
Signal, Image and Video Processing (2019) 13:643–650
https://doi.org/10.1007/s11760-018-1392-8

ORIG INAL PAPER

Augmentation of virtual agents in real crowd videos

Yalım Doğan1 · Serkan Demirci1 · Uğur Güdükbay1 · Hamdi Dibeklioğlu1

Received: 26 September 2018 / Revised: 7 November 2018 / Accepted: 8 November 2018 / Published online: 22 November 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Augmenting virtual agents in real crowd videos is an important task for different applications from simulations of social
environments to modeling abnormalities in crowd behavior. We propose a framework for this task, namely for augmenting
virtual agents in real crowd videos. We utilize pedestrian detection and tracking algorithms to automatically locate the
pedestrians in video frames and project them into our simulated environment, where the navigable area of the simulated
environment is available as a navigation mesh. We represent the real pedestrians in the video as simple three-dimensional
(3D)models in our simulation environment. 3Dmodels representing real agents and the augmented virtual agents are simulated
using local path planning coupled with a collision avoidance algorithm. The virtual agents augmented into the real video
move plausibly without colliding with static and dynamic obstacles, including other virtual agents and the real pedestrians.

Keywords Data-driven simulation · Pedestrian detection · Pedestrian tracking · Crowd simulation · Collision avoidance ·
Augmented reality

1 Introduction

Crowd simulation research aims to generate plausible and
realistic virtual crowd animations for various application
areas, including the entertainment (movies and games) and
safety. The simulated scenarios vary from emergency evacu-
ation simulation on a building to artificial crowds generated
in video games for creating a realistic environment for the
player. The most important aspect of these simulations is
how closely they resemble the real crowds in the sense of
their behavior and appearance. The visual quality of the
simulations depends on the modeling and behavior of the
agents, which include geometry, motion, personalities, and
emotions, as well as the environment, including static and
dynamic obstacles.

Augmented reality is widely used in many application
domains such as gaming, social platforms, education, and
design. In some of these applications, there is a demand for
crowd videos including real and virtual agents seamlessly

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11760-018-1392-8) contains supplementary
material, which is available to authorized users.

B Uğur Güdükbay
gudukbay@cs.bilkent.edu.tr

1 Department of Computer Engineering, Bilkent, 06800
Ankara, Turkey

integrated together. For example, for first-aid training, one
can incorporate virtual agents representing paramedics into a
crowd video (e.g., a crowd in a stadium or a concert area) that
are applying first aid procedures (i.e., artificial respiration) to
wounded individuals in the real video. Another application
would be training security personnel for terrorist attacks on
crowds. One can insert security officers and terrorists into a
crowd video of such an incident and simulate their actions
for training security officers.

We propose a framework for seamlessly augmenting vir-
tual agents into crowd videos and moving them around
realistically during the simulations without colliding with
each other and static and dynamic obstacles in the environ-
ment, including pedestrians in the video feed. We tested our
framework with the videos of semi-crowded areas with 30-
50 pedestrians. We record the videos with a monocular and
somewhat static camera, only slightly moving because of
human intervention. For such scenarios, we record videos of
a pedestrian area from a high altitude but still close enough to
clearly identify the pedestrians. The recorded videos do not
contain any dynamic obstacles, such as cars. We will provide
the recorded videos to the research community.

The rest of the paper is organized as follows: We discuss
related work on pedestrian detection and tracking and crowd
simulations in Sect. 2. Section 3 provides an overview of
the framework. In Sect. 4, pedestrian detection and track-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-018-1392-8&domain=pdf
http://orcid.org/0000-0003-2462-6959
https://doi.org/10.1007/s11760-018-1392-8

644 Signal, Image and Video Processing (2019) 13:643–650

ing processes are discussed together with results for our test
video footages. Section 5 describes our method for project-
ing pedestrians in the videos into the simulation environment,
augmenting the real videos with virtual agents, including the
local path planning implementation for moving the synthetic
agents around realistically without colliding with each other
and static and dynamic obstacles, including real pedestrians
in the video feed. Section 6 provides experimental results,
including the visual results. Section 7 provides conclusions
and possible future extensions.

2 Related work

The proposed approach can be regarded as data-driven sim-
ulation because it uses detection and tracking data from
real crowd videos to project pedestrians into our simula-
tion environment. Usually, data-driven approaches in crowd
simulations use the detection data from videos but without
directly projecting the agents accordingly. Lerner et al. [1]
extract the trajectory of real pedestrians in a given video in
order to create a behavior database. By forming a query for
each virtual agent in the simulation to the database, agent
trajectories are adjusted by resulting influence forces, end-
ing up with a realistic movement. Charalambous et al. [2]
use machine learning techniques to analyze the crowd tra-
jectories in the simulation or video referring to the reference
simulation. Musse et al. [3] follow an approach similar to
ours where the pedestrians in the video feed are tracked and
their trajectories are used for simulating the environment.
However, they do not directly project the pedestrians onto
the video; they extract trajectory patterns of pedestrians to
derive velocities of the virtual agents in the simulation.

Kim et al. [4] propose an approach for obtaining a realistic
crowd simulation by learning from trajectories in a real-life
crowd video. Themethod is fully automatic, and it can define
the dynamics of agents in the video that can be used to
synthesize a new and adaptive crowd usable in arbitrary envi-
ronments. Different from our approach, they do not project
the agents in the video to the 3D simulation space, which
means there is no augmentation. In addition, our approach
provides an interface for fine-grained control of synthetic
agents in the video.

A study where the pedestrians are directly projected is
performed by Narahara and Kobayashi [5] for walkthrough
in architectural structures using real projectors and 3D build-
ing models. Bulbul and Dahyot [6] use social media data to
populate virtual cities with virtual agents. In contrary to our
framework, they use images on socialmedia platforms, rather
than a given video feed of the simulation area.

There are other data-driven simulations that extract infor-
mation from videos to generate models from the extracted
parameters to represent virtual environments, rather than

augmenting real videos with virtual agents. Turkay et al. [7]
use information theory to create a behavioralmodel of agents,
which is related to their aggressiveness.

There is some notable research to insert virtual agents into
videos. Thalmann et al. [8] simulate a virtual agent in the
manually constructed simulation environment by extracting
camera calibration for positioning and occlude the model by
masking and animating with basic path planning. In order to
increase the efficiency of managing virtual crowds, Zheng
and Li [9] use real-life markers for the generation, manipu-
lation, and interaction with the crowd. Obaid et al. [10] use
virtual reality headsets together with several sensors to test
the effect of non-verbal attributes of a virtual agent on the
user physiologically for human–machine interactions.

Fernandez et al. [11] propose a framework to use natural
language processing (NLP) for the creation andmanipulation
of virtual agents by the user. Thebehavior of the virtual agents
is based on certain rules and reactions that are associated in
a tree-like structure, situation graph tree. In this framework,
different from the previous ones, the virtual agents interact
with real agents in the video feed, by interpreting their actions
using fuzzy logic.

Baiget et al. [12] simulate the virtual–real agent interac-
tions in real time, using a baseline similar to [11], together
with various position and motion detection algorithms. The
framework also contains non-pedestrian agents, such as cars,
that participate in the simulation by actively interacting with
agents in the scene. Yet, their framework only simulates with
a small bunch of agents compared to ours with an ad hoc
solution to collision detection, i.e., evaluating the distance
between obstacles and the agent of interest.

Bera et al. [13] extend the collision avoidance between
virtual and real agents by introducing personal spaces. By
estimating the current behavior of agents in terms of recipro-
cal velocity obstacles (RVO) [14] parameters, their individual
personalities are obtained, which is then used to predict their
individual trajectories.

Zhang et al. [15] simulate virtual agents in an environment.
Although they do not simulate a crowd, they generate the
environment automatically by estimating the camera param-
eters and focal length. They use a freely moving camera,
which is able to see the area from different views. Frames
taken from the camera are used to position a point on the 2D
image plane into the 3D simulation area that represents the
visible area by the camera. Because the simulation area is
represented in 3D, the real and virtual objects (agents) both
cast and obtain shadows, in addition to occlusion.

For local path planning of virtual agents, we use RVO. In
thisway, virtual agents plausiblymovewithout collidingwith
static and dynamic obstacles in the environment, including
virtual agents and real pedestrians in the video. For global
navigation, we use Unity’s pathfinder algorithm [16]. We do
not use Unity’s navigation system; rather, we use our own

123

Signal, Image and Video Processing (2019) 13:643–650 645

navigation algorithm using navigation meshes. We also test
another approach [17] that uses a hierarchy of navigation
meshes of the simulation area, which brings an improvement
on the navigation speed of virtual agents.

Olivier et al. [18] investigate if virtual reality (VR) is a reli-
able medium for interactive locomotion environments where
a real human participant is set to avoid collidingwith a virtual
agent in the simulation. The effect of VR on the perception
of the virtual agent’s navigation is compared to its real-life
counterpart, to see if VR impaired the required information
for collision avoidance. In addition, a number of locomotion
interfaces are presented to the participants and their usability
are assessed.However, the collision avoidance scenarios only
include a single virtual agent which cause reduced scalability
to large crowd simulations.

In contrast to previous studies, we provide an interactive
user interface that enables the users to modify the simulation
with regard to the behavior and movement of the pedes-
trians and position the navigable area on top of the real
video, which makes our framework applicable to different
real crowd videos.

3 Framework overview

Our framework consists of two subsystems: (1) video pro-
cessing subsystem and (2) simulation subsystem. The video
processing subsystem detects and tracks the pedestrians in
the input video. Obtained detection/tracking results are fed
to the simulation subsystem. The simulation subsystem is
for augmenting the virtual agents into the simulation envi-
ronment and seamlessly integrating themwith the real video.
The proposed framework is depicted in Fig. 1. The work flow
is described as follows:

– Once a crowd video is input to the system, each of its
frames is stabilized since the video may be disrupted and
that can adversely affect the accuracy of detection and
tracking processes. We utilize the homography, namely
the correspondence between projections of points on a
planar surface for different camera angles, between the
current frame and a reference frame (first frame) for the
stabilization process.

– The positions and scales of pedestrians are detected and
tracked using background subtraction and a histogram
of oriented gradients (HOG) + support vector machine
(SVM)-based pedestrian detector [19].

– The stabilized video is provided to the user where s/he
can choose to include the detection boxes, the tracking
status of pedestrians, and themean frame rate, i.e., frames
per second (fps), of the detection process. Then, using
the stabilized video and the computed tracking data of

Fig. 1 Theproposed framework:Videoprocessing subsystemstabilizes
video frames and detects/tracks the pedestrians. Simulation subsystem
projects the locations of the real pedestrians found in the video and
simulates them with simple artificial agents. However, these agents are
not displayed, but rather the input video is played at the background,
with virtual agents augmented into the environment

pedestrians, the agents representing real pedestrians are
projected into the simulation environment. Furthermore,
virtual agents that are added by the user are augmented
into the environment.

– Both types of agents (agents representing real pedestrians
and augmented virtual agents) are simulated together by
using the RVO algorithm for local collision avoidance so
that the agents move around without colliding with each
other and any other obstacle. In the current implementa-
tion, the mesh of the navigation area, the position of the
camera, and the light sources in the simulation environ-
ment are interactively generated with the user assistance.

4 Pedestrian detection and tracking

We use a HOG + SVM-based pedestrian detector in conjunc-
tion with background subtraction to reduce the errors caused
by false positive detections. If a detection does not contain
a foreground object, it is removed from the detection list
(cf. Fig. 2). We use a Gaussian mixture-based background
segmentation algorithm to segment frames into the fore-
ground and background regions [20]. The detector is applied
only in the regions around foreground objects. Furthermore,
searching only foreground regions of the frame improves the
computational performance of the detector.

In the tracking stage, pedestrian trajectories are calcu-
lated by building a model for each pedestrian in the video
feed. Each tracker stores a probabilistic spatial model (Kal-
man filter with a constant acceleration model) and the
histogram of the region as the visual feature for each tracked

123

646 Signal, Image and Video Processing (2019) 13:643–650

Fig. 2 Pedestrian detection and background subtraction: a the output
of the pedestrian detector, b the output of the background subtractor, c
the output of the pedestrian detector with background subtraction

pedestrian. The spatial model is used to predict the posi-
tion of the pedestrian for subsequent frames. At each frame,
trackers are associated with pedestrian detections. The pre-
dicted position and the visual features of the tracker are used
for pedestrian tracking. In the association process, a score is
calculated for each tracker–detection (t, d) pair. The tracker–
detection pair with the highest score is associated with each
other. A greedy assignment algorithm is used for the asso-
ciation process; it is completed either when all trackers and
detections are assigned to each other or all of the remaining
trackers and detections have scores that are less than a pre-
specified threshold, which is determined experimentally. The
score function is a composition of the positional and visual
score functions.

score(t, d) = α × scorevis(t, d) + (1− α) × scorepos(t, d),

where α is the weight parameter. The visual score is the
L2 distance between the color histograms (in Lab space) of
pedestrian detections in consecutive frames. The positional
score function is based on the predicted L2 distance of the
tracker anddetected position.As the distance between tracker
and detected position increases, the score decreases. If the
distance between tracker and detection position is greater
than a pre-specified threshold, D, which is determined exper-
imentally, the positional score function becomes zero. We
take the values of D as 50 and α as 0.8.

scorepos(t, d) = max

(
0, 1− ||post − posd ||2

D

)

5 Agent projection and simulation

5.1 Agent projection

The agent projection solely depends on the detection and
tracking data that are output from the frame processing sub-
system. The output file will be referred to as the detection
result in the rest of the paper.

For each processed frame, the detection result contains the
identification number (id) for the tracked (or newly detected)

Fig. 3 The projection of pedestrians onto the simulation area: a the
projection example of a single pedestrian, together with an virtual agent
above, b a pair of pedestrians successfully projected separately as two
agents, c the pedestrians go different ways where a virtual agent stays
at the upper left corner

pedestrian, which is unique through the simulation, even
when the tracked pedestrian is lost. This id is used to iden-
tify and control the projected agent’s movement. For each
id found in the detection result, the perspectively projected
position, velocity, and the detection window dimensions are
specified.

At each frame, the list of agents to be projected is checked
based on their identification numbers in the detection result.
Their relative positions on the navigable area are calculated
by sending rays from the camera to centers of the foot posi-
tions on the view plane (assumed to be the bottom center of
each detection window) and finding their intersections with
the 3D mesh of the navigable area (cf. Fig. 3).

Sometimes the detection may lack the next position of
the tracked pedestrian because of occlusion in the video,
unstable frame, and so on. In such cases, the projected agent
gets unsynchronized with the tracking data. In order to avoid
lost agents, they continue to appear for a few (typically 1–
2) seconds before they are automatically destroyed, instead
of waiting for reconnection. In addition, the velocities of
projected agents are checked at every frame for whether
they exceed an experimentally determined threshold. If so, it
means that the detection data about that agent are considered
as noise and the agent gets deleted. This protects the simula-
tion from false positive errors in the detection stage.However,
the efficiency solely depends on the selected threshold value.
If the threshold is selected small, compared to the perceived
speed of projected agents, most of them would be deleted.
If a large threshold is used, it cannot detect very fast agents,
degrading the realism.

For the virtual agents augmented onto the video, we use
custom-generated, realistic humanoid models that are almost
indistinguishable from the real pedestrians in the video. We
use a simple toy humanoid model to represent the projected
pedestrians, which makes it easy to distinguish them from
virtual ones, hence increasing the user experience. For the
final augmented rendering of the simulation, we do not show
the simple toy models representing projected pedestrians but
rather we show the video augmented with virtual agents.

The height of virtual agents is determined by the height
of the pedestrians in the video. After finding the 3D head

123

Signal, Image and Video Processing (2019) 13:643–650 647

Fig. 4 The user interface of the
framework

position of each detection using rays, a proposed height is
obtained as the distance from head to 3D feet position, which
is already known. The average of all such heights is set as
the global height of virtual agents.

5.2 Collision detection and avoidance

We implemented RVO [14] for collision avoidance between
virtual agents, as well as between virtual agents and real
pedestrians represented according to the detection and track-
ing results.RVOusesMinkowski sums andvelocity obstacles
to determine the set of admissible velocities for each agent
to obtain a collision-free movement. For each pair of agents,
their Minkowski sum, which represents the area where the
acting agent should avoid in order not to collide, is calculated.
It is then used to calculate the resulting velocity obstacle
between them. The new velocity is selected outside of the
velocity obstacle, which respects kinematic constraints (such
as the turning speed, maximum speed, and acceleration) and
the preferred velocity of the agent.

The usage of velocity obstacles may cause the agent to
oscillate between two velocities while trying to avoid col-
lisions. To alleviate this problem, Van den Berg et al. [14]
propose to divide the responsibility of adjusting velocities
between the agents equally. This prevents an agent to use
its previous velocity; new velocities stay optimal for reach-
ing the goal. The approach of dividing the work between the
agents requires the usage of a new parameter, which enables
us to change the proportion for each. Each agent takes a part
of the responsibility for changing the velocities and adjusts its
own velocity. In our implementation, the projected agents are
unresponsive as they are directed by the given data. Only the
virtual agents change their velocity; collision avoidance algo-
rithm (RVO) treats the projected agents as dynamic obstacles.
RVO makes sure a collision-free movement for the virtual

agents over a certain time period, τ . If a collision is unavoid-
able, agents can select velocities inside the RVO region; they
receive a penalty in such cases.

5.3 The user experience

In order to simulate arbitrary scenarios, the user can pro-
vide an input video together with its detection result (from
frame processing subsystem). The user can also provide an
object file that includes the mesh representing the navigable
area. The mesh is placed at a default location in the environ-
ment, and its resulting navigational mesh is automatically
constructed via the Unity Engine. The navigable area is a flat
surface; however, the user can provide any kind of mesh that
is acceptable for the construction of a navigation mesh.

As the mesh and the video are related through the cam-
era, its placement and orientation play an important role.
Therefore, the user is provided with several tools for camera
placement inwhich the loadedmesh and the input video align
in the camera’s perspective view. When the user is satisfied
with the placement, the simulation can be started.

The user can specify various properties of virtual agents
in the scene and adjust their collision avoidance (RVO)
parameters through the user interface provided by the imple-
mentation (cf. Fig. 4). The user can specify

– the number of neighbors considered for each agent,
– starting positions and destinations for virtual agents,
– the maximum speed of the agent,
– the range of the circular area where the neighbor agents
are taken into consideration, and

– the minimum amount of time that the calculated velocity
of the agent is safe with respect to the other agents, called
reaction speed.

123

648 Signal, Image and Video Processing (2019) 13:643–650

Upon changing these parameters, the user can visualize
the resulting behavior of virtual agents during the simulation.
The user can select individual virtual agents or select all of
them to change their properties using the provided interface
elements. The number of collisions for virtual agents is dis-
played during the simulation, both with the agents projected
from the real video and other virtual agents. The number of
collisions with the projected agents reflects the number of
frames where a collision occurs, rather than just the collision
itself. This indicates how fast a virtual agent can get out of
the collision status. The user can also play/pause, stop, and
restart the simulation together with the input video.

New virtual agents can be added in or removed from
the simulation while the simulation is running, paused, or
stopped. The newly added agents are represented using dif-
ferent models randomly in order to provide heterogeneity.
The video is converted to a format compatible with our sim-
ulation environment defined in Unity and played in the back
of the navigation area.

6 Experiments and discussion

We use Unity Game Engine as our simulation environment
and record our simulations on a laptop computer with Intel®
Core™ i7-4500U CPU@1.8 GHz, 8 GBRAM and NVIDIA
740 M graphics chip.

We recorded two test videos of the pedestrian area in front
of the Engineering Building of Bilkent University including
20–30 pedestrians. We used a consumer-grade monocular
camera, stabilized by a tripod. Each video contains a sparse
crowd of pedestrians on a plain surface with no additional
dynamic obstacles.We record the videos from a high altitude,
higher than a surveillance camera, but not perpendicular.
Both videos belong to the same area, but they are from
slightly different angles. Both videos have a duration of
approximately one and a half minute.

We tested our framework on a static video taken from
the MOT15 Database [21] and two videos that we recorded
forwhichwemanually prepared the ground truth. Each video
contains a sparse crowd of pedestrians on a plain surfacewith
no additional dynamic obstacles. Among the tested videos,
the video taken from theMOT15 database is the easiest when
it comes to identifyingpedestrians clearly because the camera
is located closer to the area of interest. In almost all of the
frames in our videos, pedestrians are still distinguishable;
if not always clearly. In our experiments, it is expected to
have a lower recall rate in our videos than the video taken
from the MOT15 database. We provide the qualitative and
quantitative results of pedestrian detection and tracking in
“Electronic Appendix.”

In our simulation, it is important to have a high recall rate
rather than a high precision rate because false positives (FPs)

Fig. 5 Navigation mesh placement: a a still frame from the video and
b the positioning and orientation of the navigation mesh on top of the
video frame

reflect it as additional people that our agents need to take
into account while avoiding collisions. On the contrary, false
negatives (FNs) are ignored by our agents during navigation.
Having a higher number of FPs may cause our agents to
have limited movement or not navigate at all, but compared
to “going through” people in the video, it does not disturb
the realism as much.

Figure 5 shows the positioning and orientation of the nav-
igation mesh on top of a recorded video. Higher resolution
images for all videos are provided in Electronic Appendix.
We have the mesh model of the pedestrian area generated
from the floor plan. We position and orient the navigation
mesh in our simulation area according to the camera posi-
tion and orientation of the video used in the simulation.

We calculate the velocities of real pedestrians by interpo-
lating their positions at the video frames. We integrate RVO
into our system for collision avoidance, rather than directly
using the Unity’s obstacle avoidance mechanism. Unity also
uses RVO for local collision avoidance; however, we want
to be able to modify the RVO parameters in real-time and
separate pathfinding from collision avoidance so that these
parameters can be specified using different techniques for the
requirements of a new simulation.

As it can be seen in the supplementary video (cf. Fig. 6),
collisions between virtual agents and with real agents are
very rare for sparse crowds. In dense crowds with a high
number of real agents or if too many virtual agents are aug-
mented into the environment, the number of collisions will
increase. The detection and tracking errors may cause colli-
sions with virtual agents because of the wrong positioning of
real agents in the environment. Because we cannot control
the behavior of the real agents in the video in terms of their
collision avoidance behavior, virtual agents handle the colli-
sion avoidance. This causes some strange behaviors, such as
sudden changes in the position of virtual agents when they
are faced with a high number of projected agents.

To increase the realism of our augmented videos, we gen-
erate shadows of the augmented agents according to the
manually placed directional light source in the scene. The
shadows are made visible on the invisible mesh using an
open-source shader for Unity [22].

123

Signal, Image and Video Processing (2019) 13:643–650 649

Fig. 6 Still frames from the simulations: a Two virtual human groups
navigate in opposite directions in the middle area. b A large virtual
human group in the selected state (as yellow) that goes through a num-
ber of real agents. c A scenario containing several virtual agents shown
with red circles. d Another scenario with several groups virtual agents
shownwith red circles. In a, b and c, the detected pedestrians are shown

with simple green 3D models whereas in d real pedestrians in the video
are shown. Please note that some pedestrians are not detected (false
negatives), as well as there could be extra artificial agents representing
real pedestrians because of false positive detections (color figure online)

We compare and contrast the proposed approach to the
state-of-the-art approaches presented in [11,12]. Fernández
et al. [11] augment virtual agents into the existing video
surveillance footage for incremental event evaluation, sim-
ilar to our approach. Because their aim is incremental user
evaluation, they propose a natural language interface to spec-
ify the desired contents. They test their approach on indoor,
street, and soccer environment video sequences.

Baiget et al. [12] estimate real agent motion in real-time
using a multi-object tracking algorithm and augment vir-
tual agents with behavior models into the video by taking
into account their interaction with other virtual and real
agents. They test their framework with a small number of
agents (at most seven people and seven cars) and achieved
frame rates up to 25 fps. We simulate a pedestrian area,
which has no dynamic obstacles, such as cars, as opposed
to this approach. However, any dynamic objects detected
and tracked by our video processing system could be eas-
ily incorporated into the simulation. Baiget et al. obtain the
ground plane by applying homography to the video frames
and place virtual agents accordingly. They use a simple col-
lision avoidance method that evaluates the distance of a
virtual agent to the real objects and other dynamic obstacles
in the real video. Because they compose the virtual agents
with the video feed on-the-fly, detection and tracking errors
may also adversely affect the composition, such as a vir-

tual agent is entering the real agent in the video. We use a
collision detection and avoidance method based on RVO to
arrange the velocities of the virtual agents so that they do
not collide with other virtual and real agents. We represent
the real pedestrians in the video using rectangular bounding
boxes and feed these into the collision avoidance module.
Because we process the real and virtual agents as well as
the dynamic obstacles uniformly, the virtual agents move
around plausibly without colliding, or colliding rarely, with
each other and with real pedestrians. However, the detec-
tion and tracking errors still may cause collisions because
of the wrong positioning of real agents in the simulation
environment.

Our approach is currently two stage: The simulation stage
follows the video processing stage; hence, it is not real
time because of the requirement of extracting the naviga-
ble area and the navigation mesh, which is not done fully
automatically. The navigable area and the navigation mesh
are required for global path planning of the virtual agents, as
well as local path planning (collision avoidance).

7 Conclusion and future work

We propose a framework for generating a crowd simulation
from the pedestrians detected in a given video, augmented

123

650 Signal, Image and Video Processing (2019) 13:643–650

with virtual agents. Our system uses pedestrian detection and
tracking algorithms to project the pedestrians from the video
onto the simulation environment. The virtual agents move
around plausibly without colliding with each other and with
the projected ones, thanks to the usage of RVO for local col-
lision avoidance. The user can control the simulation through
the provided user interface by adding and removing virtual
agents, specifying their origins and destinations for the global
movement, and their velocities.

The proposed framework can be extended in the fol-
lowing directions. Better pedestrian detection and tracking
algorithms, such as [23], could be employed. The naviga-
ble area and the navigation mesh could be automatically
generated from the video on-the-fly, which facilitates the
online application of the proposed framework by coupling
the detection and tracking stage with the simulation stage.
When the detection and tracking data are extracted, agents
can be directly projected in the simulation. The approach
proposed by Zhang et al. [15] could be adapted to generate
the navigable area automatically.

In order tomake the augmented crowd appear more realis-
tic, the dress code of the environment can be extracted from
the pedestrians in the video and virtual agent models can
be selected based on this information. The behavior of vir-
tual agents, such as personalities, trajectories, walking speed,
can also be adjusted according to that of pedestrians in the
video. The studies such as [3,7,13] can be used to extract
such information.

References

1. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example.
Comput. Gr. Forum 26(3), 655–664 (2007)

2. Charalambous, P., Karamouzas, I., Guy, S.J., Chrysanthou, Y.:
A data-driven framework for visual crowd analysis. Comput. Gr.
Forum 33(7), 41–50 (2014)

3. Musse, S.R., Jung, C.R., Jacques, J., Braun, A.: Using computer
vision to simulate the motion of virtual agents. Comput. Anim.
Virtual Worlds 18(2), 83–93 (2007)

4. Kim, S., Bera, A., Best, A., Chabra, R., Manocha, D.: Interac-
tive and adaptive data-driven crowd simulation. In: Proceedings of
IEEE Virtual Reality, ser. VR’16, pp. 29–38 (2016)

5. Narahara, T., Kobayashi, Y.: Crowd mapper: projection-based
interactive pedestrian agents for collective design in architecture.
In: Proceedings of the eCAADe 33rd Annual Conference. Edu-
cation and Research in Computer Aided Architectural Design in
Europe (eCAADe), pp. 191–200 (2015)

6. Bulbul, A., Dahyot, R.: Populating virtual cities using socialmedia.
Comput. Anim. Virtual Worlds 28(5), e1742 (2017)

7. Turkay, C., Koc, E., Balcisoy, S.: Integrating information theory in
agent-based crowd simulation behaviormodels. Comput. J. 54(11),
1800–1820 (2011)

8. Thalmann, N.M., Thalmann, D.: Animating virtual actors in real
environments. Multimed. Syst. 5(2), 113–125 (1997)

9. Zheng, F., Li, H.: ARCrowd-a tangible interface for interactive
crowd simulation. In: Proceedings of the 16th International Con-
ference on Intelligent User Interfaces. ACM, pp. 427–430 (2011)

10. Obaid, M., Damian, I., Kistler, F., Endrass, B., Wagner, J., André,
E.: Cultural behaviors of virtual agents in an augmented reality
environment. In: Proceedings of the International Conference on
Intelligent Virtual Agents. Springer, pp. 412–418 (2012)

11. Fernández, C., Baiget, P., Roca, F.X., Gonzàlez, J.: Augmenting
video surveillance footagewith virtual agents for incremental event
evaluation. Pattern Recognit. Lett. 32(6), 878–889 (2011)

12. Baiget, P., Fernández, C., Roca, X., Gonzàlez, J.: Generation of
augmented video sequences combining behavioral animation and
multi-object tracking. Comput. Anim. Virtual Worlds 20(4), 473–
489 (2009)

13. Bera, A., Randhavane, T., Prinja, R., Manocha, D.: Sociosense:
robot navigation amongst pedestrianswith social andpsychological
constraints. arXiv:1706.01102 (2017)

14. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obsta-
cles for real-time multi-agent navigation. In: Proceedings of the
IEEE International Conference on Robotics and Automation, ser.
ICRA’08. IEEE, pp. 1928–1935 (2008)

15. Zhang, G., Qin, X., An, X., Chen, W., Bao, H.: As-consistent-
as-possible compositing of virtual objects and video sequences.
Comput. Anim. Virtual Worlds 17(3–4), 305–314 (2006)

16. Unity Technologies, Inc., Unity manual: navigation and pathfind-
ing. [Online]. https://docs.unity3d.com/Manual/Navigation.html

17. Pelechano, N., Fuentes, C.: Hierarchical path-finding for naviga-
tion meshes (HNA*). Comput. Gr. 59, 68–78 (2016)

18. Olivier, A.-H., Bruneau, J., Kulpa, R., Pettré, J.: Walking with
virtual people: evaluationof locomotion interfaces in dynamic envi-
ronments. IEEE Trans. Vis. Comput. Gr. 24(7), 2251–2263 (2018)

19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human
detection. In: Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, ser. CVPR’05,
IEEE, vol. 1, pp. 886–893 (2005)

20. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estima-
tion per image pixel for the task of background subtraction. Pattern
Recognit. Lett. 27(7), 773–780 (2006)

21. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.:
MOTChallenge 2015: towards a benchmark for multi-target track-
ing. arXiv:1504.01942 [cs] (2015)

22. Takahashi, K.: Shadowdrawer (2015). [Online]. Available: https://
github.com/keijiro/ShadowDrawer

23. García-Martín, Á., Sánchez-Matilla, R., Martínez, J.M.: Hierar-
chical detection of persons in groups. Signal Image Video Process.
11(7), 1181–1188 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1706.01102
https://docs.unity3d.com/Manual/Navigation.html
http://arxiv.org/abs/1504.01942
https://github.com/keijiro/ShadowDrawer
https://github.com/keijiro/ShadowDrawer

	Augmentation of virtual agents in real crowd videos
	Abstract
	1 Introduction
	2 Related work
	3 Framework overview
	4 Pedestrian detection and tracking
	5 Agent projection and simulation
	5.1 Agent projection
	5.2 Collision detection and avoidance
	5.3 The user experience

	6 Experiments and discussion
	7 Conclusion and future work
	References

