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Abstract
Point cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature
estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a
quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and
transformation estimationmethods to enhance the correspondence between the source and target point clouds.We evaluated the
performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed
using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing
our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally,
we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud
registration methods.

Keywords Point cloud registration · Fast point feature histograms (FPFH) descriptor · Quantile assignment · Iterative closest
point algorithm · Bipartite graph matching · Hungarian algorithm · Hopcroft–Karp algorithm

1 Introduction

We propose a new coarse-to-fine approach to solving the
pairwise 3D point cloud registration (PCR) problem. PCR
aims to align two or more point clouds in a standard coor-
dinate system by estimating the transformation that maps
one point cloud onto another. A point cloud is a set of data
points in X, Y, and Z coordinates representing a 3D shape or
object. Range sensors, such as ultrasonic sensors, Kinect, and
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LiDAR, are widely used technologies to gather point cloud
data [1]. Since these sensors have a limited view range, the
existing technologies cannot represent a complete scene for
larger shapes or objects. PCR combines the point clouds and
obtains a complete 3D scene; therefore, it is a fundamental
task in computer vision and robotics with many applications
such as 3D reconstruction, 3D localization, and pose estima-
tion [2].

The pairwise PCR problem mainly involves detecting the
corresponding point pairs between the two clouds (source
and target) and calculating the transformation matrix (rota-
tion and translation) that minimizes the distance between the
corresponding points. For many applications, the source and
the target point cloud only partially overlap [3]. To deal with
this challenge, we defined the quantile assignment problem
to obtain the correspondence set using a bipartite assignment
approach where we aim to detect the point pairs that belong
to the overlapping region and find an accurate matching for
those pairs only.

1.1 Problem definition

Let S = {p1, . . . , pN } and T = {q1, . . . , qM } be the source
and the target point clouds where pi and q j are the coordi-
nate vectors of the i th and j th points of their respective point
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cloud, S, T ⊂ R
3. The goal of PCR is to find the rotation

matrix R and the translation vector t minimizing the distance
between the source and target point clouds, i.e., solve the fol-
lowing optimization problem:minR∈R3×3,t∈R3 d(RS+t, T ).

We define the correspondence set C ⊂ N
2 as the one-to-

one mapping between S and T . For a tuple (i, j) in C, the
points pi ∈ S and q j ∈ T are said to correspond. When
C is known, the distance between S and T is defined as
d(S, T ) = ∑

(i, j)∈C
‖pi − q j‖2. and the optimization problem

above has a closed-form solution [4]. However, obtaining an
accurate enough correspondence set is a challenging task.

1.2 Challenges

Range sensing technologies have evolved rapidly throughout
recent years; however, the point cloud data gathered is still
subject to noise and outliers.Moreover, the point clouds to be
registered have only partial overlaps. These limitations make
it difficult to accurately detect the points in the source point
cloud belonging to the overlapping region and the points in
the target point cloud they correspond to. Since the initial
positions of the two clouds are on different coordinate sys-
tems, only using the Euclidean distance between the data
points for registration may result in false alignments. There-
fore, pose-invariant local descriptors are widely utilized [5]
to detect the corresponding pairs, and remarkable develop-
ments have been made regarding these descriptors. Still, the
accuracy of the 3D point cloud registration is limited by the
robustness of descriptors, and improvement is needed for
better results.

In general, input point cloudsmay contain up to billions of
points, and therefore PCR applications have been limited by
high memory footprint and slow speed [6]. Downsampling
methods are utilized to deal with more extensive data. How-
ever, downsampling the point clouds may result in losing
some of the descriptive features of surfaces. Thus, there is
a trade-off between accuracy and computational complex-
ity, which makes it challenging to deal with these large
point clouds without suffering from inaccurate correspon-
dences. The resulting transformation fails to align when the
correspondence set does not contain enough accurate corre-
sponding pairs.

1.3 Applications

PCR plays a critical role in computer vision and robotics.
PCR algorithms represent scenes and objects in 3D by reg-
istering multiple point cloud data. This process is called 3D
reconstruction [7], which can be used for medical imaging
[8], constructions of buildings, roads and bridges [9], 3D
animation and face recognition [10], and autonomous driv-
ing [11]. Simultaneous localization and mapping (SLAM)

is another process in robotics that utilizes PCR methods for
estimating the real-timepositions of objects in unknownenvi-
ronments.

1.4 Motivation

The interest in PCR has increased in recent years due to its
critical applications. Although existing efficient learning and
optimization-based algorithms can achieve accurate point
cloud registration, there is still a need for improvement due
to the many challenges of dealing with large and noisy point
clouds. The low overlap ratio between the source and target
cloud imposes difficulties in estimating accurate transforma-
tions. Our study focused on detecting the overlapping region
and adaptively achieving accurate registration by utilizing
only the points in this region.We developed an optimization-
based algorithm that does not require any initialization.

2 Related work

There are notable algorithms to achieve efficient and accu-
rate PCR. There are two PCR types: global registration and
local registration. Global registration methods do not only
use the point clouds’ positions; hence, they do not require
initialization. In contrast, local registration methods utilize
the coordinates of points and rely on a rough initial align-
ment. The initial alignment may affect the registration result
adversely. A common strategy to deal with this challenge is
to adopt a coarse-to-fine approach: first estimating an initial
approximate transformation with coarse registration (based
on pose-invariant features), and then refining this transfor-
mation with fine registration (based on coordinates) [12].

The local registration (refinement) is performed gener-
ally with the well-known iterative closest point (ICP)method
[13] [14] or its variants. ICPmatches each point in the source
cloud to its geometrically nearest point in the target cloud and
transforms the source cloud such that the distance between
these corresponding points is minimized. This procedure is
repeated until the distance is below a threshold. There are
several standard methods for calculating the transformation:
SVD, Lucas–Kanade algorithm, and Procrustes analysis [2].
In addition to the point-point distance metric, the point-plane
and plane-plane distancemetrics are also used. Although fast
and straightforward, ICP converges to the nearest local min-
imum, and therefore, its registration performance is highly
dependent on the initial position of the point clouds [12].
There are many improved variants of ICP. Scale-adaptive
ICP [15] integrates the scale factor into the optimization
process and handles the PCR problem when a scale dif-
ference between the input clouds is present. In the Sparse
ICP method [16], the registration optimization is formulated
using sparsity-inducing norms to become more robust to
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noise and outliers. Zhang et al. [17] developed a fast con-
verging method using an Anderson acceleration approach.
The refinement is typically performed with an ICP-based
method. Different approaches can be used to obtain the rough
alignment needed for ICP. We classified these approaches as
learning-based and optimization-based.

2.1 Learning-based approaches

Deep neural networks (DNNs) are extensively used to per-
form PCR. DNN is commonly used for feature extraction
and transformation estimation [2]. One common approach is
establishing the features with a feature-learning model and
using a robust estimation tool to obtain the transformation.
Random sample consensus (RANSAC) [18] is commonly
used to estimate the transformation matrix. It is a search
algorithm using repeated random subsampling to estimate
parameters iteratively. An alternative to RANSAC is the opti-
mized sample consensus [19], which has a similar principle
but uses a different error metric. For both algorithms, a dif-
ferent set of correspondences are obtained at each iteration.

R-PointHop [20] is a green, unsupervised feature-learning
method with lower memory consumption and reduced train-
ing time than its alternatives. Zeng et al. introduced 3DMatch
[21], a learning model that uses 3D local volumetric data
and extracts 512-dimensional features representing local
patches. Instead of learning from volumetric data, PPFNet
[22] learns local descriptors on pure geometry and extracts
64-dimensional descriptors. FCGF [23], PointNet [24], and
CGF [25] are other notable state-of-the-art feature-learning
models. PCR can be performed using the extracted features
by one of these models and estimating a transformation via
RANSAC.

DNNs are also utilized for transformation estimation
with an end-to-end framework. PCR can be solved with
end-to-end neural networks by transforming the registra-
tion problem into a regression problem [2]. 3DRegNet
[26] uses DNN to classify the inliers/outliers among cor-
respondences and perform regression of the transformation
parameters. Alternative to DNN, the authors also adopted
a Procrustes approach for regression. Similarly, Choy et
al. introduced the deep global registration framework [27],
which uses a differentiable weighted Procrustes algorithm
for transformation estimation. Deep global registration uses
a six-dimensional convolutional network for correspondence
confidence prediction and a robust gradient-based optimizer
for pose refinement.

Learning-based methods can perform fast and accurate
registration. However, they have a training process requiring
extensive data, and their performance can drop significantly
for unknown scenes much different than the training data [2].

2.2 Optimization-based approaches

Handcrafted features are commonly used instead of feature-
learning models. These features are based on spatial and
geometric attributes or relationships between different points
in the cloud [5]. Spin image [28] is generated by accumulat-
ing two parameters in a 2D array describing the position
of a point with respect to its neighboring points. Lei et al.
[29] designed an efficient local descriptor formedwith eigen-
values and normals computed from multiple scales. Local
feature statistics histogram (LFSH) [19] describes local
shape geometries using local depth, point density, and angles
between normals. Some handcrafted descriptors are built
using a local reference frame (LRF). Signature ofHistograms
of OrienTations (SHOT) [30] is based on spatial distribu-
tions of the local neighborhoods of the key points. Fast point
feature histograms (FPFH) [31] is a robust descriptor based
on geometric relations within the local neighborhood of a
key point. Fast global registration (FGR) [32] is a state-of-
the-art optimization-based global registration method. FGR
uses FPFH features for correspondence search and estimates
the transformationwith an alternatingoptimization algorithm
that utilizes the Jacobian of the feature differences and the
Gauss–Newton method.

Probabilistic approaches utilizing Gaussian mixture mod-
els (GMMs), such as the coherent point drift (CPD) [33]
algorithm, are also adopted for optimization-based reg-
istration. KSS-ICP [34] method performs registration in
Kendall shape space (KSS) that removes influences of trans-
lations, scales, and rotations for shape feature-based analysis.
Another popular approach is to use graph matching to estab-
lish the correspondence set. The iterative global similarity
point (IGSP) algorithm [35] is a variant of the ICP algorithm
where correspondences are obtained with the Hungarian
algorithm using a hybrid distance metric that utilizes the
points’ local and geometric features. Chaudhury [36] pro-
posed a method that also leverages the point clouds’ local
and global structures and uses the Gauss–Newton optimiza-
tion method for estimating the transformation. A method
that utilizes GMM for noise handling and an expectation-
maximization (EM) algorithm for registration was proposed
in [37]. The singular value decomposition (SVD)method cal-
culates the transformation matrix. Since optimization-based
registration methods do not need training, they can be gener-
alized well to unknown scenes. However, they might suffer
from high computation costs. Shen et al. [38] leveraged
robust optimal transport for point cloud registration. The
authors show that optimal transport (OT) solvers improve
the performances of deep learning- and optimization-based
approaches for point cloud registration. They utilize the latest
OT solvers to improvememory usage and numerical stability,
which helps to handle fine-grained details effectively. Their
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improvements increase accuracy at a reasonable computa-
tional cost.

Significant advancements in point cloud registration have
been made in recent years, with a predominant emphasis
on feature extraction and transformation estimation. How-
ever, we have observed a relative need for more attention
to the crucial task of feature-matching or correspondence
estimation. Existing techniques, such as maximum match-
ing or nearest neighbor approaches, are employed for this
task, but they need to improve accuracy in the presence of
noise and partial overlap. The correspondence set directly
affects the end transformation and, thus, is a crucial part of
the registration process. Therefore, integrating more sophis-
ticated novel feature-matching techniques to point cloud
registration frameworks would help to achieve higher accu-
racy and precision. Our primary focus is developing and
applying the quantile assignment algorithm for precise cor-
respondence estimation. To this end, we define the quantile
assignment problem specifically for the registration task,
considering the limitations such as noise, outliers, and par-
tial overlap between the point clouds. We analyzed different
feature descriptors and transformation estimationmethods to
combine with our correspondence estimation algorithm and
proposed a new optimization-based, two-stage coarse-to-fine
framework.

3 Quantile assignment

We used the quantile assignment (QA) algorithm [3]1 to
obtain the correspondence set. The assignment problem is
polynomially solvable [39], and the QA problem is a variant
of the maximum bipartite assignment problem.

3.1 Problem definition

Consider the source and target clouds and assume M ≥ N .
The feature of each point is calculated using a local descrip-
tor. Note that these features can be scalars or vectors depend-
ing on the descriptor. Let pi be the feature value/vector of i th
point inS and q j be the feature value/vector of j th point inT .
Using these features, we construct the affinity matrix AN×M

where Ai j = −ρe‖pi−q j‖2 and ρ is the penalty coefficient.
The maximumweight assignment problem corresponding to
this data solves the following mathematical model

max
X∈X

N∑

n=1

M∑

m=1

Anm Xnm, where

1 A preliminary version of this section is published in [3].

X=
{
X∈{0, 1}N×M : ∑N

n=1 Xnm=1,∀m,
∑M

m=1 Xnm=1,∀n
}

is the set of all bipartite matchings. We defined α ∈ [0, 1] as
the overlap ratio between the source and the target clouds. In
practical applications, noise makes the overlap ratio difficult
to estimate. Let us assume there is no noise, and K ⊆ N is
the set of points in the source cloud that matches exactly the
points in the target cloud.Then,we setα = |K|/N , represent-
ing the ratio of expected matches for the smaller point cloud.
Using this value, we define kα = max (1, �(1−α)N	) and
denote the distinct entries of thematrix A as q values. The kthα
smallest q value is called the α-quantile, qα . Given an affinity
matrix A and α, the objective of QA is to find the bipar-
tite matching that maximizes the α-quantile of the weights
associated, i.e., solve maxX∈X qα (Anm Xnm, ∀n,m}) . that
was shown in [3] to be polynomially solvable. After the cor-
respondence set is established using the QA problem, the
transformation matrix is estimated using only the matches
with larger affinity values than the optimal kthα smallest affin-
ity value since we assume that the matches with smaller
affinity values belong to the non-overlapping region. Hence,
we avoid using faulty matches.

3.2 Solutionmethod

We can solve the QA problem by conducting a binary search
on the affinity matrix’s q values. A particular q value is con-
sidered α-feasible if there exists X ∈ X such that the kthα
smallest affinity value in {Anm Xnm, ∀n,m} is at least as
high as q. Only the matched pairs with higher affinity values
than this q value are later utilized to obtain a final matching.
Therefore, we need this q value to be α-feasible to end up
with a number of matched pairs enough to meet the specified
overlap ratio. We aim to find the largest α-feasible affin-
ity value q, i.e., the largest α-quantile value. We propose
a Hungarian-based method to test whether a q value is α-
feasible. This method first constructs a binary cost matrix
C by assigning each entry of A the value one if that entry
is smaller than q and zero if not. Then, the minimum cost
matching problem can be solved on C using the Hungarian
algorithm [40]. The current q value is considered α-feasible
if theminimum cost found is less than or equal to kα−1. Note
that the source and target clouds are generally different sizes;
hence, our matrix C may not be square. Since the Hungar-
ian algorithm can only be performed in square matrices, we
appropriately complement C to a square one.

Alternatively,wepropose aHopcroft–Karp-basedmethod.
We apply the Hopcroft–Karp maximum cardinality match-
ing algorithm [41] on a bipartite graph to test the α-feasibility
of a q value. The edges of this bipartite graph correspond to
pairs in C having zero costs. Augmenting the maximum car-
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dinalitymatching edges in this graphwith enough edges with
cost values as one will result in a minimum cost matching.
Similarly, if the cost computed for C is less than or equal to
kα−1, one can conclude that the current q value isα-feasible.
When the largest α-feasible q value is obtained, thematching
found for that q is utilized for constructing the correspon-
dence set. Matched points with an affinity value smaller than
q are excluded from the matching, and the remaining pairs
are used for estimating the transformation matrix. However,
recall that thematching is calculated on the binary costmatrix
C ; therefore, each potential pair with an affinity value higher
than q is treated the same. The overlapping region can be
determined with the so far explained method. However, it is
not enough to ensure a successful matching within the over-
lapping region since the used matrix is binary. To further
differentiate between the potential point pairs, we used the
alternative cost matrix Cq , where the affinity values smaller
than q are replaced by zeroes, and the rest remains the same.
Once the largest α-feasible q value is found, the maximum
cost matching problem is solved on this matrix one last time
to obtain the final matching. With this modification, we aim
to detect the pairs belonging to the overlapping region of the
two point clouds and search for the best matching among the
overlapping pairs. In the sequel, we refer to this method as
Hungarian cost sensitive.

Lemma 1 Given α, q, and A, deciding whether there exists
a matching such that the kthα smallest entry in this matching
is at least q can be done in O(M1.5N ) time.

Theorem 1 Amatching that maximizes the α-quantile can be
found in O(M1.5N logM) time.

Please refer to [3] for the proofs of Lemma 1 and Theo-
rem 1. Algorithm 1 solves the QA problem [3].

As an example, consider the following affinity matrix and
α = 0.55. The perfect matching entries are bracketed.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

19 13 8 1 14

9 3 18 2 18

17 15 7 14 19

2 1 9 6 13

17 20 13 14 15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since kα = 3, the q value is the third smallest value in the
matched element set, i.e., 18. However, the following optimal
assignment is preferable since it gives a better value of 19.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

19 13 8 1 14

9 3 18 2 18

17 15 7 14 19

2 1 9 6 13

17 20 13 14 15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Algorithm 1 Quantile Assignment
Input: N × M affinity matrix A and α ∈ [0, 1]
Output: qα

∗

Initialize:
q∗ ← 0
kα ← max(1, �(1 − α)N	)
Sort distinct entries of

({Ai j , i ∈ N , j ∈ M}) into
q1 < q2, . . . , < qs

left ← 1
right ← s
while left ≤ right do

mid ← 
 left+right
2 �

Ci j =
{
1 if Ai j < qmid
0 otherwise

i ∈ N , j ∈ M.

cost ← minimum cost perfect matching value for
data C = [Ci j ]

if cost ≤ kα − 1 then
q∗ ← qmid
left ← mid + 1

else
right ← mid − 1

end if
end while
return qα

∗

4 Computational experiments

Our proposed approach is tested by conducting a series
of PCR experiments. We constructed a synthetic dataset
inspired by the experiments conducted by Zhou et al. [32].
Our dataset contains five models: the Angel, Bunny, Happy
Buddha, Dragon, and Horse [42]. We generated five partially
overlapping clouds for each model by cropping the models,
and we added Gaussian noise to each partial cloud using
three noise levels. We set the Gaussian standard deviation
parameter σ equal to 0 (no noise), 0.0025 (noise level 1),
and 0.005 (noise level 2) for each noise level, respectively,
and multiplied this parameter with the diameter of the partial
cloud. Our dataset contains 75 different point clouds, three
noise levels for each model, and five point clouds for each
noise level. The overlap ratio varies between 51% and 94%.
Figure1 shows partial clouds from each model’s three noise
levels. Figure2 illustrates an example of the PCR process.

Ground-truth rotation and translation for the experiments
conductedwith synthetic data can be found by calculating the
inverse of R and t . The registration performance is evaluated
using the ground truth rotation and translation. The registra-
tion is successful if the difference between the calculated and
the ground-truth transformation is below a threshold. For the
synthetic dataset, the rotation threshold is 5◦, and the trans-
lation threshold is 2cm.We used the evaluation metric recall
in our experiments, representing the ratio of successfully reg-
istered point cloud pairs to all pairs [2].

4.1 Framework

We adopted a coarse-to-fine approach to perform PCR, con-
sisting of global and local registration as explained in Sect. 2.
The workflow of our registration process can be found in
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Fig. 1 Noise added partial point clouds in the synthetic dataset (color figure online)

Fig. 2 a shows the initial position of the two partially overlapping
clouds. Then, the source cloud (blue) is rotated by the matrix R and
translated by the vector t as shown in (b) where R is constructed from

the XYZ Euler angles [43]
[π

3
,
π

2
, π

]
, and t = [0.5, 0.5, 0.5]. The

correspondence set for the point clouds is constructed using our QA

algorithm. The correspondence lines between the point clouds for the
top 50 affinity values are visualized in (c). Then, the transformation
matrix is calculated using the correspondence set and applied to the
source cloud. The final registration is shown in (d) (color figure online)

Fig. 3 Our workflow

Fig. 3. The inputs of our algorithm are the source and tar-
get point clouds. The point clouds are simplified using voxel
or uniform downsampling methods to deal with large data.
In voxel downsampling, points in the cloud are bucketed
into voxels for a given measure, and each occupied voxel
generates one point by averaging all points inside [44]. An
alternative method is uniform downsampling that samples
the point cloud in the order of the points. The selected point
indices are [0, k, 2k, . . .] for a given parameter k [44].

The features of the simplified point clouds are extracted
with the chosendescriptor.We tested our algorithmwith three
feature descriptors: curvatures [45], FPFH [31], and LFSH
[19].We explain the computation of each descriptor and ana-
lyze their performances in Sect. 4.2.

The affinity matrix is constructed using the chosen
descriptor, as explained in Sect. 3.1, and the QA problem
is solved on this affinity matrix with one of the algorithms
in Sect. 3.2. The registration performances of different algo-
rithms are analyzed in Sect. 4.3. The QA algorithm requires
an α value as input representing the overlap ratio between the
source and target point clouds. The estimation of this ratio
is a challenging problem. We manually synthesized the par-

tial point cloud pairs from a single model for our synthetic
dataset; hence, the overlap ratio is easily computed.

The resulting matching of our QA algorithm is the ini-
tial correspondence set. We apply a test called tuple normal
alignment to the initial correspondence set to eliminate false
correspondences (cf. Sect. 4.4) and obtain the final corre-
spondence set to estimate the transformation.

Given the correspondence set, we implemented twometh-
ods to estimate the transformation matrix. The first option
is to perform singular value decomposition (SVD), a well-
known method for estimating the rotation matrix. After the
rotation matrix is calculated with SVD and applied to the
source point cloud, the translation vector is calculated by
simply using the difference between the mean coordinates of
the matched points among the target cloud and the rotated
source cloud. We also implemented the algorithm by Zhou
et al. [32], referred to as the FGR optimization method. Both
methods are explained, and their registration performances
are evaluated in Sect. 4.5.

The process so far is the global registration part of our
framework.We then perform local registration after the found
transformation is applied to the source cloud. The point-to-
plane ICP algorithm (cf. Sect. 4.6) performs fast and accurate
registration if the initial alignment of the input point clouds
is close enough. The original target cloud and the previously
transformed source cloud are fed to the ICP algorithm to per-
form local refinement, and the final registration is obtained.

4.2 Feature investigation

The choice of feature descriptor is crucial. The main idea
is that one should associate with each point a number or a
vector that does not change with the set of transformations
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Fig. 4 Feature visualizer tool
outputs (color figure online)

that the point cloud may have to go through to achieve an
optimal registration with another point cloud. We explain
the computations of each implemented local descriptor and
compare their performances according to their registration
performance and descriptiveness.

Our first choice as a descriptor was curvatures. Cur-
vature is a quantity preserved under rigid transformation.
Histogram shapes of local curvature for K-nearest neighbors
are invariant under, e.g., affine transformations. The curva-
ture computation for point clouds is performed as follows.
For each point xi , i=1, . . . , n in the point cloud, letMi be the
associated unit normal vector. Fix one point P=xi0 and let
N=Mi0 denote its normal vector. Let another point Qi = xi
be chosen in a close neighborhood of P . The normal curva-
ture τi can be estimated at any point by τi= sin(β)

|PQi | sin(α)
,where

α denotes the angle between −N and PQi , and β represents
the angle between N and Mi (see [45] for details).

Alternative pose-invariant local features are FPFH, amod-
ification of previously reported point feature histograms
(PFH) to be more robust. The default implementation uses
11 binning subdivisions, resulting in a 33-dimensional fea-
ture for each key point. The computational cost of FPFH is
significantly lower than PFH, and most of the discriminative
power of PFH is retained [31].

The third local descriptor we implement for our PCR algo-
rithm is Local Feature Statistics Histograms (LFSH). LFSH
describes local shape geometries by encoding their statistical
properties on local depth, point density, and angles between
normals. Three sub-histograms are obtained using these fea-
ture statistics containing 10, 15, and 5 bins, respectively. The
LFSH descriptor is obtained by concatenating these three
sub-histograms into one histogram [19].

The performances of the three local descriptors, curva-
tures, FPFH, and LFSH, are first tested using the Feature
Visualizer tool we designed using the Open3D library [44].
For any given point in the source cloud, the location of
the closest point in the target cloud regarding its feature
value/vector for the given local descriptor is shown via the
Feature Visualizer.

The given point for the point cloud on the left side of Fig. 4
is shown as green. The points in the point cloud on the right
are colored from red to blue using the heat map technique
depending on their closeness (in terms of the used feature)
to the green point. The colors are normalized; the closest
points are colored red, and the furthest points are colored

Fig. 5 Feature recalls with no noise (color figure online)

Fig. 6 Feature recalls with noise Level 1 (color figure online)

blue accordingly. According to our tool, the FPFH feature
seems more discriminative than the other two.

We used the Bunny model from our synthetic dataset to
test the registration performances of the descriptors. For each
descriptor, our PCR framework is used on the ten partially
overlapping pairs from each noise level, with voxel and uni-
form downsampling for simplification. The recall values are
plotted for the cases of no noise, noise level 1, and noise
level 2 in Figs. 5, 6, and 7, respectively. Our experiments
showed that the FPFH feature achieved better registration
performance in our PCR framework for each noise level and
downsampling method compared to curvatures and LFSH.
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Fig. 7 Feature recalls with noise Level 2 (color figure online)

Fig. 8 Hungarian cost-sensitive and Hopcroft–Karp-based recalls with
voxel and uniform downsampling (color figure online)

4.3 Correspondence set

The initial correspondence set is obtained by solving the QA
problem. Several solution methods are proposed in Sect. 3.
The Hungarian-based and Hopcroft–Karp-based methods
have similar performances. The results were expected to
differ for the Hungarian cost-sensitive method since the
cost matrix construction was modified. Among the pro-
posed solution methods, we used the Hopcroft–Karp-based
and Hungarian cost-sensitive methods for our computational
PCR experiments.

We compare the registration performances of the two
methods using the bunny model. Figure8 depicts the two
methods’ recall values with voxel and uniform downsam-
pling, respectively. The recall values of the Hopcroft–Karp-
based and the Hungarian cost-sensitive methods are similar.

4.4 Tuple normal alignment test

We adopted the tuple test in [32] and used it on our initial
correspondence set to eliminate the faulty matches. Three

correspondence pairs (p1, q1), (p2, q2), (p3, q3) are ran-
domly selected. The tuples (p1, p2, p3) and (q1, q2, q3) are
considered compatible andpass the test if the condition below
is satisfied:

τ <
||pi − p j ||
||qi − q j || <

1

τ
, ∀ i, j = 1, 2, 3 and i �= j

where τ is selected as 0.9. For any two corresponding pairs
(pi , qi ), (p j , q j ), the ratio of their distances must be close
to one if any of the correspondences is not false.

The source cloud is transformed using the correspon-
dences that pass the tuple test. Then, to further eliminate
the faulty correspondences, we applied one more test, called
tuple normal alignment test, using the normal alignments
of the triangles. This test is applied as follows. Three cor-
respondence pairs (p1, q1), (p2, q2), (p3, q3) are randomly
selected from the set. Let n p be the surface normal of the
triangle formed by the tuple (p′

1, p
′
2, p

′
3) and nq be the sur-

face normal of the triangle formed by the tuple (q1, q2, q3),
where (p′

1, p
′
2, p

′
3) are the points in the source cloud after the

transformation is applied. The correspondence pairs (p1, q1),
(p2, q2), (p3, q3) remain in the final correspondence set if the
angle between n p and nq is less than or equal to our thresh-
old, which is 15◦. We obtain the final correspondence set by
applying the tuple test and the tuple normal test to the initial
correspondence set.

4.5 Transformation estimation

Thewell-knownsingular valuedecomposition (SVD)method
can estimate the transformation matrix. After the final cor-
respondence set is established, our aim is to compute the
rotation matrix R and the translation vector t that min-
imizes the weighted sum of squared errors, i.e., solve
minR∈R3×3,t∈R3

∑

(i, j)∈C
‖(Rpi + t) − q j‖2wi j where wi j is

the weight of the corresponding pair (pi , q j ) is solved. We
used the affinity matrix values, which show the closeness
of two points in terms of their features as weights. A direct
optimal solution for the rotation matrix can be found via
SVD. First, the weighted mean values p0 and q0 for the
source and the target clouds, respectively, are calculated

as p0=
∑

(i, j)∈C piwi j∑
(i, j)∈C wi j

, q0=
∑

(i, j)∈C q jwi j∑
(i, j)∈C wi j

. Next, the covari-

ancematrix H= ∑
(i, j)∈C(q j−qo)(pi−p0)�wi j .Finally,we

apply SVD to H to decompose H into matricesU , D, and V :
SVD(H)=UDV�.Using theSVDdecomposition, the rotation
matrix R is R=VU�. Once R is computed, the transla-
tion vector is calculated as a shift between the means of the
matched points from the two point clouds as t=q0−Rp0.
It was shown that this (R, t) is the optimal solution to the
optimization problem defined above (see [46] for details).
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Fig. 9 FGR optimization and SVD recalls with no noise (color figure
online)

Fig. 10 FGR optimization and SVD recalls with noise Level 1 (color
figure online)

Our second option to estimate the transformationmatrix is
to use the FGRoptimization proposed byZhou et al. [32]with
theobjective function E(R, t)= ∑

(i, j)∈C ρ(||(Rpi+t)−q j ||)
where a scaled Geman–McClure estimator is used as the

robust penalty functionρ(.):ρ(x)= μx2

μ+x2
.Since optimizing

E(R, t) is difficult, the authors proposed an equivalent joint
objective using Black-Rangarajan duality and optimized it
with an alternate algorithm.

The registration performances of the two methods are
compared using the bunnymodel.As shown in Figs. 9, 10, 11,
the FGR optimization achieves more accurate PCR results.
The parameter μ used in the objective in the FGR optimiza-
tion controls the correspondences that significantly affect the
objective. It is more successful in dealing with outlier corre-
spondences.

4.6 Local refinement via ICP

The resulting alignment of the source and target point
clouds from our global registration algorithm requires fur-
ther refinement to achieve a more accurate registration
result. The point-to-plane ICP method [13] is used in our

Fig. 11 FGR optimization and SVD recalls with noise Level 2 (color
figure online)

implementation for local refinement. First, the correspon-
dence set is established by matching each point in the
source cloud to its closest neighbor point in the target point
cloud. The point-to-plane ICP method considers the sur-
face normal of the target scan. The optimization problem
minR∈R3×3,t∈R3

∑
(i, j)∈C ||((Rpi + t)−q j ) ·n j ||2,where n j

is the surface normal of the point q j , is solved. This error
function is minimized using the least squares approach. The
Gauss–Newton method is used to compute the least squares
solution, and the resulting transformation is applied to the
source cloud. This process is iterated until the error function
is below a certain threshold.

5 Point cloud registration experiments

We tested the registration performance of our algorithm with
three different datasets and comparedour resultswith someof
the state-of-the-art PCRmethods.Weused a synthetic dataset
containing commonly used 3D models, one indoor bench-
mark dataset (3DMatch [21]), and one outdoor benchmark
dataset (KITTI [47]). For better comparison with learning-
based state-of-the-art methods on the benchmark datasets,
we also integrated the pre-trained feature-learning model
FCGF [23] into our framework instead of the feature descrip-
tors explained in Sect. 4 to perform registration. All tests
were performed on a PC with 64-bit Operating System, x64-
based Intel(R) E5-2620 v4 processor, CPU @2.10GHz, and
RAM 64.00 GB. FCGF-based tests on 3Dmatch and KITTI
are performed on a separate PC with 64-bit Ubuntu 22.04,
x64-based AMD(R) Ryzen 7 6800H processor at @3.2GHz,
NVIDIA(R) RTX 3070Ti, and RAM 16.00 GB.

5.1 Synthetic dataset

We ran our point cloud registration algorithm on 150 pairs in
our synthetic dataset and compared our results with a state-
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Fig. 12 Registration with QA and FGR on Angel (color figure online)

of-the-art optimization-based method, FGR algorithm [32].
After using voxel and uniform downsampling with several
different downsample parameters, we registered each point
cloudpair. Theoverlap ratio is computed easily for each cloud
pair in our experiments since the point clouds are manually
created, and our α parameter is set accordingly. The recall
plots for different downsampling sizes and each noise level
for the Angel model in our synthetic dataset are depicted in
Fig. 12. Please refer to the Appendix for the recall plots for
the other models in our synthetic dataset. The average recall
values of the two methods are compared in Table 1.

For the synthetic dataset, FGR is selected for compari-
son since it is one of the state-of-the-art optimization-based
algorithms like our approach, and the implementation was
available online [44]. The average recall values are computed
for 30 cases where registrations are performed with different
3D models, noise levels, and downsampling method com-
binations. Out of these 30 cases, our algorithm outperforms
the FGRmethod in 17, resulting in a tie in three. Overall, the
average recall values for the two methods are comparable.

Standard Assignment Comparison
The standard assignment is integrated into our correspon-

dence search framework to show the effectiveness of our
approach in point cloud registration. Registration experi-
ments are conducted on the synthetic dataset using QA and
Standard Assignment (SA), and recall values are compared

Table 1 Average recalls of QA and FGR on the synthetic dataset. We
use the FPFH feature in QA

Average Recall (%)
With voxel With uniform
downsampling downsampling
QA FGR QA FGR

Angel σ = 0 82 80 43 33

σ = 0.0025 78 74 28 28

σ = 0.0050 62 66 25 15

Buddha σ = 0 52 56 42 50

σ = 0.0025 28 30 22 20

σ = 0.0050 2 4 2 4

Bunny σ = 0 74 70 82 80

σ = 0.0025 78 68 78 76

σ = 0.0050 84 70 78 78

Dragon σ = 0 78 76 62 62

σ = 0.0025 78 76 62 64

σ = 0.0050 86 82 56 52

Horse σ = 0 78 82 81 79

σ = 0.0025 68 70 73 71

σ = 0.0050 62 60 67 69

Bold font indicates best values

Fig. 13 Recall values for QA and SA on Angel (color figure online)

for various downsampling sizes. Figure13 shows the recall
plots for various noise levels of the Angel model. Please refer
to the appendix for the recall plots of the other models for
various noise levels in the synthetic dataset. Some example
registration results are given in Fig. 14. Significant improve-
ment in registration accuracy can be achieved by using QA
instead of SA for correspondence estimation. The average
computation times of our framework with QA, with SA, and
the FGR framework on the Bunny model for different down-
sampling sizes are tabulated in Table 2. Our QA algorithm
runs slower on the synthetic dataset than SA and FGR; how-
ever, it achieves registration with higher accuracy.
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Fig. 14 Registration results of QA and SA (color figure online)

Table 2 Average computation
times (sec) of QA, SA, and FGR
on Bunny

Average computation time
Voxel size (.10−3) Average number of points QA SA FGR

5.0 1778.8 19.9 10.9 5.6

7.5 830.0 12.9 7.9 4.9

10.0 472.2 10.6 6.6 4.5

12.5 312.4 8.8 5.8 4.3

15.0 216.6 7.3 5.4 4.1

5.2 3DMatch dataset

3DMatch benchmark [21] is a large-scale real-world indoor
dataset containing eight sets of indoor scene fragments cap-
tured by the RGBD sensor. Sample fragments are shown in
Fig. 15. Each set contains 37–66 fragments; each fragment
is a 3D point cloud of a surface. Unfortunately, computing
the overlap ratio of the point cloud pairs in 3DMatch was
not possible; however, it is known that the pairs have > 30%
overlap. Therefore, we set our parameter α as 0.3 in our
experiments for all point cloud pairs. We downsampled our
point clouds to 10cm using voxel downsampling. For FCGF,
we downsampled after the features were obtained and used
the average of feature values for voxel downsampling. After
registration, we applied the tuple test [32] and point-to-point
ICP. We also used FGR transformation estimation. Figure16
shows the registration result for one point cloud pair.

Table 3 gives the registration recall values for some state-
of-the-art PCRmethods using theRANSACalgorithm on the
3DMatch dataset. We obtained higher precision and recall
values on most scenes and on average. It was reported that
the R-PointHop [20] method achieves similar results to the
methods presented in Table 3 with 0.72 and 0.26 average
recall and precision values on 3DMatch. The proposed QA
algorithm surpasses earlier approaches in recall performance
and significantly improves the precisionmetric.Wealso com-
pared our average and maximal recall and precision results
with FGR [32] and recall values with FCGF+RANSAC in
Table 4.Weobtained the results for FGRusing the implemen-
tation in [44]. Even though our registration results were poor
compared to FGR [32] when we used the FPFH descriptor in

Fig. 15 Scene fragments from 3DMatch dataset (color figure online)

Fig. 16 Registration result of QA on a point cloud pair in the 3DMatch
dataset (color figure online)

the QA algorithm, we achieved significant improvement in
accuracy over FGR when we used FCGF features [23]. Our
results are also closer to FCGF with RANSAC than FGR.

5.3 KITTI dataset

Karlsruhe Institute of Technology and Toyota Technologi-
cal Institute (KITTI) benchmark is a large-scale real-world
outdoor dataset containing 555 point cloud pairs. The scenes
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Table 4 QA, FGR, and FCGF evaluation results on 3DMatch

Method Average Maximal Average Maximal
Recall Recall Precision Precision

FGR 35.02 47.80 27.30 53.37

QA (with FPFH) 9.25 15.56 11.62 34.85

QA (with FCGF) 74.08 87.52 48.05 73.23

FCGF 82.00 91.00 – –

Bold font indicates best values

Fig. 17 Some examples from the KITTI dataset

are captured by driving around Karlsruhe with two high-
resolution color and grayscale video cameras using the
autonomous driving platform Annieway [47]. Figure17
shows sample point clouds in the dataset.

We used the relative rotation error (RRE), relative trans-
lation error (RTE), and registration recall (RR) metrics in
our experiments on KITTI where RRE is the geodesic dis-
tance between estimated and ground-truth rotation matrices
and RTE is the Euclidean distance between the estimated
and ground-truth translation vectors. A registration result is
successful if RRE is below 5◦ and RTE is below 2m.

Computing the exact overlap ratio between the source and
target clouds was impossible for point clouds in the KITTI
dataset. In our experiments, there are at least ten meters of
distance between each point cloud pair, and the sensor range
for collecting the point clouds is 120ms [49]. Using this
information, we expected the overlap ratio to be high for any
two cloud pairs in our experiments but not more than 95%.
We set our parameter α equal to 0.90 through experiments
with different values. The comparison of our QA algorithm’s
registration results and some state-of-the-art methods can be
found in Table 5. Similar to the process in 3DMatch, we
applied uniform downsampling, tuple test, and point-to-point

Table 5 Evaluation results on KITTI

Method RTE (cm) RRE (◦) RR (%)

FGR [32] 93 0.96 39.4

DCP [50] ∼ 103 ∼ 2.07 47.3

FMR [51] ∼ 66 1.49 90.6

DGR [27] ∼ 32 0.37 98.7

QA (FPFH) 84.7 1.63 60.4

QA (FCGF) 10.5 0.17 98.0

Bold font indicates best values
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ICP and FGR transformation estimation. Although the suc-
cess rate of QA is slightly lower than that of DGR [27], our
approach achieves the lowestRTEandRREvalues among the
presented state-of-the-art methods in the table. We observed
that our results for the KITTI dataset were much better than
the 3DMatch dataset. This may be due to the overlap ratio
between the source and target point cloud pairs inKITTI hav-
ing much less variation than 3DMatch; thus, we were able to
set our parameter α more precisely.

5.4 Summary of results

Our results on the synthetic dataset show that the QA algo-
rithm outperforms FGR in accuracy in 17 cases out of 30
cases (see Table 1), although it runs slower (see Table 2).
Using the 3DMatch dataset, we tested our algorithm com-
bined with the features FPFH and FCGF.We showed that the
performance of QA significantly improves with FCGF by
increasing our average recall from 9.25 to 74.08 and average
precision from 15.56 to 87.52 (see Table 4). For the 3DMatch
dataset, our approach outperforms the compared methods
with an average recall of 0.74 and precision of 0.48. Of the
eight scenes in the dataset, QA achieves higher recall values
in four of themandhigher precision values in all (seeTable 3).
For the KITTI dataset, the success rate of our approach is
lower than that of DGR [27] by 0.7%. QA outperforms the
compared methods in other metrics with 10.5 cm RTE and
0.17 ◦ RRE (see Table 5).

6 Conclusion

As our main contribution, we propose a new coarse-to-fine
pairwise point cloud registration framework. The prelimi-
nary version of the QA algorithm [3] that establishes the
correspondence between the source and target point clouds
has been improved and refined by integrating it with different
handcrafted descriptors and a feature-learning model, result-
ing in an enhanced feature-matching performance.

Wedemonstrated the effectiveness of our approach against
the standard assignment through experiments on our syn-
thetic dataset. We evaluated the performance of our frame-
work using three datasets; our registration results are better
than or compatible with the state-of-the-art PCR methods in
terms of accuracy.

The accuracy of our approach can be further improved
for real-world datasets like 3DMatch and KITTI with over-
lap ratio estimation techniques. Our experiments showed that
the QA algorithm is susceptible to the α parameter. Estimat-
ing the overlap ratio is difficult for these datasets. Setting the
parameters that achieve the best possible results is challeng-
ing. A possible research direction is developing a method for

estimating the overlap ratio for any two input point clouds
using a learning model.

QA algorithm is computationally costly for real applica-
tions since the affinity matrix constructed is generally dense.
Another future research direction is to explore sparser affin-
ity matrix construction techniques to reduce computational
costs while maintaining accuracy.
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A Further results

Figures 18, 19, 20, 21 show the recall plots for different down-
sampling sizes and each noise level of the Buddha, Bunny,
Dragon, and Horse models, respectively. Figures22, 23, 24,
25 show the recall plots using QA and SA for various noise
levels of the Buddha, Bunny, Dragon, and Horse models,
respectively.
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Fig. 18 Registrationwith QA and FGR onBuddha (color figure online)

Fig. 19 Registration with QA and FGR on Bunny (color figure online)

Fig. 20 Registration with QA and FGR on Dragon (color figure online)

Fig. 21 Registration with QA and FGR on Horse (color figure online)
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Fig. 22 Recall values for QA and SA on Buddha (color figure online)

Fig. 23 Recall values for QA and SA on Bunny (color figure online)

Fig. 24 Recall values for QA and SA on Dragon (color figure online)

Fig. 25 Recall values for QA and SA on Horse (color figure online)
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