
The Visual Computer (1998) 14:445±454
� Springer-Verlag 1998 445

Right-triangular
subdivision for texture
mapping ray-traced
objects

UgÆur Akdemir, Bülent Özgüç,
UgÆur Güdükbay, Alper Selçuk

Department of Computer Engineering
and Information Science, Bilkent University, Bilkent,
06533 Ankara, Turkey
e-mail: {akdemir, ozguc}@bilkent.edu.tr
gudukbay@cs.bilkent.edu.tr
alpers@microsoft.com

The introduction of global illumination
and texture mapping enabled the genera-
tion of high-quality, realistic looking imag-
es of computer graphics models. We de-
scribe a fast and efficient 2D texture map-
ping algorithm that uses triangle-to-triangle
mapping, taking advantage of mapping an
arbitrary triangle to a right triangle. This
requires fewer floating point operations
for finding the 2D texture coordinates and
little preprocessing and storage. Texture
mapping is combined with ray tracing for
better visual effects. A filtering technique
alternative to area sampling is developed
to avoid aliasing artifacts. This technique
uses linear eye rays, and only one eye ray
per pixel is fired. A uniform supersampling
filtering technique eliminates aliasing arti-
facts at the object edges.

Key words. Texture mapping ± Ray trac-
ing ± Area sampling ± Filtering ± Summed
area tables ± Sweep surfaces

1 Introduction

Modeling every minute detail of an object to give
realistic effects is a very difficult and inefficient
process. We overcome this difficulty with texture
mapping, which can increase surface detail at a rel-
atively low cost. Ray tracing is one of the most
powerful methods in computer graphics for gener-
ating realistic images. In this study, we combine
our texture mapping method with area sampling
ray tracing for reducing aliasing.
The objects are produced by a tool called T
(`Topology ook'), which was developed at Bilkent
University [1]. The objects are created by sweep-
ing a 2D contour curve that can vary around a
3D trajectory curve. Contour and trajectory curves
can be BØzier or free curves. A lot of interesting
objects can be created with T .
We have implemented both 2D and 3D procedural
texture mapping, which is easily applicable to any
kind of surface. Procedural texturing functions do
not depend on the surface geometry or the surface
coordinate system. Therefore, procedural mapping
gives good results for complex general sweep ob-
jects. We have embedded a few procedural map-
ping routines in our system to increase the realism
of the scenes combined with 2D texture mapping.
However, we do not explain our procedural tex-
ture-mapping implementation since it uses the
well-known noise function [13].
In 2D texture mapping, a texture or an image is fitted
onto a 3D surface. One popular method maps trian-
gles from the texture to the triangles on the model.
We have developed a simple and efficient method
for triangle-to-triangle mapping. Since the mapping
takes advantage of mapping an arbitrary triangle to
a right triangle, it requires many fewer floating point
operations to find the 2D texture coordinates, and it
does not incur the preprocessing and storage costs
that other texture mapping algorithms do.
Two-dimensional texture mapping causes severe
aliasing unless it is filtered. Unfortunately, classi-
cal naive ray tracing is a point-sampling technique
that creates difficulties for filtering. We suggest a
filtering technique for ray tracing as an alternative
to area sampling to reduce aliasing; it is simpler
than other area sampling methods. In our imple-
mentation, we use a prefiltering technique, viz. re-
peated integration filtering [10], which is a gener-
alization of summed area tables [5].
This paper assumes that the reader is familiar with
ray tracing, texture mapping, and antialiasing. See
[7] for an excellent reference about ray tracing. A

Correspondence to: U. GuÈ duÈ kbay

446

survey of texture mapping and filtering techniques
to eliminate aliasing is presented in [11].
The rest of the paper is organized as follows. In
Sect. 2, our 2D texture mapping method is de-
scribed. Then in Sect. 3, our alternative filtering
technique for ray tracing is explained. In Sect. 4,
the results of our implementation is given, and in
Sect. 5 the conclusions are discussed.

2 The 2D texture mapping process

The triangle is one of the most used geometric
primitives in computer graphics for representing
complex surfaces. Most graphics engines are opti-
mized for rendering triangles. Therefore, triangu-
lating graphics models before rendering is one of
the most popular optimizations.
Since the 2D texture mapping algorithm presented
in this paper is based on triangle-to-triangle map-
ping, it accepts 3D triangulated objects as input.
If the 2D parametric coordinates of the vertices
of the triangles are known in advance, the texture
mapping algorithm produces better results.

2.1 Previous work

2.1.1 Barycentric coordinates

Barycentric division is used to subdivide a line
segment into equal lengths. To form barycentric
coordinates in a triangle, each edge of a triangle
is subdivided into equal lengths and axes that are
parallel to the edges. Barycentric coordinates in
two-dimensions can be used for mapping an arbi-
trary triangle to another arbitrary triangle [4]. A
point is represented as (u, v) in Cartesian coordi-
nates and as (L1, L2, L3) in barycentric coordinates.
The mapping from barycentric coordinates to Car-
tesian coordinates is as follows:

u
v
1

24 35� u1 u2 u3

v1 v2 v3

1 1 1

24 35 L1

L2

L3

24 35: �1�

This mapping can be inverted as:

L1

L2

L3

24 35� a1 b1 c1

a2 b2 c2

a3 b3 c3

24 35 u
v
1

24 35: �2�

This method involves calculating the barycentric
coordinates in two dimensions for each point that
is to be mapped. Substantial amounts of prepro-
cessing and storage are needed for each triangle.

2.1.2 Extension from convex quadrilateral inverse
mapping to triangle inverse mapping

A convex quadrilateral inverse mapping algorithm
is given in [8]. The parametric values (u, v) are cal-
culated by the algorithm for obtaining the location
of a point within a convex quadrilateral. This coor-
dinate pair represents the location of the point with
respect to the four edges, taken as pairs of coordi-
nate axes ranging from 0 to 1. To achieve the tri-
angle-to-triangle inverse mapping, the triangle is
passed to the algorithm by doubling the last vertex
in order to give the routine four points to work
with. At the doubled vertex, all values of one pa-
rameter converge. Hence, the precision of the map-
ping process decreases.
The derivation for plane-dependent constants is
rather complex, and it needs a substantial amount
of preprocessing and storage. Seventeen floating-
point numbers have to be stored for each triangle.
According to the calculations in [8], 34 multiplica-
tions and two square root operations are needed for
each (u, v) pair.

2.1.3 Parameterization of triangles

Heckbert [11] gives a 2D parameterization for tri-
angles defined in three dimensions. The equation
for parameterization is:

x
y
z

24 35� A B C
D E F
G H I

24 35 u
v
1

24 35: �3�

The nine variables, A through I, are calculated
from the Cartesian coordinates of the inversely
mapped triangle by solving three sets of equations
with three unknowns by using the 3D coordinates
of the vertices of the triangle. In order to directly
parameterize a point on a triangle, Eq. 3 can be in-
verted as:

u
v
1

24 35� a b c
d e f
g h i

24 35 x
y
z

24 35: �4�

447

This is one of the most commonly used methods
for triangle-to-triangle mapping. Like the other
methods mentioned, this method has a high prepro-
cessing cost and it needs a substantial amount of
storage space for the 3�3 matrices of each triangle.
Assuming 8 bytes for each floating-point number
in the 3�3 matrix, we need 720000 bytes of mem-
ory for 10000 triangles.

2.2 Our method

All of the methods mentioned need substantial
amounts of preprocessing and storage space.
If we assume that the 2D texture image is rectan-
gular, which is almost always the case, then we
can subdivide this image into triangles by using
only right triangles (Fig. 1). The rectangular tex-
ture image is subdivided into similar rectangles
along the u�v directions. Then these rectangles
are subdivided into two right triangles. By taking
advantage of mapping an arbitrary triangle to a
right triangle, we propose a fine, fast, and efficient
triangle-to-triangle mapping. The proposed 2D-
texture mapping method works for any object rep-
resented by triangles. If the 2D parametric coordi-
nates of the objects are known in advance, the
mapping will give better visual results.
The first step of the method is to subdivide the tex-
ture image into right triangles in order to find the
corresponding triangles on the surface area as seen
in Fig. 1.
The next step is to find the corresponding point H2
on T2 for a point H1 on T1 (Fig. 2).
To make a fine interpolation, we preserve the fol-
lowing ratios for both of the triangles seen in
Fig. 2.

rBA � B1IB1A1j j
B1A1j j �

B2JB2A2j j
B2A2j j and

rBC � B1IB1C1j j
B1C1j j �

B2JB2C2j j
B2C2j j : �5�

Since the medians of a triangle meet at its center of
gravity, the centers of gravity of the triangles are
preserved when the ratios in Eq. 5 are preserved.
By preservation of the center of gravity, we mean
the center of gravity in a right triangular texture
patch maps to the center of gravity in the general
triangle that is texture mapped. Although the dis-

tortion characteristics of a texture mapping algo-
rithm depends largely on the kinds of objects that
are texture mapped, not preserving the center of
gravity increases the distortion. This can be de-
scribed in terms of homogeneity of the resolution
and aspect ratio, which are the two criteria used
to evaluate a mapping algorithm [3]. Homogeneity
of resolution is determined as the ratio of the max-
imum and minimum values of the arc lengths mea-
sured on the mapping along a principal axis as a
result of the corresponding motions on the texture
patch. It gives a quantization of the effective scal-
ing of the mapping along principal axis directions,
which ideally should be constant. The aspect ratio
is the maximum value of the proportion of the arc
lengths along the principal axes corresponding to
perpendicular motions along the principal axes
on the texture patch, which are measured at various
points on the mapping.
This can be explained better with an example. As-
sume that we are trying to map a triangular texture
patch to a triangle of the same shape and size. If
the center of gravity is preserved, then the homo-
geneity of the resolution and the aspect ratio of
the mapping will not be disturbed. This means that
these criteria will be optimal for this example. If
the center of gravity is not preserved, these criteria
will not be optimal. The derivations in the previous
mapping methods are either too costly to preserve
the centers of gravity or they do not preserve the
centers of gravity.
Point H1 is represented by a 3D coordinate system
since it is a point on a 3D object. The following
equation can be written in terms of x, y, z coordi-
nates to find rBC in Eq. 5.

xIB1C1

yIB1C1

zIB1C1

24 35� 1ÿ rBC� � �
xB1 ÿ xC1

yB1 ÿ yC1

zB1 ÿ zC1

24 35� xC1

yC1

zC1

24 35: �6�

A1H1
���!

and H1IB1 C1

����!
have the same direction. If T1 is

on neither the x nor the y-plane, then the following
equation can be written.

xH1 ÿ xA1

yH1 ÿ yA1

� 1ÿ rBC� � � xB1 ÿ xC1� �� xC1 ÿ xH1

1ÿ rBC� � � yB1 ÿ yC1� �� yC1 ÿ yH1

: �7�

If H1 and A1 coincide, H1 is mapped directly to A2.
If T1 is on the x-plane, the xs should be replaced
with zs, and if T1 is on the y-plane, the ys should

448

be replaced with zs in this equation. After arrang-
ing the terms, we get:

rBC � 1ÿ
xH1 ÿ xA1� � � yC1 ÿ yH1� �ÿ yH1 ÿ yA1� � � xC1 ÿ xH1� �
yH1 ÿ yA1� � � xB1 ÿ xC1� �ÿ xH1 ÿ xA1� � � yB1 ÿ yC1� � :

�8�
The value of rBA can be found similarly. If H1 is on
jA1C1j, i.e., both rBC and rBA are 1, then the corre-
sponding point H2 on the hypotenuse of T2 can be
found by calculating rAC similarly.

After calculating the ratios in Eq. 5 on T1, all we
need to do is to find H2 on T2 by preserving these
ratios. Since the coordinates of the vertices of T2
are known beforehand, calculating |B2Y| and |B2X|
is enough to find the 2D coordinates of point H2.
|B2Y| and |B2X| can be found by using the similarity

relation JB2A2XH2

D � JB2A2B2C2

D
between the trian-

gles. After arranging the terms and some simplifi-
cations to reduce the number of multiplication op-
erations, we get:

B2Yj j � B2C2j j � rBC � rBAÿ rBC� �
rBC � rBAÿ 1

: �9�

B2

J

Y

X

H2

A2

C2

A1

T1 : triangle on surface T2 : triangle on texture

1B 1AI

B 2 C2

JB 2 A 2

C1

1B

I B C11

H1

1

2

Fig. 1. 2D texture mapping

Fig. 2. Mapping from an arbitrary triangle to a right triangle

10
119

8
7

5

6

0
1 2

3
4

6

0
1

7

2

8

3

9

4

10

5

11

TextureSurface

449

If H1 is on jA1C1j, then:

jB2Yj = rAC´jB2C2j, (10)

jB2Xj = (1�rAC)´jB2 A2j. (11)

Because of the floating-point intersection calcula-
tions, the probability that both rBC and rBA will
be 1, i.e., H1 will be exactly on jA1C1j, is very
low. Therefore, if we ignore the extra calculations
for hit points on jA1C1j and a few comparison op-
erations, we need 16 floating-point multiplications/
divisions to find the real 2D coordinates in the tex-
ture space. One other nice advantage of this meth-
od is that almost no preprocessing and storage are
needed. Only three floating-point numbers, the
edge lengths of T2, need to be stored for each tex-
ture image.

3 Anti-aliasing for ray tracing

Although ray tracing is one of the best methods for
global illumination, it causes severe aliasing when
used with texture mapping because it is a point-
sampling method. Therefore, we must either sam-
ple areas to use texture mapping with ray tracing
or use a filtering technique such as an alternative
area sampling to eliminate aliasing. Since area
sampling is too expensive, we choose to imple-
ment the alternative filtering technique described
in the sequel.

3.1 Methods for area sampling

Ray tracing with beam [9], cone [2], and pencil
[14] rays are methods for area sampling, but they
require complex intersection and clipping calcula-
tions. Whitted [16] suggests using a pyramid in-
stead of a linear eye ray that is defined by the four
corners of a pixel. These pyramids are intersected
with the objects. Therefore, this method is compu-
tationally very expensive. Sung [15] suggests the
area sampling buffer (ASB), which allows the
use of z-buffer hardware for area sampling in a
ray-tracing style. This method is superior to the
other methods mentioned and it takes advantage
of specialized hardware, but it suffers from the
limitations of the z-buffer for transparent objects.

3.2 Our implementation

Except the ASB method, all of the area sampling
methods mentioned replace linear rays with a geo-
metric object. The intersections are calculated with
respect to these geometries. Complex calculations
are needed for clipping and intersections.
In our implementation, only one linear eye ray per
pixel is used. A ray that is shot from the view point
is traced in the environment. Therefore, all of the
intersection calculations remain the same as in
classical ray tracing.
To achieve the filtering by using a classical ray
tracer, we used three buffers, each holding the nec-
essary hit information for a screen row. When
three row buffers have been filled with the hit in-
formation obtained from the ray tracer, we begin
calculating the color value for the middle row.
The color value for a pixel is calculated by begin-
ning from the node at the maximum reflection
depth level to the primary ray level. The color val-
ues are transmitted to a lower reflection level.
The linked list representation for a typical row
buffer for three pixels is shown in Fig. 3. Refrac-
tion levels grow vertically and reflection levels
grow horizontally.
Our implementation of the filtering technique for
ray tracing consists of three parts:

1. Construction of intersection trees
2. Shading
3. Shifting rows of intersection trees.

3.2.1 Construction of intersection trees

An intersection tree is constructed for a row as
seen in Fig. 3. Each node of an intersection tree
contains the minimum necessary information, i.e.,
object id, coordinates of the intersection point,
and texture map parameters if they exist.
At least three rows of intersection trees must be
created and stored for the filtering process.

3.2.2 Shading

Shading is done after three row buffers have been
filled with intersection trees. In Fig. 4, the color
value for the filtering operation, i.e., the diffuse
color, for node p_middle is calculated by filtering
the area surrounded by the box, if the nodes are
on the same reflection and refraction depths and

450

they hit on the same area that will be textured. If
one of these conditions does not hold, we get the
diffuse color value of the object at that point with-
out filtering. To this diffuse color value, we add
the transmitted color value coming from a higher
reflection level and a refraction level if it exists.
If the node is at the maximum depth level, the
transmitted color value is zero. If the reflected
ray goes out of the space, then the transmitted col-
or value for reflection is the background color. Lo-
cal color is determined by the illumination of the
light sources. If the object for a node is a refracting

surface, we do the same operations for the refrac-
tion list and contribute the color value from the re-
fraction to that point. We transmit the local color
value to a lower reflection level. This operation
is repeated until the actual pixel color is found.
Although our filtering technique eliminates the
aliasing artifacts on the 2D texture maps on the ob-
jects, aliasing artifacts still occur at the edges of
the objects. To alleviate these aliasing artifacts,
we use uniform supersampling. A 3 n�3 n image
can be dwarfed into an n�n image easily, if we as-
sume that nine rays per pixels are used. Three rows

Ref
lec

tio
n

R
efraction

p_middle

row 1:

row 2:

row 3:

Fig. 3. A linked list representation of a row buffer

Fig. 4. Our filtering process for ray tracing

3

4

451

in the high-resolution image are used to determine
a row in the low-resolution image. The color val-
ues of nine pixels in the high-resolution image
are weighted and averaged to determine the color
value of a pixel in the low-resolution image. The
weights are assigned according to the area that a
pixel in a high-resolution image contributes to a
pixel in a low-resolution image, i.e. 1/4 for the pix-
el in the middle, 1/16 for each of the four pixels at
the corners, and 1/8 for each of the remaining four
pixels. Although this method requires more pro-
cessing time than the original method, higher-qual-
ity images without staircases appearing at the edg-
es are produced.
As an alternative to uniform supersampling, an
adaptive supersampling, which is less expensive,
could be used.

3.2.3 Shifting rows of intersection trees

After we are finished with row 2, we shift row 2 to
the place of row 1 and row 3 to the place of row 2.
Then row 3 is filled as previously described.

3.3 Acceleration

Most of the time in a ray tracer is spent on inter-
section calculations. To reduce these calculations,
we put the sweep objects into bounding boxes.
Simple bounding box intersection tests precede
the costly intersection tests for the objects inside
these bounding boxes.
We need to represent the sweep objects with a
large number of triangles to get well-formed sur-
faces. We need to take advantage of the spatial
coherency of this triangle-based representation
to speed up the intersection calculations. We im-
plemented the spatially enumerated auxiliary data
structure (SEADS) [6] to take advantage of the
spatial coherency. SEADS involves dividing the
bounding boxes into 3D grids (voxels). The
width, length, and height of each grid are deter-
mined by the shape and orientation of the object.
Since the objects are created by sweeping, they
have a regular mesh structure, and this fact is uti-
lized in implementing SEADS. The grids are di-
vided with respect to the number of contour and
trajectory curves of the sweep object. In this
way, each grid contains a maximum of about
six triangles.

To take the advantage of this data structure, the
voxels along a ray path should be traversed effi-
ciently. These voxels are traversed with the 3D
digital differential analyzer (3DDDA) [6]. The
3DDDA algorithm uses only integer operations.
If there is more than one object, their bounding
boxes can be placed in a global grid to make the
ray-box intersection tests more efficient. A moder-
ate sweep object consists of about 1000 triangles.
Instead of checking ray triangle intersections with
all these triangles, we only do a box intersection
test and a maximum of about six ray triangle inter-
sections. This is a very considerable improvement.
Besides the 3DDDA method, any accelerating
method developed for a classical ray tracer that
takes advantage of spatial coherency can be em-
bedded in our implementation.

4 Results

Some 512�512 resolution examples from our im-
plementation are shown in Figs. 5±7. Figure 5
was produced by point sampling. Figure 6 was pro-
duced by filtering the textures. Note the aliasing of
the textures both on the textures and on their re-
flections in Fig. 5.
All of the objects in Figs. 5±7 were created by T
[1]. The vase and the cup were created by rotating
a BØzier curve around a rotational axis. The handle
part of the cup was created by sweeping a circle-
shaped contour curve around a `U'-shaped trajec-
tory curve. This handle was then combined with
the cup. The vase consists of 7200 triangles. The
cup consists of 8400 triangles. All of the objects
seen in Figs. 5±7 are reflective and opaque. The
left wall is a mirror, and the floor has a moderate
reflectivity. The vase and cup have low reflectivi-
ties. The floor is also 2D texture mapped. It took
about 15 min to create Fig. 5 and 20 min to create
Fig. 6 on a networked SUN Sparc ELC worksta-
tion. Figures 8 and 9 give two more images pro-
duced with our implementation.
Our texture mapping algorithm has a number of
advantages over other triangle-to-triangle texture
mapping algorithms. It calculates the 2D texture
coordinates of the points to be mapped using a
small number of floating-point operations. It does
not incur any preprocessing or storage costs since
the texture coordinates are calculated on-the-fly
from the ratios between the edges of the triangles.

452

Besides, since it is very easy to preserve the cen-
ters of gravity of the triangles with our method,
some unwanted visual effects, introduced when
the centers of gravity are not preserved, disappear.
This is a very costly operation for the other algo-
rithms.
Since we area sample only the 2D texture maps on
the objects, aliasing effects still occur at the edges

of the objects. To alleviate these aliasing effects,
we used supersampling. A high-resolution version
of Fig. 6 is produced, and then it is supersampled.
The result of supersampling is shown in Fig. 7.
Note how the staircases seen at the edges disap-
pear.
We observed that, as the sizes of the textures be-
come larger, the summed area tables become big-

5 7

6

Fig. 5. A point sampled image

Fig. 6. A filtered image

Fig. 7. A filtered and supersampled image

453

ger and the program needs more space. Therefore,
using big textures slows down the execution.

5 Conclusion

We have introduced our method for combining
texture mapping with ray tracing in order to gener-
ate highly realistic scenes. We developed our
scenes by using sweep surfaces, and the methods
we proposed can be applied to any objects repre-
sented by triangles.
We proposed a fine, fast, and efficient texture
mapping method based on triangle-to-triangle
mapping. Since the method utilizes the advantage
of mapping from an arbitrary triangle to a right tri-
angle, it requires many fewer floating-point opera-
tions, and it does not require the preprocessing and
storage that other texture mapping methods do.
Area sampling in ray tracing is essential for filter-
ing textures. We also proposed a filtering tech-
nique as an alternative to area sampling in ray trac-
ing. The method we proposed delays shading until
enough row buffers are filled with necessary hit in-
formation. The advantage of this implementation is

that the intersection calculations use linear eye
rays, and only one linear eye ray per pixel. This
method can also be improved for producing
smooth shadow edges. We took advantage of the
spatial coherency of the triangles forming the ob-
jects in a scene by 3D grid partitioning. To elimi-
nate the aliasing artifacts at the edges of the ob-
jects, we used a uniform supersampling filtering
technique.

References

1. Akman V, Arslan A (1992) Sweeping with all graphical in-
gredients in a topological picturebook. Comput & Graph 16:
273±281

2. Amanatides J (1984) Ray tracing with cones. Comput Graph
(Proceedings of SIGGRAPH '84) 18:129±135

3. Bier EA, Sloan KR (1986) Two-part texture mapping. IEEE
Comput Graph Appl 6:40±53

4. Celniker G, Gossand D (1991) Deformable curve and sur-
face finite-elements for free-form shape design (1991) Com-
put Graph (Proceedings of SIGGRAPH '91) 25:257±266

5. Crow FC (1984) Summed area tables for texture mapping.
Comput Graph (Proceedings of SIGGRAPH '84) 18:207-
212

6. Fujimoto A, Tanaka T, Iwata K (1986) ARTS: Accelerated
ray tracing system. IEEE Comput Graph and Appl 6:16±26

8

Fig. 8. A filtered and supersampled image including semitransparent objects

Fig. 9. A semitransparent, depth-modulated, sweep object on top of a knot on a marble column (filtered)

9

454

7. Glassner AS (1989) An introduction to ray tracing. Academ-
ic Press, San Diego, Calif

8. Haines E (1991) Essential ray tracing algorithms (1991) In:
Glassner A (ed) An introduction to ray tracing, Academic
Press San Diego, Calif pp 33±77

9. Heckbert PS (1986) Filtering by repeated integration. Com-
put Graph (Proceedings of SIGGRAPH '86) 20:315±321

10. Heckbert PS (1986) Survey of texture mapping. IEEE Com-
put Graph and Appl 6:56±67

11. Heckbert PS, Hanrahan P (1984) Beam tracing polygonal
objects. Comput Graph (Proceedings of SIGGRAPH '84)
18:119±128

12. Peachey DR (1985) Solid texturing of complex surfaces.
(1985) Comput Graph (Proceedings of SIGGRAPH '85)
19:279±286

13. Perlin K (1985) An image synthesizer (1985) Comput Graph
(Proceedings of SIGGRAPH '85) 19:287±296

14. Shinya M, Tokiichiro T (1987) Principles and applications
of pencil tracing. Comput Graph (Proceedings of SIG-
GRAPH '87) 21:45±54

15. Sung K (1992) Area sampling buffer: tracing rays with Z-
buffer hardware. Proceedings of Eurographics '92 11:299±
310

16. Whitted T (1980) An improved illumination model for shad-
ed display. Commun ACM 23:343±349

UGÆ UR AKDEMIR was born in
Ankara, Turkey, in 1969. He re-
ceived his B.Sc. and M.Sc. from
Bilkent University in 1991 and
1993 respectively, both in Com-
puter Engineering and Informa-
tion Science. Currently, he is
working at Tom Sawyer Soft-
ware, USA. His research interests
include global illumination and
rendering.

BÜLENT ÖZGÜÞ joined the
Bilkent University Faculty of En-
gineering, Turkey, in 1986. He is
a professor of computer science
and the dean of the Faculty of
Art, Design and Architecture.
He formerly taught at the Univer-
sity of Pennsylvania, USA, Phila-
delphia College of Arts, USA,
and the Middle East Technical
University, Turkey, and worked
as a member of the research staff
at the Schlumberger Palo Alto
Research Center, USA. For the
last 15 years, he has been active
in the field of computer graphics

and animation. He received his B.Arch. and M.Arch. in architec-
ture from the Middle East Technical University in 1972 and
1973. He received his M.S. in architectural technology from Co-
lumbia University, USA, and his Ph.D. in a joint program of ar-
chitecture and computer graphics from the University of Penn-
sylvania in 1974 and 1978, respectively. He is a member of
ACM Siggraph, IEEE Computer Society, and UIA.

UGÆ UR GÜDÜKBAY was born
in NigÆde, Turkey, in 1965. He re-
ceived his B.Sc. in Computer En-
gineering from Middle East
Technical University in 1987,
and his M.Sc. and Ph.D., both in
Computer Engineering and Infor-
mation Science, from Bilkent
University in 1989 and 1994, re-
spectively. Then, he pursued a
postdoctoral study at University
of Pennsylvania, Human Model-
ing and Simulation Laboratory.
Currently, he is an assistant pro-
fessor at Bilkent University,
Computer Engineering and Infor-

mation Science Department. His research interests include phys-
ically based modeling and animation, human modeling, multires-
olution modeling, and rendering. He is a member of ACM SIG-
GRAPH, and IEEE Computer Society.

ALPER SELÞUK was born in
Kir.sehir, Turkey, in 1973. He re-
ceived his B.Sc. in Computer En-
gineering from Hacettepe Uni-
versity in 1995. He received his
M.Sc. in Computer Engineering
and Information Science from
Bilkent University in 1997. Cur-
rently he is working at Microsoft,
USA. His research interests in-
clude multiresolution modeling
and rendering.

