
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:867–883
https://doi.org/10.1007/s00366-023-01826-7

ORIGINAL ARTICLE

Memory‑efficient boundary‑preserving tetrahedralization of large
three‑dimensional meshes

Ziya Erkoç1 · Uğur Güdükbay1 · Hang Si2

Received: 15 July 2022 / Accepted: 19 April 2023 / Published online: 9 May 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
We propose a divide-and-conquer algorithm to tetrahedralize three-dimensional meshes in a boundary-preserving fashion.
It consists of three stages: Input Partitioning, Surface Closure, and Merge. We first partition the input into several pieces
to reduce the problem size. We apply 2D Triangulation to close the open boundaries to make new pieces watertight. Each
piece is then sent to TetGen, a Delaunay-based tetrahedral mesh generator tool that forms the basis for our implementation.
We finally merge each tetrahedral mesh to calculate the final solution. In addition, we apply post-processing to remove the
vertices we introduced during the input partitioning stage to preserve the input triangles. The benefit of our approach is that
it can reduce peak memory usage or increase the speed of the process. It can even tetrahedralize meshes that TetGen cannot
do due to the peak memory requirement.

Graphical abstract

Keywords Boundary-preserving tetrahedralization · Parallelization · Three-dimensional mesh · Divide-and-conquer ·
Memory efficiency

 * Uğur Güdükbay
 gudukbay@cs.bilkent.edu.tr

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01826-7&domain=pdf
http://orcid.org/0000-0003-2462-6959

868 Engineering with Computers (2024) 40:867–883

1 3

1 Introduction

Tetrahedral meshes are widely used in many areas, includ-
ing bioengineering [1], biomechanics [2, 3], computational
fluid dynamics [4], computer graphics, and animation,
especially the simulation of deformable bodies, including
fracture and incision simulations [5–7], mechanical simu-
lations such as turbomachinery flow [8], medical appli-
cations, such as medical device design [9, 10], medical
image analysis [11], and soft tissue simulations [12]. Tet-
rahedral meshes are mainly used for the discretization of
continuous materials and objects for finite element model
(FEM) simulations [13] because they fit well for complex
geometry [14].

Constrained tetrahedralization algorithms take a three-
dimensional (3D) surface or triangular mesh and vertices
as input and tetrahedralize the inside of the input mesh.
The surface triangles that form the boundary of the input
mesh are the constraint faces that describe the boundary
of the generated tetrahedralization [15]. The constrained-
ness property makes these algorithms valuable for various
applications such as FEM simulations [14] and accelera-
tion structures for raytracing [16]. To speed up the ray-sur-
face intersection calculations in raytracing, an algorithm
for rendering 3D scenes, the 3D scene can be tetrahedral-
ized constrainedly where input geometry components such
as faces, line segments, and points are preserved. In the
Finite Element Method (FEM), a 3D object can be tetrahe-
dralized constrainedly to apply physics experiments such
as a stress test for a suspension bridge [14]. Such applica-
tions require the discretization of 3D surface meshes by
tetrahedralization algorithms in a constrained (boundary-
preserving) fashion.

The 3D objects or surface meshes used in ray tracing
and FEM can have millions of vertices; the constrained
tetrahedralization algorithms must handle massive objects
and scenes. However, current constrained tetrahedraliza-
tion algorithms seem to fall short of tetrahedralizing large
scenes in a constrained fashion when the memory require-
ment exceeds the available memory. In addition, the pre-
sent methods might take a significant amount of time to
execute.

We propose a divide-and-conquer boundary-preserving
tetrahedral mesh generation algorithm to reduce execution
time or decrease memory usage. The algorithm consists of
Partitioning, Surface Closure, and Merge steps. We divide
the object into k pieces at the Partitioning stage, where k
is a parameter given by the user. As a result of that stage,
we obtain k meshes with open boundaries, which we need
to close at the Surface Closure stage. During this stage,
we use the 2D Constrained Triangulation Algorithm as a
sub-procedure to triangulate the open boundary, and then

we refine the triangulation to increase the quality. Finally,
we concatenate all tetrahedral mesh objects at the Merge
step. At this stage, we also find missing neighbor relations
between boundary tetrahedra at all pieces.

We implemented two modes for our algorithm, which are
Parallel Processing and Memory Requirement Reduction.
The first mode reduces execution time using multi-threading,
and the second mode reduces memory requirement using a
single thread by utilizing files to store partial results.

The outcome of the experiments implies that our algo-
rithm can either consume less memory than TetGen or exe-
cute faster than it, depending on the chosen mode. Our algo-
rithm might be applied as an alternative tetrahedral mesh
generation tool when TetGen cannot process large objects
due to their vast memory consumption or speed up the pro-
cess. Although we may generate some non-Delaunay tetra-
hedra, we could generate meshes of better or similar quality
compared to TetGen. In this regard, our divide-and-conquer
algorithm improves the capabilities of TetGen. Our origi-
nal input division procedures help us tetrahedralize mas-
sive objects that a sequential algorithm cannot do. However,
our memory-efficient process may be slightly slower than
TetGen. Figure 1 shows the proposed algorithmic frame-
work and example tetrahedralized meshes generated using
our implementation. Our reference implementation is avail-
able on the GitHub repository https:// github. com/ Rgtem ze/
Memor yEffi cient TetMe shGen.

The rest of the paper is organized as follows. Section 2
discusses related work on triangulation and tetrahedrali-
zation algorithms. Section 3 describes our approach by
explaining how we divide the input mesh, triangulate the
open boundary of each part by a surface closure algorithm,
and merge the sub-problems. Section 4 talks about the two
modes of our algorithm in detail. Section 5 presents the
experimental evaluation of the proposed approach in terms
of execution time, memory usage, and mesh quality. Finally,
Sect. 6 gives conclusions and future research directions.

2 Related works

We describe the related studies on sequential CDT, parallel
Delaunay triangulation algorithms, and input partitioning
methods.

2.1 Sequential CDT

Si put forth a constrained Delaunay tetrahedralization (CDT)
algorithm, called TetGen, which generates high-quality tet-
rahedra [17]. Because TetGen does not apply problem par-
titioning, it may not scale well to large objects due to large
memory requirements. Our algorithm is a divide-and-con-
quer extension of TetGen. In TetGen, CDT is defined as a

https://github.com/Rgtemze/MemoryEfficientTetMeshGen
https://github.com/Rgtemze/MemoryEfficientTetMeshGen

869Engineering with Computers (2024) 40:867–883

1 3

tetrahedralization T, where every face in T that is not part of
input mesh is locally Delaunay. A face is locally Delaunay
if it is part of a single tetrahedron or part of two tetrahedra t1
and t2 , but its circumsphere does not contain any other point
from t1 and t2 . In addition, every triangle in the input must
be a part of a tetrahedron in the output tetrahedralization. In
our implementation, as a consequence of using a divide-and-
conquer algorithm, the new triangles introduced around the
cut region during the Surface Closure stage may not satisfy
the locally Delaunay property. We apply refinement during
the surface closure stage to improve the tetrahedral mesh
quality around the cut regions. For this reason, we classify
our algorithm as boundary-preserving tetrahedralization
rather than CDT.

Hu et al. [18] developed a robust CDT mesh generator
called TetWild. TetWild can tetrahedralize a wide range
of objects. It does not make input assumptions and can
even process non-manifold objects with self-intersections.
Because our algorithm uses TetGen at the base, the input
models we can handle are watertight non-self-intersecting
meshes. TetWild is an implementation of an approximate
constrained algorithm; it might not preserve the input per-
fectly. Still, it controls the input preservation level with a
parameter. Moreover, Bridson and Doran developed Quartet
to convert watertight meshes into a tetrahedral mesh that
approximates the input mesh [19]. Both TetWild and Quar-
tet are different from TetGen because TetGen can exactly
constrain the input triangles instead of approximating them.
DelPSC and MMG3D are also tetrahedral mesh generators
[20, 21]. We selected TetGen as the basis of our implemen-
tation because it is robust and can preserve input features
exactly as they are.

Chew proposes a two-dimensional sequential, high-
quality constrained tetrahedralization algorithm [22]. The
algorithm ensures that the internal angles of the triangles are

between 30 and 120 degrees and edges are between h and 2 h
where h is a user-defined value. These properties are guar-
anteed to make sure triangulation contains near-equilateral
triangles. The algorithm constantly computes triangulation
and finds a Delaunay circle, a circumcircle of a Delaunay
triangle, whose radius is greater than h. It then inserts the
circle’s center as the new point and recomputes the trian-
gulation. TetGen also uses a similar approach by adding a
circumcenter of the poor-quality tetrahedra to increase the
mesh quality [17].

2.2 Parallel Delaunay triangulation

There are notable studies on parallel two-dimensional con-
strained Delaunay Triangulation (CDT) or parallel three-
dimensional (3D) Delaunay triangulation (DT). However,
we did not encounter parallel three-dimensional CDT or
boundary-preserving tetrahedralization algorithms.

Chernikov and Chrisochoides’s parallel 2D CDT algo-
rithm uses a domain decomposition method called Medial
Axis Domain Decomposition (MADD) [23]. After the
decomposition, each subdomain is triangulated in paral-
lel independently. The number of sub-domains created is
much higher than the number of processors, and they use
the Load Balancing library to assign sub-domains to pro-
cessors in the most flexible way possible. In addition, they
solve a graph partition problem to distribute sub-domains to
processors so that each processor has a nearly equal amount
of work. They use the message-passing model as their par-
allelization scheme instead of a shared-memory structure,
and their implementation is based on Message-Passing-
Interface (MPI) library. The domain decomposition algo-
rithm presented here may work well in the 2D case, but in
3D, the existence of faces would make the problem more

Fig. 1 The proposed boundary-
preserving tetrahedralization
framework and example tetrahe-
dral meshes generated using our
implementation

870 Engineering with Computers (2024) 40:867–883

1 3

complicated. Hence, we used mesh cutting to decompose
the domain [24].

Coll and Guerrieri propose a 2D CDT algorithm that is
parallelized using GPUs. Their algorithm consists of the
Location, Insertion, Marking, and Flipping stages. The
Location stage identifies triangles containing an uninserted
point; the Insertion stage inserts points; the Marking stage
marks the segments as valid or to be flipped (i.e., to eradicate
non-Delaunayness or intersection); the Flipping stage flips
the edges marked so. The algorithm is iterative and contin-
ues to run these four stages as long as edges and points are
missing in the triangulation. These four stages are run one
after another; they applied parallelization within each stage.
In their implementation, the threads coordinate to avoid race
conditions. For instance, when a thread is about to do a point
insertion or edge-flip to a triangle, it informs the neighbor
threads of that operation and who will be their new neigh-
bor. It would be possible to extend this algorithm to a 3D
algorithm. We adopted a more straightforward approach by
creating independent parts and processing them individu-
ally. That way, we ensure no race condition, synchronization
issue, or thread communication, helping to reduce paralleli-
zation overhead [25].

Blandford et al. [26] propose a parallel tetrahedralization
algorithm that can be extended to an out-of-core algorithm.
However, it is not a constrained tetrahedralization algorithm.
They suggest that developing an out-of-core algorithm
would allow large meshes to be tetrahedralized. Their par-
allel algorithm is based on the sequential incremental inser-
tion algorithm. They use multi-threading and lock mecha-
nisms to insert multiple vertices into the tetrahedral mesh
simultaneously. Our algorithm differs from theirs because
we use the divide-and-conquer paradigm to tetrahedralize.
Their algorithm does not divide the input as in our case but
works on a single mesh with multiple threads. Chernikov
and Chrisochoides also generated quality tetrahedral meshes
using the circumradius-to-shortest-edge ratio as the quality
measure [27]. Their algorithm leverages multi-core proces-
sors through parallelization. Specifically, they focused on
parallelizing the Delaunay refinement step to speed up the
overall process.

Cignoni et al. [28] put forward a divide-and-conquer
Delaunay triangulation algorithm, DeWall, that can trian-
gulate point cloud data of any dimension. Although it is
not implemented as a parallel algorithm, it is amenable to a
parallel implementation. However, it is not a constrained tet-
rahedralization algorithm as it only operates on point cloud
data. Like TetGen, our focus is on boundary-preserving tri-
angulation, preserving input faces during tetrahedralization.

Our divide-and-conquer algorithm differs from DeWall in
the non-recursive part. DeWall applies a merge step before
the recursive step. This early-merge step uses a dividing
plane and selects the vertices at either side of this plane to

create an initial tetrahedralization. It chooses these vertices
so that the generated tetrahedra have the smallest circum-
sphere radius to satisfy the Delaunay criterion. At this early
merge step, the generated tetrahedra intersect the dividing
plane. Then, it applies the same procedure recursively for the
parts on either side of the dividing plane. We do not allocate
buffer regions; we divide the mesh into parts and process
them. Specifically, DeWall tetrahedralizes three pieces at
each recursive step: the DeWall region around the divid-
ing plane, left and right parts. We apply tetrahedralization
to each part and do not spare a volume in the middle. The
disadvantage of not reserving a middle region is that we
cannot guarantee the Delaunay property for the tetrahedra
around the cutting plane. Our rationale for not adopting
that approach is not to slow down the process. Further, they
could do this wall generation as part of a non-constrained tri-
angulation algorithm. However, applying the same to a CDT
algorithm might cause difficulties because a CDT algorithm
must preserve the surface faces.

Chen et al. [29] proposed a parallel non-constrained near
Delaunay triangulation algorithm. They divided the input
into m blocks containing a nearly equal number of vertices.
They triangulate each block using a divide-and-conquer
algorithm. They call the area between these blocks as inter-
face. These interfaces are built incrementally, applying a
similar algorithm as used in DeWall to create the middle
region. The middle-region creation is similar to DeWall
and different from our algorithm because we do not spare
a central part but divide the input mesh into several pieces
directly. As discussed by Cignoni et al. [28], such input divi-
sion cannot be readily applied to CDT algorithms because
they need to preserve input faces.

Marot et al. [30] came up with a parallel 3D Delaunay
Triangulation algorithm. Their Moore curve-based input
partitioning allows different threads to work on different sets
of vertices. They allocated a buffer zone between partitions
to fix potential conflicts raised by multiple threads. In this
approach, the boundary recovery stage where they preserve
the input faces is not parallel. Only the non-constrained part
of their process is parallel. The Delaunay Tetrahedralization
part can be multi-processed, but they recover the boundary
using the sequential pipeline of TetGen. However, in our
approach, the boundary recovery is parallel, allowing us to
reduce memory usage.

Hu et al. [31] later developed a faster version of TetWild,
called fTetWild. It is as robust as the TetWild but at the same
time significantly faster. They used parallelization structures
to accelerate their algorithm. Similar to TetWild, input faces
are not exactly preserved in the resulting tetrahedral mesh
but are just approximated.

Kohout et al. [32] explored the parallelization of
Delaunay triangulation algorithms on shared memory
architectures. They investigated the effect of different

871Engineering with Computers (2024) 40:867–883

1 3

parallelization techniques on performance. However,
they only focus on non-constrained Delaunay triangula-
tion algorithms.

2.3 Input partitioning

We shall discuss algorithms that use input partitioning
techniques to reduce the problem size. Joshi and Ourselind
developed a constrained tetrahedralization algorithm that
uses 3D convex decomposition and BSP trees [33]. They
decompose the whole object into convex sub-polyhedra,
tetrahedralize each piece and merge the meshes at the end.
They accelerate the merge process using BSP trees. During
the construction of the BSP tree, their algorithm introduces
new vertices on the boundary. They experimented with non-
convex polyhedra that are not very large. The boundary of
the largest model they experimented with contains 26 ver-
tices, and the number of produced tetrahedra for this model
is 70. We did not consider such an approach because we
cannot control the number of convex sub-polyhedra gen-
erated and might subdivide the problem redundantly. One
problem with redundantly subdividing is that the overhead
of merging at each step might significantly slow down the
process. To this end, we divide the object into a user-defined
number of pieces.

Smolik and Skala suggest a 3D triangulation algorithm
that divides the input into a 3D Grid [34]. They extended
their algorithm to be out-of-core so that the memory usage
is reduced and large scenes can be tetrahedralized. How-
ever, their algorithm is not constrained. They accept a vertex
cloud as input and embed each vertex to a cell in the 3D grid.
After that, they triangulate each cell and merge them at the
end cleverly to complete the algorithm. We could not apply
that approach as we cannot divide the input surface mesh
into a regular 3D grid. Triangles might be present in mul-
tiple grid cells, which makes it difficult tetrahedralize each
cell. Therefore, we separate the object into several pieces
instead of a grid structure.

Erkoc et al. [35] developed a divide-and-conquer con-
strained (boundary-preserving) tetrahedralization algorithm.
They recursively divide the object into two at each step and
call the TetGen as the base case. Unlike our algorithm, they
do not introduce any parallelization structure. In addition,
they do not propose any plane selection algorithm and intro-
duce costly repairing and merging steps.

3 The proposed algorithm

The proposed algorithm is composed of three stages: Input
Partitioning, Surface Closure, and Merge (cf. Algorithm 1).

3.1 Input partitioning

The proposed algorithm begins by dividing the input mesh
into several pieces (see Algorithm 2). We aim to divide
the input surface mesh into as many evenly-sized pieces
as possible. To this end, we need to find parallel planes

that partition the mesh into equal-sized parts. We find such
planes with the help of Principal Component Analysis
(PCA). We apply PCA to the vertices of our input mesh
to calculate the first principal component (PC1). The PC1
allows us to partition the input mesh into a maximum num-
ber of pieces. The PC1 vector is the normal vector of these

872 Engineering with Computers (2024) 40:867–883

1 3

parallel planes. We then find a different point in each of
these planes to define their equations. To achieve that, we
project the vertices of our mesh onto the PC1 . So, we end
up with a one-dimensional projections array, and we sort
it. At this stage, we need an input parameter, the number of
parts, k. With that value in hand, we create a set of indices

where V is the vertex set of the input and (k − 1) corresponds
to the number of planes we need to create k pieces. For
instance, when k = 2 , I will be I = {|V|∕2} , which means

I = {(i∕k) × |V| | i ∈ {0, 1,… , k − 1}},

we get the index of the median, and by letting the plane
pass through the median, we can ensure that the division
is balanced. We know how to find the projected elements
and back-project them to world coordinates with the indi-
ces. The resulting points, along with the PC1 , will be used
to construct the planes. Each part will contain an approxi-
mately equal number of vertices and hence an equal number
of faces. Algorithm 3 shows the pseudo-code of the plane
selection algorithm.

We need to insert new points into the mesh where the
planes and mesh intersecting with these planes are known.
Point insertion is essential because we want all points to be
planar, simplifying the Surface Closure stage. The inter-
section and point insertion algorithm begins with iterating
over all of the edges in the mesh. For each edge, we run
a plane-segment intersection test. The intersection result
can be a segment, a point, or nothing. We split the edge if

the intersection is a point and the plane is not too close to
the edge’s endpoints. We control the closeness to an edge
using a threshold parameter. We do not insert the point
if the newly inserted point is close to either of the edges.
For the intersection tests, we rely on exact predicates of
the CGAL library. CGAL is reliable in detecting intersec-
tions. We have not come across an issue caused by inter-
section tests. Floating point errors occur when we insert

873Engineering with Computers (2024) 40:867–883

1 3

new points. Our method may fail if there are so many cut
planes that intersect each other. When there are so many
parallel planes, some may intersect due to floating point
errors, although this never happened in our experiments.
If we select an axis with very low variance, the extent of
that axis is limited, so we cannot fit too many planes in
there. However, if we find a very high-variance axis, we
can have more room to store planes, thereby dividing the
mesh into more pieces. Our aim in applying PCA is to find
a high-variance axis.

Splitting the edge will introduce a new point between the
two endpoints of the edge. We set the new point’s location
as the location of the intersection point. If the intersection
is a line segment, we do not split it because the line segment
is on the plane, eliminating the necessity for point inser-
tion. We also skip an edge if the plane almost intersects one
of its endpoints. Omitting this step would introduce nearly

Fig. 2 The illustration of intersection and point insertion. The top
image shows the input mesh before running the algorithm. The bot-
tom image shows the result after point insertion. Newly inserted
points are shown in red

Fig. 3 The illustration of the
refinement stage on the Arma-
dillo model. The top-left image
shows the mesh without refine-
ment (only boundary-preserving
tetrahedralization is applied).
We use refinement to the others
with the density factor 0.1,
0.2, and 0.4 for the top-right,
bottom-left, and bottom-right
images, respectively

Fig. 4 The illustration of the parts after undergoing the surface clo-
sure stage. The hole is filled using triangulation. The resulting trian-
gulation is inserted into both left and right meshes

874 Engineering with Computers (2024) 40:867–883

1 3

Fig. 5 The illustration of
handling inputs with various
topological structures during
input partitioning. First row: the
simplest case with a genus zero
object. Second row: a genus
one object. When we cut it in
halves, we obtain two nested
boundary cycles. We apply
triangulation using the edges
of both boundaries but only
keep the triangles between them
eventually. Third row: similar
to the previous case, but we put
another object inside the hole.
After cut, we have three bound-
ary cycles inter-bedded. Again,
the triangulation is applied to
all edges, but only necessary
ones are kept. Fourth row: the
combination of previous cases

duplicate points and tiny triangles that might be considered
a self-intersection without sufficient floating-point preci-
sion. Figure 2 illustrates before and after the insertion of
new points. After the intersection points are inserted into
the mesh, we distribute the faces of the mesh into parts,
ending up with k mesh objects. We remove those vertices
during the post-processing stage to ensure all input faces are
present in the output.

3.2 Surface closure

We apply a hole-filling operation on open boundaries.
Although the state-of-the-art offers various methods to close
a surface that nicely follows the curvature of the surface,
they do not satisfy our needs [36, 37]. We aim to close the
hole so it is guaranteed to be planar, and filling that bound-
ary reduces to the 2D CDT problem.

875Engineering with Computers (2024) 40:867–883

1 3

Each part produced in the previous stage has open bound-
aries. We need to fill the holes because TetGen can only
work on closed meshes. We use 2D Constrained Delaunay
Triangulation to close the boundaries after finding them.
The straightforward method of finding each boundary and
triangulating the space inside might fail when the object has
a genus of more than zero or a concavity in the input.

To handle all kinds of inputs, we do the following. First,
we detect all boundaries and store them in an array. Each
boundary will be a simple polygon, not intersecting one
another. Then, we sort the array of boundary polygons in
decreasing order of the polygonal area. We also create an
array to keep track of potential parent polygons. We iterate
over the sorted array and check if this polygon is the child of
any polygon in the parent polygons array. If this is the case,
we mark this polygon as the child of the parent polygon.
Otherwise, we insert that polygon into the parent polygons
array. We run a 2D CDT for each parent polygon where the
constraint segments are the edges of all child polygons and
the polygon itself. This process can fill the holes that should

not be filled. To fix that, we run a breadth-first search on
the triangulation to eliminate unnecessary triangles using
the breadth-first search (BFS) implementation in CGAL
[38]. This BFS implementation is similar to Shewchuck’s
“triangle-eating virus” algorithm [39]. Algorithm 4 gives
the pseudo-code of the surface closure algorithm.

After we obtain the triangulation that closes the open
boundaries, we apply further refinement to increase the
quality of the triangles. The refinement stage subdivides
the triangles using a density control factor parameter [38].
Increasing the value of this parameter leads to more uni-
form triangles, as illustrated in Fig. 3. However, this pro-
cess also generates many new points and triangles, com-
plicating the object to be tetrahedralized. We then insert
this triangulation to meshes on both sides of the dividing
plane, reversing the triangle vertex orders before adding
them to the second mesh to achieve a consistent geometry.
This way, we obtain two closed, watertight, and intersec-
tion-free meshes, just as TetGen requires (see Fig. 4).

876 Engineering with Computers (2024) 40:867–883

1 3

Figure 5 illustrates four cases with different topologies
for the surface closure process. In each row, the leftmost
image is the input mesh; the middle one is the bottom
piece of the mesh when cut in half; the last one is after
triangulating the boundaries.

Case 1: This is the simplest case with a genus zero object.

Case 2: This is a genus one object. When we cut it in
halves, we obtain two nested boundary cycles. We
triangulate using the edges of both boundaries but
only keep the triangles between them eventually.

Case 3: It is similar to Case 2, but we put another object
inside the hole. After cutting, we have three
boundary cycles inter-bedded. Again, we trian-
gulate using all edges, but only necessary ones
are kept.

Case 4: This is the combination of previous cases.

We illustrate the surface closure process for the boundary
polygons shown in Fig. 6. In this figure, the white regions in
the image correspond to holes, while the purple areas cor-
respond to our input domain. As a result of the parent finding
algorithm, we can conclude that there are two-parent poly-
gons here, shown in the black border. We then triangulate
using all edges of the parent polygon and all the polygons
inside it. There are three polygons inside the left parent poly-
gon, whereas the parent polygon on the right is alone. We
aim to form triangles in only purple regions. However, trian-
gulation will also form triangles in the white areas. We run
a BFS algorithm to eliminate them. Figure 7 illustrates the
input partitioning and surface closure processes for Bunny
and Armadillo objects.

3.3 Merge

We merge several tetrahedral meshes (tetmesh) in the merg-
ing stage and create one final tetmesh. One difficulty with
the merge step is finding correspondence between tetrahe-
dra around the cut region. Because each part is tetrahedral-
ized independently, the neighboring tetrahedra at different
parts will not be aware of one another. To find these missing
neighbor relations, we store the neighborhood information
during the Surface Closure stage, as we create triangles to
close the boundary and use it in the merge stage. Figure 8
shows tetrahedral meshes generated from the merge stage.
Since we know that TetGen will preserve the triangles, the
triangles around the cut region will eventually perfectly fit
after the tetrahedral mesh is created.

We adjust TetGen parameters so that it preserves the
triangles. We disallow it to insert any new points into the

Fig. 7 The input partitioning and surface closure stages are illustrated
on Bunny (top row) and Armadillo objects (bottom row). The first
column is the input mesh; the second column is the mesh after point

insertion; the third column is the object’s bottom half; the last column
is the bottom half after the surface closure algorithm

Fig. 6 The 2D view of example boundary polygons generated after
surface partitioning

877Engineering with Computers (2024) 40:867–883

1 3

boundary. Otherwise, corresponding pieces would not
match during merging. Rarely, TetGen refuses to remove the
Steiner points it inserted into the boundary leading to a new

point on the domain. We detect such cases and terminate the
process immediately, resulting in an unsuccessful operation.
This situation does not cause a significant problem because it

Fig. 8 Example tetrahedral
meshes generated with our
implementation. Tetrahedral
mesh with edges and faces
(left). The cut mesh shows tetra-
hedra inside the model (right)

Fig. 9 Example tetrahedral meshes illustrating the result of the post-
processing step. Post-processing is enabled in the middle image but
not in the left image. The right image is the result of TetGen. All extra

vertices on the boundary are removed, and the constrained faces are
faithful to the input mesh. Our result with post-processing enabled is
identical to the TetGen’s output, which is the right image

878 Engineering with Computers (2024) 40:867–883

1 3

occurs rarely, and it will be improved in upcoming releases
of TetGen. Si and Goerigk [40] describe how the Chazelle
polyhedra, a family of non-convex polyhedra, can be tetra-
hedralized in a boundary-preserving fashion without modi-
fying its exterior boundary, i.e., by only inserting Steiner
points in the interior of it.

During the merge step, we apply post-processing to
remove the vertices introduced while partitioning the input.
We keep track of such vertices and remove them from the
tetrahedral mesh, which would create a cavity in the tetrahe-
dral mesh. Then, we tetrahedralize the cavity using TetGen.

We ensure that the input mesh’s original faces stay intact
thanks to this operation. Figure 9 shows tetrahedral meshes
with and without the postprocessing stage and the TetGen
output. The postprocessing stage makes our output tetrahe-
dral mesh identical to the TetGen output by removing extra
vertices unless the tetrahedralization fails because of the
failure of the merge step, as discussed in Sect. 3.3.

4 Modes of the algorithm

Our algorithm has two modes: parallel processing and
memory requirement reduction. The parallel processing
mode uses parallelization to speed up the process. The
memory requirement reduction mode uses single-threaded
programming and intermediate files to reduce memory
usage.

4.1 Parallel processing

Because our framework allows input mesh to be divided
into several pieces, we can apply multi-threaded processing
at different places in our implementation. Each piece, after
division, can be tetrahedralized entirely, independent from
the other. If we process them simultaneously, no racing
condition will occur. Hence, we parallelize the for-loop at
the 8th line of Algorithm 1. The mesh object is an instance

Table 1 Vertex and face counts of the objects used in the experiments

Nefertiti2 is the high-resolution version of the Nefertiti model

Vertices # Faces

Spot 2930 5856
Bob 5344 10,688
Blub 7106 14,208
Bunny 72,027 144,046
Pitt Brdg 75,081 150,170
Armadillo 172,971 345,938
Nefertiti 1,009,118 2,018,232
Neptune 2,003,932 4,007,872
Nefertiti2 6,054,698 12,109,392

Table 2 Experiments on
tetrahedral mesh quality with
the average slim energy quality
metric

The first column is the average slim energy for the standalone TetGen execution. Other columns show the
average slim energy values for the corresponding density control parameter. The smallest value at each row
is in bold

Model TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 6.26 7.26 6.72 6.15 6.23 6.33
Bob 5.99 7.74 6.82 6.41 6.16 6.27
Blub 7.84 8.79 8.25 7.89 7.74 7.46
Pitt Brdg 7.27 7.72 7.36 7.26 7.317 7.14
Armadillo 6.65 6.82 6.76 6.71 6.681 6.61

Table 3 Experiments on
tetrahedral mesh quality with
the maximum slim energy
quality metric

The table shows the maximum slim energy for each shape across different control parameter values. The
first column is the results for the standalone TetGen execution. Other columns show the values for the cor-
responding density control parameter. The smallest value at each row is in bold

Model TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 75.90 992.79 75.90 75.90 78.1 180
Bob 60.96 265.39 210.25 62.38 110.56 273.50
Blub 148.24 614.40 101.61 81.42 101.86 205.45
Pitt Brdg 91.43 231.55 118.19 147.33 79.53 123.12
Armadillo 224721.83 224721.83 224721.83 224721.83 224721.83 224721.83

879Engineering with Computers (2024) 40:867–883

1 3

of the Surface Mesh class belonging to the CGAL library,
which states that the object is vulnerable to race conditions
[38]. This vulnerability of mesh objects prevented us from
parallelizing some methods due to the high costs incurred
by critical sections. Moreover, we decided not to apply a
multi-threading scheme to the Merge stage because it is
already fast and includes file I/O, which needs to be syn-
chronized, diminishing the benefits of parallelism. Besides,
we observe in Fig. 10 that the Merge step is not the bot-
tleneck because its computational cost is a small percent-
age of the computational cost of the whole process. To
parallelize code segments, we have used OpenMP 2.0 [41].

4.2 Memory requirement reduction

The benefit of reducing memory usage is two-fold. First,
it allows the tetrahedralization of objects that would be
impossible due to a memory shortage. Secondly, it will
enable multiple objects that require high memory to be
tetrahedralize simultaneously. For example, if we have a
computer with 64 GB of RAM and two objects requiring 64
and 60 GB of memory, a sequential algorithm could only
process either in that machine. However, our implemen-
tation can process both simultaneously by dividing each
mesh at least once.

We have taken several precautions to minimize memory
footprint when it comes to implementation. More specifi-
cally, we aimed to reduce the peak memory usage of our
implementation. If the computer does not have enough
memory to accommodate the peak memory needed for
execution, it will terminate without processing the input.
For such cases, we disable multi-threading and opt for
single-threaded execution. Simultaneously processing
multiple pieces requires memory to hold the data for all
parts. Eventually, the memory footprint will be no less than
TetGen. Instead of keeping the meshes in memory, we store
the file handles. When a part is needed, we read it from the
file, and when we update it, we write the changes to the
corresponding file.

5 Experiments

We conducted experiments on mesh quality, parallel pro-
cessing performance, and memory requirements. The sta-
tistics about the meshes used in the experiments are given
in Table 1.

Table 4 Experiments on the effects of post-processing (i.e., vertex
removal) step on tetrahedral mesh quality

The quality metric is average slim energy; the lower it is, the better.
The density control parameter is selected as 0.1

Model TetGen Without With
Postprocessing Postprocessing

Spot 6.26 9.59 7.26
Bob 5.99 9.91 7.74
Blub 7.84 10.84 8.79
Pitt Brdg 7.27 8.21 7.72
Armadillo 6.65 7.09 6.82

0 2 4 6 8 10 12 14 16
0

5,000

Number of threads

E
xe

cu
ti
on

ti
m
e
(m

s)

Partitioning
TetGen
Merge
Total

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2
·104

Number of threads

E
xe

cu
ti
on

ti
m
e
(m

s)

0 2 4 6 8 10 12 14 16
0

0.5

1

·105

Number of threads

E
xe

cu
ti
on

ti
m
e
(m

s)

Fig. 10 Execution time dissection for Bunny, Armadillo, and Nefertiti
objects (from top-to-bottom). Single-threaded execution corresponds
to sequential TetGen

880 Engineering with Computers (2024) 40:867–883

1 3

5.1 Mesh quality

We performed experiments on the quality of the resulting
tetrahedral meshes. We used slim energy as the quality
measure, as in TetWild [18]. The smaller the energy is, the
higher the quality is. The final quality value for a tetrahedral
mesh is the average slim energy across all tetrahedra.

Table 2 depicts the effect of the density control param-
eter on mesh quality using the average slim energy quality
metric. When we merge the partial tetrahedral meshes, the
triangles we newly created for Surface Closure stage will
be the faces of internal tetrahedra. We expect to observe an
increase in quality with increasing density control parameter
values. Thanks to the large density parameter, we could get
higher-quality meshes than TetGen in some cases. Table 3
shows the effect of the density control parameter on mesh

quality using the maximum slim energy quality metric,
which corresponds to the worst quality of the produced tet-
rahedra. In some cases, our algorithm produces tetrahedra
with maximum slim energy and better quality than TetGen.
Hence, the non-Delaunay triangles we introduce do not cre-
ate many problems.

We also investigated the effect of the post-processing/ver-
tex removal step on the tetrahedral mesh quality. As shown
in Table 4, removing extra vertices and tetrahedralizing the
cavity increases the tetrahedral mesh quality. The quality
difference between our meshes and TetGen’s become simi-
lar with post-processing enabled. Hence, although our algo-
rithm may create some non-Delaunay triangles, the quality
difference appears slim compared to the gain achieved by
reducing the memory footprint and computation time.

Table 5 The effect of density
control parameter on the
execution time

The execution time is in milliseconds. The best values are shown in bold. We divided the object into two
and used two threads for these experiments

TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 120 139 115 108 123 174
Bob 283 475 214 225 212 354
Blub 413 307 289 318 338 467
Pitt Brdg 4502 3642 3557 3309 3533 3822
Armadillo 14793 9203 9542 9484 11131 22492

Table 6 Memory usage (in
MB) and processing times (in
seconds) for various models
with post-processing enabled

When the part count is one, TetGen is directly used. Our implementation failed for some input-part count
pairs due to the floating-point errors; these are shown with “-”. The inputs that TetGen could not process
are marked with an “x”. Nefertiti2 is the high-resolution version of the Nefertiti model

Model Part counts

1 2 4 8 16

Mem Time Mem Time Mem Time Mem Time Mem Time

Armadillo 923 12 542 22 336 34 268 60 360 109
Nefertiti 5200 85 3700 166 2500 248 2200 475 3000 726
Neptune 11800 250 6700 344 4400 500 – – – –
Nefertiti2 x x 23500 1552 – – – – – –

Table 7 The effect of density
control parameter on memory
usage

The memory usage is in Megabytes

TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 21 16 16 14 16 20
Bob 33 25 23 24 25 30
Blub 43 30 28 28 36 39
Pitt Brdg 388 227 228 256 237 262
Armadillo 930 547 582 565 623 944

881Engineering with Computers (2024) 40:867–883

1 3

5.2 Parallel processing

We conducted experiments to see how our parallelization
scheme performs. The PC used for the experiments has two
eight-core processors, equivalent to 16-core processing
power.

We first selected a few objects and tetrahedralized them
using up to 16 threads. We calculated how much computa-
tion time the program spends on the Partitioning, TetGen,
and Merge steps. In our experiments, we ignored reading
and writing times. The execution time of the TetGen stage is
calculated as the time the longest thread has taken to tetrahe-
dralizing the piece it is responsible for. Figure 10 plots the
execution time dissection for various models. The division
and merge steps do not take a significant amount of time,
but the TetGen stage dominates execution. Importantly, we
observed a steady speed-up improvement up to around eight
cores. When we increase the thread count above eight, the
speed-up starts decreasing.

The graphs show that TetGen execution times increase
as the number of threads increases. The reason may be the
imbalanced data partition. If the processing of the whole
mesh by TetGen on a single thread takes T time, the threads
processing each piece should ideally complete the execution
in T/X time, where X is the number of threads. However, this
ideal case does not always occur. Some threads run faster,
and some are slower due to imbalanced input partitioning.
We ensure that each part has an equal number of vertices
and faces, but the execution time of each thread might be
different due to topological differences. In other words, even
though the parts have a similar number of vertices, TetGen
may need to spend different computational times processing
each part depending on the shape of the part. For instance,
the amount of Steiner points may vary depending on the
topology/shape of the input, which affects the time TetGen
spends to add/remove them. In addition, we are inserting
new faces during the Surface Closure stage, and each part
might get a different number of vertices and faces appended
to it depending on the boundary polygons. All these factors
lead to data imbalance. As we increase the number of pieces,
this issue becomes crucial, slowing down the process.

The choice of the density control parameter used in the
refinement stage affects the execution time of our algo-
rithm. Incrementing that value increases the number of tri-
angles used to fill the holes and the quality of the triangles
(cf. Subsection 5.1). Higher-quality triangles require TetGen
to spend less time optimizing the mesh. Table 5 shows that
the value of 0.4 seems reasonable for this parameter con-
sidering the trade-off between the computational cost and
mesh quality.

Some cases failed because of the precision issues that
occurred while inserting new points into the mesh. We used
an inexact construction kernel of the CGAL [38]; this is why

such failures might occur. In addition, TetGen rarely inserts
Steiner points on the input triangles, preventing the merge
process from running correctly. The merge fails if the trian-
gles at both sides do not match due to new Steiner points.
We count this as a failure case too. These problems mainly
emerge because we use an inexact construction kernel of
CGAL during mesh division. Switching to exact construc-
tion would lead to a more robust approach, which increases
the computation cost. Such edge subdivision operations have
been used in applications like self-intersection fixing, but it
costs a lot of time. So, that design choice creates a trade-off
between robustness and speed. If such failure cases occur,
the user can update the density control or threshold param-
eter that defines the closeness of two points.

5.3 Memory requirements

We tested our algorithm with several objects and observed
the peak memory usage and execution times by enabling
the memory reduction mode of our algorithm. We limited
the available memory to 36 GB (16 GB Physical RAM +
20 GB Virtual Memory). Table 6 shows the results for vari-
ous input-part count pairs. We excluded reading and writing
times from the execution time.

As we increase the number of pieces, we see a significant
decrease in peak memory usage despite increasing execu-
tion time. Moreover, TetGen could not process the Nefertiti2
model due to high memory usage, whereas our method could
tetrahedralize it. The execution time of the memory-efficient
version of our algorithm appears to be reasonable compared
to TetGen.

We also investigated the relationship between memory
usage and the density control parameter. Table 7 shows that
increasing the density parameter increases memory usage.
Although it is often less than the standalone TetGen execu-
tion, the memory usage can even exceed that in some cases
if the density control parameter is too high. We expect this
result because the density parameter controls the number
of triangles, and its increase leads to more triangles. Cre-
ating more triangles means tetrahedralizing objects with
more vertex and triangles counts, which increases memory
usage.

6 Conclusion

We propose a divide-and-conquer algorithm that can be used
to reduce memory usage or speed up the constrained tetra-
hedral meshing process. Although our algorithm may intro-
duce some non-Delaunay triangles, it can increase the qual-
ity of the tetrahedral mesh. Despite non-Delaunay triangles,

882 Engineering with Computers (2024) 40:867–883

1 3

the increase in quality makes our method useful. We can
even successfully tetrahedralize meshes that TetGen cannot
do due to lack of memory. Although our input partitioning
stage introduces new vertices, we remove them during the
merge step to conserve the input triangles.

We could extend our work in various ways. Firstly, we
used PCA and parallel planes during input partitioning to
reduce the overhead. To set a trade-off between speed and
more balanced decomposition, we could experiment with
other approaches, such as convex decomposition and recur-
sive PCA. As convex decomposition is relatively slow, and
partitioning with non-parallel planes -as with recursive
PCA- requires a complicated merge step (i.e., BSP trees to
keep track of neighboring pieces efficiently), the overall pro-
cess may be slower, but decomposition could be more bal-
anced. Secondly, we applied our framework to only TetGen.
However, it can be used with other meshing tools such as
TetWild. Since TetWild may also suffer from out-of-memory
errors, it would benefit from such an approach.

Acknowledgements This research is supported by The Scientific and
Technological Research Council of Turkey (TÜBİTAK) under Grant
No. 117E881. The Bunny and Armadillo are obtained from The Stan-
ford 3D Scanning Repository. The Neptune model is courtesy of Lau-
rent Saboret by the AIM@SHAPE-VISIONAIR Shape Repository. The
Spot, Blub, Bob, Pittsburg Bridge, and Nefertiti models are courtesy
of Keenan Crane’s 3D Model Repository.

Data Availability Data used to test our implementation is from publicly
available resources listed in the acknowledgments.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest/competing interests.

References

 1. Susersic TI, Filipovic N (2020) Computational modeling of dry-
powder inhalers for pulmonary drug delivery. In: Filipovic N (ed)
Computational modeling in bioengineering and bioinformatics.
Academic Press, Cambridge, pp 257–288

 2. Anderson P, Fels S, Harandi NM, Ho A, Moisik S, Sánchez CA,
Stavness I, Tang K (2017) FRANK: a hybrid 3D biomechani-
cal model of the head and neck. In: Payan Y, Ohayon J (eds)
Biomechanics of living organs, vol 1. Translational epigenetics.
Academic Press, Oxford, pp 413–447

 3. Payan Y, Ohayon J (eds) (2017) Biomechanics of living organs.
Translational epigenetics, vol 1. Academic Press, Oxford

 4. Tu J, Yeoh G-H, Liu C (2018) CFD mesh generation: a practi-
cal guideline. In: Tu J, Yeoh G-H, Liu C (eds) Computational
fluid dynamics, 3rd edn. Butterworth-Heinemann, Oxford, pp
125–154

 5. Molino N, Bridson R, Teran J, Fedkiw R (2003) A crystalline, red
green strategy for meshing highly deformable objects with tetra-
hedra. In: Shepherd J (ed) Proceedings of the 12th International
Meshing Roundtable, IMR 2003, pp 103–114

 6. Teran J, Sifakis E, Irving G, Fedkiw R (2005) Robust quasistatic
finite elements and flesh simulation. In: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’05. Association for Computing Machinery, New York, NY,
USA, pp 181–190

 7. Sifakis E, Der KG, Fedkiw R (2007) Arbitrary cutting of deform-
able tetrahedralized objects. In: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA
’07. Eurographics Association, Goslar, DEU, pp 73–80

 8. Montazerin N, Akbari G, Mahmoodi M (2015) Developments
in turbomachinery flow: forward curved centrifugal fans, vol 1.
Woodhead Publishing, Sawston

 9. Driscoll M (2019) The impact of the finite element method on
medical device design. J Med Biol Eng 39:171–172

 10. Mollica F, Ambrosio L (2009) The finite element method for the
design of biomedical devices. In: Merolli A, Joyce TJ (eds) Bio-
mater Hand Surg. Springer, Milano, pp 31–45

 11. Wittek A, Miller K (2020) Computational biomechanics for medi-
cal image analysis. In: Zhou SK, Rueckert D, Fichtinger G (eds)
Handbook of medical image computing and computer assisted
intervention. The Elsevier and MICCAI society book series. Aca-
demic Press, London, pp 953–977

 12. Freutel M, Schmidt H, Dürselen L, Ignatius A, Galbusera F (2014)
Finite element modeling of soft tissues: material models, tissue
interaction and challenges. Clin Biomech 29(4):363–372

 13. Galbusera F, Niemeyer F (2018) Mathematical and finite element
modeling. In: Galbusera F, Wilke H-J (eds) Biomechanics of the
spine. Academic Press, Oxford, pp 239–255

 14. Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D (2019)
A large scale comparison of tetrahedral and hexahedral elements
for finite element analysis. arXiv preprint arXiv: 1903. 09332

 15. Shewchuk JR (2008) General-dimensional constrained Delaunay
and constrained regular triangulations, I: combinatorial properties.
Discret Comput Geom 39(1):580–637

 16. Lagae A, Dutré P (2008) Accelerating ray tracing using
constrained tetrahedralizations. Comput Graph Forum
27(4):1303–1312

 17. Si H (2015) TetGen: a Delaunay-based quality tetrahedral mesh
generator. ACM Trans Math Softw 41(2):1–36

 18. Hu Y, Zhou Q, Gao X, Jacobson A, Zorin D, Panozzo D
(2018) Tetrahedral meshing in the wild. ACM Trans Graph
37(4):60–16014

 19. Bridson R, Doran C (2022) Quartet: a tetrahedral mesh genera-
tor based on Jonathan Shewchuk’s isosurface stuffing algorithm.
Available at: https:// github. com/ crawf orddo ran/ quart et. Accessed
10 Oct 2022

 20. Dey TK, Levine JA (2009) Delaunay meshing of piecewise
smooth complexes without expensive predicates. Algorithms
2(4):1327–1349

 21. Dobrzynski C (2012) MMG3D: tetrahedral fully automatic
remesher. User Guide. Technical Report RT-0422, HAL Id: hal-
00681813, The National Institute for Research in Digital Science
and Technology (INRIA). Available at: https:// hal. inria. fr/ hal-
00681 813/ docum ent. Accessed 10 Oct 2022

 22. Chew LP (1993) Guaranteed-quality mesh generation for curved
surfaces. In: Proceedings of the Ninth Annual Symposium on
Computational Geometry. SCG ’93. Association for Computing
Machinery, New York, NY, USA, pp 274–280

 23. Chernikov AN, Chrisochoides NP (2008) Algorithm 872: paral-
lel 2D constrained Delaunay mesh generation. ACM Trans Math
Softw 34(1):1–20

 24. Linardakis L, Chrisochoides N (2008) Algorithm 870: A static
geometric medial axis domain decomposition in 2D Euclidean
space. ACM Trans Math Softw 34(1):1–28

 25. Coll N, Guerrieri M (2017) Parallel constrained Delaunay trian-
gulation on the GPU. Int J Geogr Inf Sci 31(7):1467–1484

http://arxiv.org/abs/1903.09332
https://github.com/crawforddoran/quartet
https://hal.inria.fr/hal-00681813/document
https://hal.inria.fr/hal-00681813/document

883Engineering with Computers (2024) 40:867–883

1 3

 26. Blandford DK, Blelloch GE, Kadow C (2006) Engineering a com-
pact parallel Delaunay algorithm in 3D. In: Proceedings of the
Twenty-second Annual Symposium on Computational Geometry.
SoCG ’06, pp 292–300

 27. Chernikov AN, Chrisochoides NP (2008) Three-dimensional
Delaunay refinement for multi-core processors. In: Proceedings
of the 22nd Annual International Conference on Supercomputing.
ICS ’08. Association for Computing Machinery, New York, NY,
USA, pp 214–224

 28. Cignoni P, Montani C, Scopigno R (1998) DeWall: a fast divide
and conquer Delaunay triangulation algorithm in e d . Comput
Aided Des 30(5):333–341

 29. Chen M-B, Chuang T-R, Wu J-J (2004) Efficient parallel imple-
mentations of near Delaunay triangulation with high performance
Fortran. Concurr Comput 16(12):1143–1159

 30. Marot C, Pellerin J, Remacle J-F (2019) One machine, one minute,
three billion tetrahedra. Int J Numer Method Eng 117(9):967–990

 31. Hu Y, Schneider T, Wang B, Zorin D, Panozzo D (2020) Fast tetra-
hedral meshing in the wild. ACM Trans Graph 39(4):117–111718

 32. Kohout J, Kolingerová I, Žára J (2005) Parallel Delaunay trian-
gulation in E2 and E3 for computers with shared memory. Parallel
Comput 31(5):491–522

 33. Joshi BJ, Ourselin S (2003) BSP-assisted constrained tetrahe-
dralization. In: Proceedings of the 12th International Meshing
Roundtable. IMR ’03, pp. 251–260

 34. Smolik M, Skala V (2014) Fast parallel triangulation algorithm
of large data sets in E 2 and E 3 for in-core and out-core memory
processing. Proceedings of the international conference on com-
putational science and its applications ICCSA 14. Springer, Cham,
pp 301–314

 35. Erkoç Z, Aman A, Güdükbay U, Si H (2021) Out-of-core con-
strained Delaunay tetrahedralizations for large scenes. In:

Garanzha VA, Kamenski L, Si H (eds) Numerical geometry, grid
generation and scientific computing. Springer, Cham, pp 113–124

 36. Zhao W, Gao S, Lin H (2007) A robust hole-filling algorithm for
triangular mesh. Vis Comput 23(12):987–997

 37. Tekumalla LS, Cohen E (2004) A hole-filling algorithm for trian-
gular meshes. Technical Report UUCS-04-019, School of Com-
puting, University of Utah, UT, USA

 38. The CGAL Project (2020) CGAL user and reference manual.
CGAL Editorial Board. Available at: https:// doc. cgal. org/5. 0.2/
Manual/ packa ges. html, Accessed 10 Oct 2022

 39. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh
generator and Delaunay triangulator. Proceedings of workshop
on applied computational geometry. Springer, Cham, pp 203–222

 40. Si H, Goerigk N (2018) On tetrahedralisations of generalised Cha-
zelle polyhedra with interior Steiner points. Comput Aided Des
103:61–72. https:// doi. org/ 10. 1016/j. cad. 2017. 11. 005

 41. Dagum L, Menon R (1998) OpenMP: an industry standard API for
shared-memory programming. IEEE Comput Sci Eng 5(1):46–55

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Authors and Affiliations

Ziya Erkoç1 · Uğur Güdükbay1 · Hang Si2

 Ziya Erkoç
 ziya.erkoc@bilkent.edu.tr

 Hang Si
 si@wias-berlin.de

1 Department of Computer Engineering, Bilkent University,
06800 Ankara, Turkey

2 Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstraße 39, Berlin, Germany

https://doc.cgal.org/5.0.2/Manual/packages.html
https://doc.cgal.org/5.0.2/Manual/packages.html
https://doi.org/10.1016/j.cad.2017.11.005
http://orcid.org/0000-0003-2462-6959

	Memory-efficient boundary-preserving tetrahedralization of large three-dimensional meshes
	Abstract
	Graphical abstract
	1 Introduction
	2 Related works
	2.1 Sequential CDT
	2.2 Parallel Delaunay triangulation
	2.3 Input partitioning

	3 The proposed algorithm
	3.1 Input partitioning
	3.2 Surface closure
	3.3 Merge

	4 Modes of the algorithm
	4.1 Parallel processing
	4.2 Memory requirement reduction

	5 Experiments
	5.1 Mesh quality
	5.2 Parallel processing
	5.3 Memory requirements

	6 Conclusion
	Acknowledgements
	References

