tet-mesh-ScTP 261.5 293.4 232.5 306.7 268.9
Tet-mesh-80 244.1 278.9 218.1 262.4 236.5
Tet-mesh-32 150.7 181.7 148.5 182.5 158.7
Tet-mesh-20 125.8 142.3 117.1 145.3 127.1
Tet-mesh-16 136.3 152.4 124.6 153.2 135.9
BVH 152.7 192.2 78.1 126.1 78.7
k-d tree 139.9 214.4 85.7 182.3 81.7

Scenes

Neptune in a box Mix Mix in a box Mix close Mix in a box close

Scene statistics
of triangles 448,908 2,505,992 2,506,004 2,505,992 2,506,004
of tetrahedra 1,242,883 7,259,175 7,252,946 7,259,175 7,259,193
Construction times (in seconds)
Tet-mesh-ScTP 155.478 124.208 170.216 124.840 485.950
Tet-mesh-80 156.381 125.081 169.116 125.068 482.908
Tet-mesh-32 153.788 124.000 169.502 123.183 487.291
Tet-mesh-20 155.580 124.087 169.890 124.015 483.827
Tet-mesh-16 154.644 124.493 170.175 123.401 484.516
BVH 0.487 2.968 3.017 2.966 2.997
k-d tree 2.471 13.889 14.668 13.846 16.624
Rendering times (in milliseconds)
Tet-mesh-ScTP 279.6 402.6 430.0 449.5 455.0
Tet-mesh-80 261.0 355.7 384.7 411.2 419.6
Tet-mesh-32 176.1 247.2 268.5 265.5 269.9
Tet-mesh-20 137.0 196.3 211.1 205.6 210.2
Tet-mesh-16 152.0 223.9 241.4 237.4 240.3
BVH 120.4 144.6 187.9 224.9 253.8
k-d tree 162.6 143.5 214.8 193.1 213.6

We compare our Tet-mesh-32, Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-ScTP (Lagae and
Dutré 2008a), Tet-mesh-80 (Maria et al. 2017b), BVH (Pharr et al. 2016), and k-d tree (Pharr et al. 2016)

Compact tetrahedralization-based acceleration structures for ray tracing 1111

Aman et al. (2021). This approach allows dynamic scenes to be rendered by combining two structures: a
top-level acceleration structure, a BVH, and a bottom-level acceleration structure, a tetrahedral mesh.

Figure 5 demonstrates the effect of the tetrahedral mesh sorting on rendering performance. Even though
sorting is not vital for performance in small scenes, it significantly improves the rendering performance in
large scenes. Please confirm Appendix E for the comparison of the performance of our tetrahedral mesh-
based traversal with that of other acceleration structures based on the camera distance.

Although representations of Lagae and Dutre (2008a) and Maria et al. (2017b) and our method use
similar mesh representations, the performance difference between them is because of the following reasons:

– Memory operations per tetrahedron: We only fetch one point per tetrahedron, thanks to the xor-based
storage scheme. In Tet-mesh-ScTP and Plücker-based method, all four points are fetched from the

Table 2 Computational costs of acceleration structures and rendering times for traversal methods (remeshed scenes).

Scenes

Rungholt far Rungholt default Rungholt close Exhaust pipe left Exhaust pipe right

Scene statistics
of triangles 3,580,928 3,580,928 3,580,928 6,244,678 6,244,678
of tetrahedra 8,381,071 8,381,071 8,381,071 18,480,542 18,480,542
Construction times (in seconds)
BVH 4.230 4.247 4.212 7.771 7.767
k-d tree 37.140 37.078 37.039 66.462 66.403
Rendering times (in milliseconds)
Tet-mesh-ScTP 554.035 525.523 436.716 333.291 344.483
Tet-mesh-80 488.299 466.933 400.589 312.152 320.361
Tet-mesh-32 353.444 333.274 265.337 202.472 207.239
Tet-mesh-20 282.211 265.337 215.118 163.814 166.619
Tet-mesh-16 313.335 293.351 238.027 183.198 186.125
BVH 198.140 227.333 243.165 177.263 187.540
k-d tree 119.589 127.948 126.434 114.358 121.114

We compare our Tet-mesh-32, Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-ScTP (Lagae and
Dutré 2008a), Tet-mesh-80 (Maria et al. 2017b), BVH (Pharr et al. 2016), and k-d tree (Pharr et al. 2016)

Table 3 Rendering times of tetrahedral mesh-based acceleration structures on the GPU.

Scenes

Torus Knots Armadillo Neptune Mix Rungholt Exhaust Pipe

Scene statistics
of triangles 77,760 345,938 448,896 2,505,992 3,580,928 6,244,678
of tetrahedra 270,036 1,027,739 1,240,582 7,259,175 8,381,071 18,480,542
Kernel execution time (in milliseconds)
Tet-mesh-ScTP 20.021 19.612 20.898 43.910 43.633 22.560
Tet-mesh-80 7.790 7.136 7.941 13.454 14.360 9.023
Tet-mesh-32 19.541 18.950 20.958 42.690 44.544 21.320
Tet-mesh-20 6.156 5.803 6.529 11.322 12.172 6.931
Tet-mesh-16 7.120 6.477 7.328 12.157 13.444 8.231

We compare our Tet-mesh-32, Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-ScTP (Lagae and
Dutré 2008a) and Tet-mesh-80 (Maria et al. 2017b)

1112 A. Aman et al.

memory. Although three of them will be in the cache because three points are shared between tetrahedra,
it still costs more than fetching only one point.

– Compact storage: Our method requires less memory than the approaches we compare. This speeds up
the computations because the cache utilization is high. This also allows us to render larger scenes since
more geometry can be fitted to the memory.

– Arithmetic operations per tetrahedron: Tet-mesh-ScTP relies on a scalar triple product, which accounts
for 40 floating point operations on average to compute the terms. Similarly, the method proposed by
Maria et al. (2017b) also works in 3D, thus resulting in more expensive computations. On the other hand,
our transformed 2D coordinate system results in very few arithmetic operations (13 floating-point
operations). Because we project points as soon as they are fetched from the memory, they occupy few
registers. In Tet-mesh-ScTP, there may be a possible performance loss due to more register usage.

– Determining the next tetrahedron: In our method, we never take the previous tetrahedron into account as
the next tetrahedron to visit (similar to Maria et al. (2017b)). However, Tet-mesh-ScTP takes all four
neighbors into account by computing 3–6 scalar triple products to determine the next tetrahedron, which
makes the computations more costly. Besides, this may reduce the effectiveness of the branch prediction
as well because there are more candidate neighbors.

Table 4 Memory requirements of various acceleration structures.

Scenes

Torus knots Armadillo Neptune Mix Rungholt Exhaust pipe

Scene statistics
of triangles 77,760 345,938 448,896 2,505,992 3,580,928 6,244,678
of tetrahedra 270,036 1,027,739 1,240,582 7,259,175 8,381,071 18,480,542
Accelerator size (in megabytes)
kd-tree 19.9 7.8 27.4 97.1 512.0 1417.8
BVH 4.7 20.4 10.6 150.0 175.6 380.0
Tet-mesh-ScTP 12.3 49.4 61.2 352.1 406.1 885.1
Tet-mesh-80 20.6 78.4 94.6 553.8 639.4 1410.0
Tet-mesh-32 12.3 49.4 61.2 352.1 406.1 885.1
Tet-mesh-20 9.2 37.7 47.0 269.0 310.2 673.6
Tet-mesh-16 8.2 33.7 42.2 241.3 278.2 603.1

We compare our proposed tetrahedra-mesh-based Tet-mesh-32, Tet-mesh-20, and Tet-mesh-16 structures with the state-of-the-
art tetrahedra-mesh-based acceleration structures, Tet-mesh-ScTP (Lagae and Dutré 2008a) and Tet-mesh-80 (Maria et al.
2017b), and other types of acceleration structures, Bounding Volume Hierarchy (BVH), and k-d tree. Because Tet-mesh-32 and
Tet-mesh-ScTP use the same tetrahedral mesh representations, their memory requirements are the same

Torus Knots Armadillo Neptune Mix Mix Close
0

0.1

0.2

0.3

0.4

R
en

de
ri
ng

ti
m
e
(s
ec
.)

None Hilbert Hilbert-regions

Fig. 5 Rendering times for unsorted and sorted tetrahedral mesh data

Compact tetrahedralization-based acceleration structures for ray tracing 1113

8 Conclusions and future research directions

We propose methods for fast tetrahedral mesh traversal for ray tracing. Specifically, we propose compact
and memory-aligned tetrahedral mesh data structures. We use a space-filling curve to improve cache
locality. We propose efficient traversal methods to improve ray-tracing performance and provide its GPU
implementation. Experiments show that our approach can reduce rendering times substantially and perform
better than other alternatives in different scenarios. There are two main limitations of using tetrahedral
meshes as acceleration structures in ray-tracing complex 3D scenes.

– Tetrahedral mesh generation process is computationally costly and requires a significant amount of
memory than the alternative methods.

– Our current implementation is not able to construct a tetrahedral mesh acceleration structure for scenes
with intersecting geometry. We can overcome this limitation by a preprocessing step where mesh
intersections are resolved so that the resulting geometry is a piecewise linear complex (Miller et al.
1996), as proposed in Lagae and Dutré (2008a).

Other areas for further research regarding contemporary ray-tracing concepts are as follows.

– Non-triangular models: The proposed acceleration structure does not support non-triangular models.
Recent research by Hu et al. (2019) provide a way to build triangulations with curve constraints. The
extension of this method to 3D with surface constraints can act as an accelerator, which could be a
potentially interesting and challenging research direction.

– Real-time rebuilds: Although our approach allows real-time manipulation of the geometry by certain
deformers (smooth, C1 continuous) naturally, it is not very easy to have real-time rebuilds on changing
geometry, which is well-supported by the state-of-the-art BVHs.

We plan to experiment with the triangulations with curve constraints (Hu et al. 2019). The extension of this
method to 3D would allow us to render parametric 3D surfaces directly using tetrahedralizations. Another
potential use case is volume visualization. Even though the adaptation of our approach to direct volume
rendering would result in a slower traversal (and possibly overlap with the approach employed by Marmitt
et al. (2006)), there are still two potential improvements it can provide:

i) First, our compact structure would result in better cache utilization, reducing the computation time.
ii) Second, this structure would need little memory and enable visualization of large models that can fit
into the memory. This is even more critical in GPU, where the memory is relatively limited.

Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/s12650-
022-00842-x.

Acknowledgements This research is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK)
under Grant No. 117E881. We are grateful to Dr. Maxime Maria and his colleagues for providing us their implementation of
the tetrahedral mesh traversal method.

References

Aman A, Demirci S, Güdükbay U, Wald I (2021) Multi-level tetrahedralization-based accelerator for ray-tracing animated
scenes. Comput Anim Virtual World 32(3–4):e2024

Berk H, Aykanat C, Gudukbay U (2003) Direct volume rendering of unstructured grids. Comp & Graph 27:387–406
Bowyer A (1981) Computing dirichlet tessellations. Comput J 24(2):162–166
Duff T, Burgess J, Christensen P, Hery C, Kensler A, Liani M, Villemin R (2017) Building an orthonormal basis, revisited.

J Comp Graph Tech 6(1):1–8
Edelsbrunner H, Shah NR (1992) Incremental topological flipping works for regular triangulations. In: Proc. Eighth Ann.

Symp. Comp. Geom., ACM, New York, NY, USA, SCG ’92, pp 43–52
Fellegara R, Floriani LD, Magillo P, Weiss K (2020) Tetrahedral trees: A family of hierarchical spatial indexes for tetrahedral

meshes. ACM Trans Spat Algo Syst 6(4):23, 34 p
Fujimoto A, Tanaka T, Iwata K (1988) ARTS: accelerated ray-tracing system. In: Joy KI, Grant CW, Max NL, Hatfield L (eds)

Tutorial: Computer Graphics. Image Synthesis, Computer Science Press Inc, New York, NY, USA, pp 148–159
Garrity MP (1990) Raytracing irregular volume data. In Proc. Eighth Joint Eurographics/IEEE VGTC Conf. Vis., ACM, New

York, NY, USA, VVS ’90, pp 35–40
Garth C, Joy KI (2010) Fast, memory-efficient cell location in unstructured grids for visualization. IEEE Trans Vis Comput

Graph 16(6):1541–1550
Glassner AS (1984) Space subdivision for fast ray tracing. IEEE Comp Graph App 4(10):15–24

1114 A. Aman et al.

https://doi.org/10.1007/s12650-022-00842-x
https://doi.org/10.1007/s12650-022-00842-x

Goldsmith J, Salmon J (1987) Automatic creation of object hierarchies for ray tracing. IEEE Comp Graph App 7(5):14–20
Gunther J, Popov S, Seidel HP, Slusallek P (2007) Realtime ray tracing on GPU with BVH-based packet traversal. In Proc.

IEEE Symp. Interactive Ray Tracing, IEEE Computer Society, Washington, DC, USA, RT ’07, pp 113–118
Haines E, Greenberg D (1986) The light buffer: a shadow-testing accelerator. IEEE Comp Graph App 6(9):6–16
Havran V, Bittner J (2002) On improving kd tree for ray shooting. J WSCG 10:209–216
Hu Y, Zhou Q, Gao X, Jacobson A, Zorin D, Panozzo D (2018) Tetrahedral meshing in the wild. ACM Trans Graph 37(4):60
Hu Y, Schneider T, Gao X, Zhou Q, Jacobson A, Zorin D, Panozzo D (2019) TriWild: Robust triangulation with curve

constraints. ACM Trans Graph 38(4):52
Hunt W, Mark W (2008) Adaptive acceleration structures in perspective space. In: Proc. IEEE Symp. Interactive Ray Tracing,

RT ’08, pp 11–17
Koyamada K (1992) Fast traverse of irregular volumes. In: Kunii TL (ed) Vis Comput. Springer Japan, Tokyo, pp 295–311
Lagae A, Dutré P (2008) Accelerating ray tracing using constrained tetrahedralizations. Comp Graph Forum 27(4):1303–1312
Lagae A, Dutré P (2008) Compact, fast and robust grids for ray tracing. Comput Graph Forum 27(4):1235–1244
MacDonald DJ, Booth KS (1990) Heuristics for ray tracing using space subdivision. Vis Comput 6(3):153–166
Maria M, Horna S, Aveneau L (2014) Topological space partition for fast ray tracing in architectural models. In: Proc. Int.

Conf. Comp. Graph. Theory App., GRAPP ’14, pp 1–11
Maria M, Horna S, Aveneau L (2017) Constrained convex space partition for ray tracing in architectural environments. Comput

Graph Forum 36(1):288–300
Maria M, Horna S, Aveneau L (2017b) Efficient ray traversal of constrained Delaunay tetrahedralization. In: Proc. Int. Joint

Conf. Comp. Vis., Imag. Comp. Graph. Theory Appl., VISIGRAPP ’17, vol 1, pp 236–243
Marmitt G, Slusallek P (2006) Fast ray traversal of tetrahedral and hexahedral meshes for direct volume rendering. In: Proc.

Eighth Joint Eurographics/IEEE VGTC Conf. Vis., Eurographics Assoc., Aire-la-Ville, Switzerland, EUROVIS ’06,
pp 235–242

Maximo A, Ribeiro S, Bentes C, Oliveira A, Farias R (2008) Memory efficient GPU-based ray casting for unstructured volume
rendering. In: Proc. Fifth Eurographics / IEEE VGTC Symp. Point-Based Graphics, Eurographics Assoc., Goslar, DEU,
SPBG’08, pp 155–162

Mebarki A (2018) XOR-based compact triangulations. Comp & Inform 37:367–384
Miller GL, Talmor D, Teng SH, Walkington N, Wang H (1996) Control volume meshes using sphere packing: Generation,

refinement and coarsening. In: Proc. 5th Int. Meshing Roundtable, pp 47–61
Pharr M, Jakob W, Humphreys G (2016) Physically based rendering: from theory to implementation, 3rd edn. Morgan

Kaufmann Publishers Inc, San Francisco, CA, USA
Platis N, Theoharis T (2003) Fast ray-tetrahedron intersection using Plücker coordinates. J Graph Tool 8(4):37–48
Ribeiro S, Maximo A, Bentes C, Oliveira A, Farias R (2007) Memory-aware and efficient ray-casting algorithm. In: Proc. XX

Brazilian Symp. Comp. Graph. Img. Process., SIBGRAPI ’07, pp 147–154
Sahistan A, Demirci S, Morrical N, Zellmann S, Aman A, Wald I, Güdükbay U (2021) Ray-traced shell traversal of tetrahedral

meshes for direct volume visualization. In: Proc. IEEE Vis. Conf.-Short Papers, VIS ’21, pp 91–95
Shewchuk JR (1996) Adaptive precision floating-point arithmetic and fast robust geometric predicates. Disc & Comp Geom

18:305–363
Si H (2015) TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Soft 41(2):11, 36 p
Silva CT, Mitchell JSB (1997) The lazy sweep ray casting algorithm for rendering irregular grids. IEEE Trans Vis Comp Graph

3(2):142–157
Silva CT, Mitchell JSB, Kaufman AE (1996) Fast rendering of irregular grids, Proc. Symp. Vol. Vis., VIS ’96, 1996, pp. 15–22
Sinha P (2004) A memory-efficient doubly linked list. Linux J, Available at https://www.linuxjournal.com/article/6828.

Accessed 5 May 2022
Stich M, Friedrich H, Dietrich A (2009) Spatial Splits in Bounding Volume Hierarchies. In: Proc. Conf. High Perf. Graph.,

ACM, New York, NY, USA, HPG ’09, pp 7–13
Wald I (2007) On fast construction of SAH-based bounding volume hierarchies. In: Proc. IEEE Symp. Interactive Ray Tracing,

IEEE Computer Society, Washington, DC, USA, RT ’07, pp 33–40
Wald I, Havran V (2006) On building fast kd-trees for ray tracing, and on doing that in O(N log N). In: Proc. IEEE Symp.

Interactive Ray Tracing, IEEE Computer Society, Washington, DC, USA, RT ’06, pp 61–69
Watson DF (1981) Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput J

24(2):167–172
Wodniok D, Goesele M (2017) Construction of bounding volume hierarchies with SAH cost approximation on temporary

subtrees. Comp & Graph 62:41–52

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

Compact tetrahedralization-based acceleration structures for ray tracing 1115

https://www.linuxjournal.com/article/6828

	Compact tetrahedralization-based acceleration structures for ray tracing
	Abstract
	Introduction
	Related work
	Acceleration structures
	Tetrahedral mesh construction and traversal
	Raycasting for direct volume rendering

	Tetrahedral mesh representation
	Tetrahedron traversal
	Reordering tetrahedral mesh data
	GPU Implementation
	Experimental results
	Conclusions and future research directions
	Acknowledgements
	References

