Appendix: Compact tetrahedralization-based acceleration structures
for ray tracing

Aytek Aman - Serkan Demirci - Ugur Gudikbay

A Tet20 and Tet16 Tetrahedral Mesh Representations

In Tet20, we get rid of vertex indices and store only the xor-sum and the neighboring indices. We use
the xor-sum field to get the index of the unshared vertex of the next tetrahedron during traversal. To
do this, shared vertices between two tetrahedra must be known. This is guaranteed by ray connectivity,
meaning that the start and endpoints of rays are always connected in a typical ray-tracing scenario.
However, we use a source tet, a tetrahedron with complete index information, to initialize the indices
at the beginning. We can choose this tetrahedron randomly. Starting from source tet, it is possible to
reconstruct the indices of the neighboring tetrahedra. It should be noted that we need to sort the neighbor
indices in a tetrahedron using their corresponding vertex indices to find the neighbor for a given vertex
index. Figure [I] shows the memory representation of the Tet20 structure.

[vx T NG [N TN [N

Fig. 1 Tet20 structure. Each field is an integer and four bytes long. The tetrahedron data occupies 20 bytes of memory.

In Tet16, instead of storing four neighbor indices explicitly, we store three values that can be used to
reconstruct neighbor indices, given that the previous (neighbor) tetrahedron index is known. We compute
these three indices as follows.

NXb = N§ @ N3
NXi = N{ @ N3
NX5 = N3 @ Nj

Knowing the index of a neighbor tetrahedron and its order, we can reconstruct the rest of the neighbors
easily. For example, If we have N3, we retrieve Ni as follows.

Ni = Ni@ NXs @ NX§

The resulting Tet16 structure is given in Figure [2}

A. Aman - S. Demirci - U. Giidiikbay

Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey

E-mail: aytek.aman@cs.bilkent.edu.tr (A. Aman), serkan.demirci@bilkent.edu.tr (S. Demirci),
gudukbay@cs.bilkent.edu.tr (U. Gidiikbay)

Tel.: +90-312-290-1386

Fax: +90-312-266-4047

2 Aman et al.

[VX [NXg [NXG [NXG

Fig. 2 Tet16 structure. Each field is an integer and four bytes long. The tetrahedron data occupies 16 bytes of memory.

B Tetrahedron Traversal for Tet20 and Tet16 Representations

In Tet20, we use the property that neighbor indices are sorted using their counterpart vertex indices as
keys. Thus, to find the next neighbor index, we find the order of 1d%esit_face_idz among idxo, tdz1, tdza,
idzs (which are actually the vertex indices of the tetrahedron). Because the neighbor indices are sorted
using vertex indices, order of the vertex index also happens to be the next neighbor index. We describe
this process in Algorithms [1] and

Algorithm 1 Tetrahedron traversal loop for Tet20

while tet;q, > 0 do

idmezit,face,idz <« idz3

idxs <+ idzg @ idxy D idrs O V xtet-ide

Vnew pomtsjd%3 — 7o

Pezit_face_idz < P3

p3 ('E’: * Unew, v - vnew)

ezit_face_idr = GETEXITFACE(po..3)

orderg < sorted order of id3 among id;

next_tet_idr = GETNEXTTET20(tet_idz, order_a)
end while

Algorithm 2 Next tetrahedron determination for Tet20

procedure GETNEXTTET20(tet_idz, order_a)
next_tet_idx < Norder_a
return next_tet_idx

end procedure

In Tet16, we use the previous tetrahedron index to reconstruct next tetrahedron index using the
values NX; As in Tet20, we need to construct the value NX;— using sorted vertex indices. To reconstruct
the next tetrahedron, sorted order of values are computed for idxs, which corresponds to a previous
tetrahedron and %d%esit_face_idz, Which corresponds to an exit face, must be computed. We describe this
process in Algorithms [3] and

Algorithm 3 Tetrahedron traversal loop for Tet16

while tet_idz > 0 do
iday < idro @ idzy @ idap @ VXPel-ide
Vnew — pointsidz3 — 7o
p3 < (ﬁ * Unew, v - vnew)
orderg < sorted order of id3 among id;
exit-face_idt = GETEXITFACE(po..3)
ordery, < sorted order of id.qit_face_ide among id;
next_tet_idr =
GETNEXTTET16(tet_idz, prev_tet_idz, order_a, order_b)
SWAP(tet_idz, prev_tet_idz)
end while

Appendix: Compact Tetrahedralization-based Acceleration Structures for Ray Tracing 3

Algorithm 4 Next tetrahedron determination for Tet16

procedure GETNEXTTET16(tet-idz, prev_-tet_idz, order-a, order.b)
if order, # 3 then
o ; tet_id
next_tet_idr = prev_tet_idz NXOEM;T:
end if
if ordery, # 3 then
o ; et _id;
next_tet_idez = next_tet_idr P N)(f;,d;r:
end if
return next_tet_idx
end procedure

C Point Projection Using Specialized Basis

We project newly fetched points to the two-dimensional (2D) coordinate system using two dot product
operations, which require six floating-point multiplications and four floating-point additions. We can
optimize this step by scaling the basis vectors to make some of the components zero or one. Since the
basis vectors are only scaled, the exit face determination still works correctly. To avoid numerical issues,
we scale vectors in such a way that only the absolute largest components become one (or minus one).
Equation describes the construction of the first basis vector @, which is orthogonal to 7 (and not
necessarily of unit length).

/L_l:min = 0,
- o ﬁ('min—l) mod 3
U(min+1) mod 3 = 7) (1)
max
N (min+1) mod 3

U(min—1) mod 3 = = ’
Nmazx

where o, U1, and U2 correspond to vy, Uy, and v, respectively, min and maz are the indices of the
absolute smallest and largest components of the vector 7.

We construct the second basis vector ¥, which is orthogonal to 7 and @ (and not necessarily of unit
length), as in Equation .

t

n X 1,
t (2)

E‘(3— max—min)

<L

Now, we can transform three-dimensional (3D) point v to the 2D coordinate system using the basis
b = (i, 7), as shown in Equation [3] It should be noted that the sign s of the last parameter Uy can be
either positive or negative depending on the sign of Upin.

other = 3 — max — min,
Pz = UmazUmaz + Vother, (3)
Py = UmazUmaz + UotherVother =+ Umin.

To perform the above computation, three floating-point multiplications and three floating-point ad-
dition/subtractions are sufficient. We implement this fast projection method using a templated function
over the variables min, maz, and sign(Umin) and call the corresponding function by inspecting the com-
ponents of the new basis to avoid run-time overhead of keeping additional function arguments.

D Handling Common Ray-tracing Operations

We handle common ray-tracing operations using tetrahedral meshes as follows. Handling mesh lights is
straightforward by using the proposed traversal methods. For point lights, we locate the tetrahedron that
contains the point light at the start of each frame. Then, we use a slightly modified traversal algorithm
where the traversal terminates if the tetrahedron that contains the light source is reached. We cast
reflection and refraction rays using the neighboring tetrahedron on the shared face of the tetrahedron in

4 Aman et al.

which the traversal is terminated. In this way, we avoid an intersection with the same face. To handle
shadow, reflection, and refraction rays together, we report the two tetrahedra that share the common
intersected face in the intersection routine. Figure[3]illustrates different types of rays used in a tetrahedral
mesh-based ray tracing. At the start of each frame, we locate the camera and the point light sources
and store their tetrahedron indices. For this purpose, we start from a source tetrahedron S that can be
arbitrarily chosen and locate the tetrahedra that contain the camera and the point light sources.

\\]-_‘ ."“- ,/‘//‘

L
-

Fig. 3 The types of rays in tetrahedral mesh-based ray tracing. S is the center of source tetrahedron. C is the camera
position. I is the intersection point. L is the light source position. Rays R, and R} are used to locate the light source and
camera position, respectively. R is the camera ray. Rg is the shadow ray. R. and Ry are the reflection and refractions
rays, which are cast from two different neighboring tetrahedra.

E Experimental Results Regarding the Camera Distance

Table [I] demonstrates the efficiency of a tetrahedral mesh-based traversal approach when the camera gets
closer to a surface. In this experiment, we render the images at varying distances to the Armadillo 3D
model and compare the rendering times for different acceleration structures. Both BVH and k-d tree
performs much better than the tetrahedral mesh structure when the camera views the object from a
fair distance. However, as the camera gets closer to the surface, the traversal cost decreases because the
tetrahedral mesh is not hierarchical, unlike the BVH and k-d tree. In the extreme case, when the camera
is about to touch the surface, only one tetrahedron is traversed. This is not the case for hierarchical
structures because many tree nodes may need to be traversed to find the closest ray-surface intersection.

Appendix: Compact Tetrahedralization-based Acceleration Structures for Ray Tracing 5

Table 1 The rendering times and visited node counts for different types of accelerators as the camera gets closer to
the mesh surface. We compare our Tet-mesh-20 structure and traversal method with BVH (Pharr et al.l |2016)) and k-d

tree (Pharr ot al} [2016).

Scenes

Tet-mesh-20

BVH
kd-tree
Visited node count per pixel
Tet-mesh-20 48.54 52.32 55.11 59.13 60.13 43.62
BVH 27.23 32.90 38.53 46.67 57.88 65.27
k-d tree 34.12 41.84 49.50 60.21 70.18 65.46
Rendering times (in milliseconds)
Tet-mesh-20 140.3 151.0 168.3 179.4 182.3 126.6
BVH 87.4 109.4 123.9 146.8 175.9 193.9
k-d tree 86.8 107.4 118.8 136.8 157.9 144.0
References

Pharr M, Jakob W, Humphreys G (2016) Physically Based Rendering: From Theory to Implementation, 3rd edn. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, USA

