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Abstract

This paper investigates three categories of algorithms for direct volume rendering of unstructured grids, which are

image-space, object-space, and hybrid methods. We propose three new algorithms. Cell Projection algorithm, which

falls into object-space category, is capable of rendering non-convex meshes through a simple yet efficient sorting schema

that exploits both image and object space coherencies. Existing hybrid methods use object-then-image traversal order

that enforces the processing of each cell. Thus, these algorithms perform redundant operations and do not support early

ray termination. We propose a hybrid method, called Span-Buffer Ray Casting (SBRC), that can support early ray

termination discarding redundant operations by employing image-then-object traversal order. Another hybrid method,

called Koyamada-SBRC (K-SBRC), is proposed with the motivation of refining image-space and hybrid methods to

extract the best features of them. This method is developed by blending SBRC approach with Koyamada’s algorithm,

which is an efficient image-space algorithm. All proposed algorithms are capable of handling acyclic non-convex meshes

and generating images of acceptable quality. SBRC and K-SBRC algorithms have the additional capabilities of

rendering cyclic meshes and supporting early ray termination. The proposed algorithms and Koyamada’s algorithm are

implemented and experimented in a common framework for analyzing their relative performance.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The vast amount of data produced by scientific and

engineering simulations makes it very difficult for

scientists to extract useful information from the data,

and interpret it to reach a useful conclusion. Visualiza-

tion of such numerical data as an image, which is named

as scientific visualization, is an indispensable tool for

researchers. Volume rendering is a very important

branch of scientific visualization and makes it possible

for scientists to visualize three-dimensional (3D) volu-

metric datasets.

Volumetric data used in volume rendering is in the

form of a grid superimposed on a volume. The nodes of

this grid contain the scalar values that represent the

simulation results. Type of the grid also defines spatial

characteristics of the volumetric dataset, which is

important in the rendering process. Grids are classified

into two categories: structured and unstructured [1–4].

Structured grids are topologically equivalent to the

integer lattice, and as such, they can easily be

represented by a 3D array. The mapping from the array

elements to sample points and the connectivity relation

between cells are implicit. On the other hand, the

distribution of sample points do not follow a regular

pattern in unstructured grids and there may be voids in

the grid. Unstructured grids are also called cell-oriented

grids because these grids are represented by a list of

cells in which each cell contains pointers to the

sample points in the cell. Due to the cell-oriented

nature and the irregularity of unstructured grids,

the connectivity information is provided explicitly.

With recent advances in generating high-quality
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adaptive meshes, unstructured grids are becoming

increasingly popular in scientific and engineering simu-

lations.

There are two major categories of volume rendering

methods: indirect and direct methods. Indirect methods

extract an intermediate geometric representation of the

surfaces from the volume data and render those surfaces

via conventional surface rendering methods. Direct

methods render the data without generating an inter-

mediate representation. Indirect methods are potentially

faster and are more suitable for medical imaging and

biological applications where the visualization of the

surfaces in a volume makes sense. Since direct methods

do not rely on surface extraction, they are more general

and flexible. Direct methods are used when the inside of

a material, such as a partially transparent fluid, should

be visualized.

Direct volume rendering methods consist of two

main phases: resampling and composition. Generally,

these phases are handled in a highly interleaved manner.

In resampling phase, new samples are interpolated by

using the original sample points. The rendering method

should locate the new sample point in the cell domain.

This is because the vertices of the cell that contains the

new sample being generated will be used in the

interpolation. This problem is known as point location

problem. In composition phase, generated samples

are mapped to color and opacity values and these values

are composited to determine the contribution of the

data on a pixel. The composition operation is associa-

tive, but not commutative. Therefore, the color and

opacity values should be composited in visibility order.

The determination of the correct composition order is

known as view sort problem. These two problems are

easier to solve in structured grids, but the way that

a volume rendering algorithm handles them is a

crucial issue that strongly affects the performance of

the rendering process for unstructured grids. The lack of

implicit connectivity between cells and the irregularity

of the distribution of the sample points in un-

structured grids are the major factors that cause the

difficulty.

Interactive visualization is very important since it

enables scientists to change the simulation parameters so

that the simulation is steered in the correct direc-

tion. The slowness of direct volume rendering of

unstructured grids creates the lack of interactivity that

prevents its wide use. One way to speed up the

visualization process is to employ special graphics

hardware. Developing parallel algorithms is another

possibility. However, the need for a software solution

for fast direct volume rendering of unstructured grids

will always exist. The main concern of this work is to

find efficient software solutions for direct volume

rendering of unstructured grids without compromising

the image quality.

1.1. Related work

Existing direct volume rendering algorithms for

unstructured grids are classified into three categories;

image-space, object-space and hybrid [5].

1.1.1. Image-space methods

In image-space methods, which are also called ray-

casting methods, image-space is traversed to cast a ray

for each pixel and each ray is followed, sampled and

composited along the volume. For non-convex datasets,

the rays may enter and exit the volume more than once.

The parts of the ray that lie inside the volume, which in

fact determine the contributions of data to the pixel

color, are referred to here as ray-segments. Following a

ray-segment inside the volume can be handled efficiently

by exploiting the connectivity information since identi-

fying the next cell reduces to determination of the exit

face as the entry point of the ray to the next cell is the

exit point of the ray from the current cell. Thus, solving

point location and view sort problems reduces to

generating ray segments and following them in the

volume cell by cell, which are referred to here as ray-

segment generation and next-cell operation, respectively.

Ray-segment generation corresponds to the first-cell

operation mentioned in the literature. Existing methods

mainly differ in ray-segment generation and next-cell

operation.

Garrity [6] resolves the ray-segment generation

problem by geometrically sorting all external faces into

a coarse 3D mesh. Only the faces in the mesh regions

that are intersected by the ray are tested to generate the

first ray-segment for the respective pixel. When the ray

exits the volume through an external face, this procedure

is repeated to generate the next ray-segment. For the

next-cell operation, all the faces (except the entry face)

of the current cell are intersected with the ray and the

minimum of the intersections is chosen as the exit point.

Koyamada [7] projects and scan converts only the

front external faces in sorted order according to their

centroids for ray-segment generation. In his work, he

states that better polygon sorting algorithms such as list-

priority algorithms [8] can be used to generate high-

quality images. For the next-cell operation, he proposes

a ray-face intersection test that directly determines if the

face is intersected by the ray. So his scheme tests two

faces for each tetrahedral cell to determine the exit point

on the average whereas Garrity’s scheme [6] always tests

three faces.

Bunyk et al. [9] present a simple and efficient ray

casting algorithm that uses ideas from [6,10,11]. The

algorithm essentially breaks the cells into their corre-

sponding faces and visibility determination is performed

after the faces have been transformed into screen space.

The actual ray casting is performed independently for

each pixel by performing a walk in the cell complex that
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is stored as an ordered list of stabbing boundary faces

computed for each pixel. Farias et al. [12,13] propose a

time critical rendering system for unstructured grids.

They use the ray-casting algorithm presented in [9] with

some improvements and the algorithms for volume data

simplification are also augmented to create hierarchical

multiresolution representations. They trade accuracy for

speed for achieving the goal of interactivity by placing a

time budget in the algorithm.

1.1.2. Object-space methods

Object-space methods are also called projection

methods. In these methods, the volume is traversed in

object-space to perform a view-dependent depth sort on

the cells. Then, the cells are projected onto the screen in

sorted order to find their contributions on the image

plane and composite them. Existing object-space meth-

ods differ either in sorting phase or in composition

phase.

Max et al. [14] and Williams [15] present algorithms,

which are linear in the number of faces, for the visibility

ordering of acyclic convex meshes composed of convex

polyhedra. Both Williams’ algorithm, called Mesh

Polyhedra Visibility Ordering (MPVO), and the algo-

rithm proposed by Max et al. exploit the connectivity

information to perform the visibility ordering efficiently.

Williams also proposes heuristics for visibility ordering

of non-convex meshes by filling the cavities introducing

non-convexities with imaginary tetrahedral cells. Un-

fortunately, he reports that these heuristics are valid for

only limited cases. Silva et al. [16] propose an extension

of the MPVO algorithm, called XMPVO, to remove the

assumption of MPVO algorithm that the mesh be

convex and connected. In this way, the proposed

XMPVO works for nonconvex meshes as well without

resorting to heuristics. XMPVO algorithm employs the

sweep paradigm to determine an ordering between pairs

of boundary cells that can obstruct one another. Then, it

uses the MPVO algorithm to exploit the ordering

implied by adjacencies within the mesh. So, the directed

acyclic graph (DAG) used in MPVO algorithm to store

the cell ordering within the mesh is augmented by the

partial ordering of the boundary cells. BSP-XMPVO

algorithm proposed by Comba et al. [17] is an order of

magnitude faster than XMPVO algorithm. This speed-

up is obtained by moving the XMPVO view-dependent

DAG augmentation into a view-independent preproces-

sing phase, based on constructing a Binary Space

Partition tree on the set of boundary faces of the mesh.

Stein et al. [18] present an Oðn2Þ method to sort n

arbitrarily shaped convex polyhedra by generalizing

Painter’s Algorithm [19] for polygons to 3D elements.

Yagel et al. [5,20] propose a fast approximation

algorithm based on incremental slicing for visibility

ordering. At each slice, which is a sweep plane parallel to

the image plane, contributions of the polygons formed

by the cells intersecting the slice are composited with the

previously accumulated image from the preceding slices.

In their work, they report an adaptive slicing scheme to

increase image quality compromising the speed.

Max et al. [14] present an accurate but computation-

ally intensive method to process polyhedral cells for

composition. The method scan converts both front and

back faces of each cell performing the interpolations in

pixel basis. Projective Tetrahedra technique, proposed

by Shirley and Tuchman [21], calculates the contribution

of each cell with a set of partially transparent triangles.

This polygon-oriented method is faster than the

previous pixel-oriented approach as conventional gra-

phics hardware can be exploited. Stein et al. [18] present

extensions to Projective Tetrahedra algorithm for

compositing colored elements with hardware assisted

texture mapping. Wittenbrink [22] propose optimiza-

tions to Projective Tetrahedra algorithm using OpenGL

triangle fans, customized quicksort, memory organiza-

tions for cache efficiency, display lists and tetrahedral

culling.

Lucas [23] proposes a projection algorithm based on

cell faces for irregular volume datasets. In this algo-

rithm, after the faces of all the volume cells have been

sorted using Painter’s Algorithm, each face is scan

converted.

Koyamada et al. [24] propose an algorithm that

realizes volume rendering by accumulating parallel

layers of partially transparent triangles perpendicular

to viewing rays. Generation of these layers causes a

major performance bottleneck. As a solution to this

problem, Koyamada and Itoh [25] propose to generate

these slicing surfaces from seed cells that are auto-

matically determined according to the extremum points

of the values of distances from a viewing point.

Cignoni et al. [26] also use projective methods for the

interactive visualization of tetrahedral meshes by using

multiple resolutions of the volume data. They built the

multiresolution models for the volume data by using off-

line data simplification techniques.

1.1.3. Hybrid methods

In the existing hybrid methods, the volume is

traversed in object order such that the contributions of

the cells to the final image are accumulated in image

order, which is referred to here as object-then-image

traversal order.

Challinger [27] employs a scanline z-buffer based

algorithm to solve the point location and view sort

problems. A y-bucket is used to sort faces with respect to

their y coordinates in the projection coordinate system.

An active face list is created for each scanline using the

y-bucket list. The active faces are sorted into an x-

bucket with respect to their x coordinates in increasing

order. When processing pixels in the current scanline, an

active face list is created for the current pixel using the
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x-bucket. In this way, the number of faces to be tested

for intersection is reduced considerably. Wilhelms et al.

[10] propose a similar algorithm for hierarchical and

parallelizable rendering of unstructured grids.

Giertsen [28] utilizes a 2D scan-plane buffer to store

information within the plane perpendicular to a scan-

line. In this approach, z-dimension is discretized due to

the scan-plane buffer. The algorithm processes scanlines

from top to bottom and determines the intersections of

the cells with the respective scan-plane in an incremental

manner using a list of active cells whose y-extents cover

the current scanline. The volume elements intersecting

the current scan-plane are sliced by finding the edge

intersections of faces of volume elements with the

current scan-plane. Then, each slice is divided into

triangles and each triangle is further decomposed into

line segments in the z direction. The composition is

carried out by processing the line segments in front-to-

back order and linearly interpolating them along the

ray. The quality of the images and the performance of

the algorithm is heavily dependent on the discretization

level of the scan-plane buffer.

Silva et al. [29,30] extend Giertsen’s method to avoid

the discretization introduced by the scan-plane buffer,

therefore allowing accurate rendering even for grids with

large cell-size variation. The proposed algorithm, called

Lazy Sweep Ray-Casting (LSRC), uses many optimiza-

tions to generate line segments along the ray efficiently.

This is done by using a 2D ray-casting procedure based

on a sweep in each scan plane. It avoids the explicit

transformation of vertices and the sorting phase by

maintaining only a subset of vertices during the 3D

sweep. The LSRC algorithm can also handle cyclic

meshes.

Westermann and Ertl [31] also use the sweep-planes in

a two-pass rendering approach. In their algorithm, first

the volume primitives are drawn in polygon mode to

obtain their cross-sections in the VSBUFFER orthogo-

nal to the viewing plane. Then, this buffer is traversed in

front-to-back order and the volume integration is

performed. In this way, the sorting complexity is

reduced since it is done in 2D, similar to the methods

presented in [28,29]. In addition, explicit connectivity

information is not needed, allowing for the rendering of

arbitrary scattered, convex polyhedra. In [32], they

extend the idea of using graphics hardware by using the

features of OpenGL, such as stencil buffer operations

for clipping geometries, and using simple polygon

drawing and frame buffer operations to speed-up the

volume rendering.

1.2. Contributions

In this paper, three distinct categories, namely image-

space, object-space, and hybrid methods, are investigated

for fast direct volume rendering of unstructured grids.

The main objective is to identify the relative superiority

and inferiority of the algorithms in these categories. At

least one algorithm from each category is implemented

and experimented in a common framework. All the

algorithms are capable of rendering acyclic non-convex

meshes. Here, non-convexity does not only refer to

concavity on the boundaries, but also covers disconnect-

edness and holes of the volume. Besides, the algorithms

produce outputs at the same level of image quality. The

following features are identified for a fair comparison of

the algorithms:

1. early ray termination,

2. generality; cyclic meshes,

3. coherency utilization; image-space coherency and

object-space coherency, and

4. redundancy; redundancies in cell processing and

image-space coherency utilization.

Early ray termination is an optimization method used

by many algorithms. The aim is to stop following the ray

when opacity reaches a user defined threshold. General-

ity is defined as the capability of handling cyclic meshes.

Image-space coherency relies on the observation that

rays shot from nearby pixels are likely to pass through

the same cells involving similar calculations. Image-

space coherency can be exploited to speed up ray-face

intersections. Object-space coherency uses the connec-

tivity information available in the data. For example,

when a ray enters a cell, it must exit through a back face

of it. Hence, only the neighbor cells should be checked

by using the connectivity information to determine the

next cell.

Some algorithms perform redundant operations that

slow down the rendering process. Two types of

redundancies are identified. For the lighting model

employed here (see Section 2), only the cells that are

intersected by at least one ray contribute to the final

image. The processing of cells that have no effect on the

image is referred as the redundancy in cell processing.

Image-space coherency is very important and has an

important impact on the speed of the rendering

algorithm. However, utilization of image-space coher-

ency for cells with small projection areas may be more

costly than employing a naive ray-casting approach.

This type of redundancy is referred as redundancy in

image-space coherency utilization.

Image-space approaches support early ray termina-

tion, generality, utilization of object-space coherency

and both types of non-redundancies. Object-space

methods support only the utilization of both object-

space coherency and image-space coherency, failing to

support other features. Hybrid approaches support

generality, image-space coherency and object-space

coherency utilization. Koyamada’s algorithm, being

one of the outstanding algorithms of image-space

methods, is selected as the representative of image-space

H. Berk et al. / Computers & Graphics 27 (2003) 387–406390



approaches in this framework. One object-space algo-

rithm, called Cell Projection (CP), and one hybrid

algorithm, called Span-Buffer Ray-Casting (SBRC), are

proposed and implemented. Another algorithm, namely

Koyamada-SBRC (K-SBRC), stemmed from the idea of

refining image-space and hybrid methods to extract the

best features of each, is realized by blending Koyama-

da’s and SBRC approaches.

The CP algorithm is similar to the other object-space

methods exploiting image-space coherency. Therefore, it

is faster than image-space methods. Unlike the object-

space methods proposed in [5,20,21,33], CP handles the

interpolations in face basis rather than cell basis thereby

providing the capability to yield high-quality images as

in [14]. However, CP scan converts each internal face

only once whereas the scheme proposed by Max et al.

[14] scan converts each internal face twice. Furthermore,

CP is capable of rendering non-convex meshes through a

simple yet efficient sorting schema exploiting both

image-space and object-space coherencies. CP is also

similar to the MPVO [15] and XMPVO [16] algorithms.

However, CP avoids the construction of the DAG

needed in these algorithms by generating the visibility

order on-the-fly during the rendering phase with little

overhead.

Despite the high performance of object-space meth-

ods, their shortcoming in handling cyclic meshes have

constituted the major motivation towards hybrid

methods. However, object-then-image traversal schema

forces the existing hybrid methods to process all the

volume data. Thus, they cannot support early ray

termination. Furthermore, they suffer from both types

of redundancies by the same reason. The SBRC

algorithm is developed to overcome the deficiencies of

existing hybrid methods by changing the traversal order

to image-then-object. In this way, SBRC gains the ability

to support early ray termination and avoids the

redundancy in cell processing without compromising

the full utilization of both image-space coherency and

object-space coherency. Thus, it extends the set of

features supported by hybrid methods to include early

ray termination and non-redundancy in cell processing.

The SBRC algorithm does not support non-redun-

dancy in image-space coherency utilization. The image-

then-object traversal order used in SBRC can be

exploited to process cells with small projection areas in

a more cost-effective way. This could be done by

employing a ray-casting schema that ignores image-

space coherency, but still performing better. This idea

motivated the development of K-SBRC algorithm by

blending SBRC and Koyamada’s algorithms. To deter-

mine the cell-processing schema to be employed, two

schemes are proposed. These are Exact Area and

Bounding Box Area schemes. Hence, K-SBRC supports

the non-redundancy in image-space coherency utiliza-

tion in addition to all the features supported by SBRC,

thus covering all the desired features. Table 1 shows the

supported features for each algorithm.

The rest of the paper is organized as follows. Data

model, lighting model and sampling scheme employed in

the algorithms are summarized in Section 2. Our

implementation of Koyamada’s algorithm is described

in Section 3. The proposed CP, SBRC and K-SBRC

algorithms are presented in Sections 4–6, respectively.

Experimental results are presented in Section 7. Section

8 gives conclusions.

2. Preliminaries

The data model common to all algorithms presented

in this work is tetrahedral cell model. In the tetrahedral

model, faces are triangles and internal faces are shared

exactly by two cells. An external face is a face that

belongs to only one cell and is not shared by any other

cell. Therefore, the set of external faces forms the

boundary of the volume.

Low-density particle light source model [7] is em-

ployed for lighting calculations. This model assumes

that the volume to be visualized consists of low-density

Table 1

Supported features of direct volume rendering methods for unstructured grids

Category Algorithm Cyclic meshes Early ray term Coherency utilization Non-redundancy in Image accuracy

Cell proc. ISC util.

ISC OSC

Image-space Koyamada O O O O O O
Object-space CP O O O

I–O SBRC O O O O O O
Hybrid I–O K-SBRC O O O O O O O

O–I LSRC O O O O

ISC and OSC denote image-space and object-space coherencies, respectively. I–O and O–I denote image-then-object and object-then-

image traversal orders, respectively.
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particle light sources. All algorithms use the front-to-

back composition schema to allow early ray termination.

Both equi-distant and mid-point sampling schemes are

implemented in all algorithms. In mid-point sampling, a

new sample is generated in the middle of the line

segment formed by the entry and exit points of the ray

intersecting the cell. Equi-distant sampling generates

samples at fixed intervals of length Dt: Hence, more than

one sample could be generated for some cells, but there

could be cases in which no sample is generated for a cell.

This problem may be solved by adaptive sampling [34],

which chooses Dt small enough so that at least one

sample will be generated in each cell. This scheme is not

implemented because of its high computational cost.

In the conventional method, a scalar value at a

sampling point inside a tetrahedral cell is computed by

3D inverse distance interpolation of the four vertices of

the cell with respect to the sampling point. However, this

is an expensive operation and it is repeated as many

times as new samples are generated inside a cell. To

speed up this process, linear sampling method exploits

the fact that the change of the scalar in any direction is

linear in a tetrahedral cell [7]. It estimates the scalar at a

point along a line segment using 1D inverse distance

interpolation of the entry and exit points of the

tetrahedral cell. The scalars at the entry and exit points

are estimated by using 2D inverse distance interpolation

of the three vertices of the respective triangular faces.

Linear sampling method is used in all algorithms.

Linear sampling method is faster than the conven-

tional method for equi-distant sampling schema only

when Dt is small. Linear sampling method may be

expected to perform worse than the conventional

method for mid-point sampling schema. However, in

all algorithms presented, values needed for linear

sampling method are calculated at a very low cost by

utilizing the results of the computations performed

during the intersection tests. Therefore, linear sampling

method performs better than the conventional method

even for mid-point sampling schema.

The major data structures common to all algorithms

implemented in this work are described as follows.

Tetrahedral cell data is stored in two arrays, namely a

node array and a cell array. Node array keeps the scalar

value and the x; y; and z coordinates for each node. Cell

array stores data about the vertices and the neighbor

cells of each cell. The other major data structure is the

ray buffer structure. It is a 2D virtual array that holds a

linked list of ray-segments for each pixel.

3. Koyamada’s algorithm

Koyamada’s algorithm is a ray-casting approach that

makes use of the coherence in the image-space to

generate rays and follows those rays in the object-space.

The algorithm is given in pseudocode in Fig. 1.

The first step of Koyamada’s algorithm is to generate

the ray-segments. In his original algorithm, the front

external faces are sorted with respect to z coordinates of

their centroids in increasing order. In fact, this is an

approximate order, which may be wrong in some cases

[7]. To alleviate this problem, this step of the original

algorithm is slightly modified. Instead of sorting the

front external faces at the beginning, we scan convert

them one by one. For each pixel covered by the

projection area of an external face, we insert a list item

into the respective ray list. Note that the same ray-

segment generation scheme is adopted in all proposed

algorithms.

After the rays are created, each ray is followed in the

volume utilizing the connectivity information between

cells. To trace a ray inside the volume, two things have

to be known for each cell that is intersected by the ray:

* the entry face and the ðz; sÞ values at the entry point

to the cell and
* the exit face and the ðz; sÞ values at the exit point from

the cell.

Here, ðz; sÞ pair stores the z-coordinate and the scalar

value at the ray-face intersection point. Since the exit-

point values from a cell can be used as the entry-point

values to the next cell, the problem of tracing a ray-

segment inside the volume reduces to the problem of

determining the exit point from a cell, given the first

entry-point values for each ray segment.

Koyamada’s ray-face intersection method relies on

the observation that if a ray intersects a face then the

pixel that the ray is shot must be covered by the

projection area of that face on the screen. So, he uses the

projected area of a face to determine if the ray exits the

cell from that face by using the normalized projection

coordinates of the vertices of the face. This is done as

follows. Consider a ray r shot from pixel ðxr; yrÞ that

intersects a tetrahedral cell ABCD through point P of

entry-face ABD. Let triangle ACD be the face of the cell

that is subject to the ray-face intersection test. If the face

is perpendicular to screen then the ray does not leave the

cell through that face, so another face of the cell is

tested. Otherwise, ray r intersects the plane determined

by triangle ACD at a point Q; where xr ¼ xP ¼ xQ and

yr ¼ yP ¼ yQ: Then, vector AQ
�!

can be expressed as

AQ
�!

¼ aAC
�!

þ bAD
�!

; where the weighting values ða; bÞ are
found by solving

xC � xA xD � xA

yC � yA yD � yA

" #
�

a

b

" #
¼

xr � xA

yr � yA

" #
: ð1Þ

If a and b do not satisfy the conditions aX0; bX0 and

aþ bp1; then Q is not inside ACD, so another face is

H. Berk et al. / Computers & Graphics 27 (2003) 387–406392



tested. Otherwise, Q is inside ACD, so no further tests

need to be done.

As the exit face ACD is identified, the ðz; sÞ values

ðzQ; sQÞ at the exit point Q are calculated as:

ðzQ; sQÞ ¼ ðzA þ aðzC � zAÞ þ bðzD � zAÞ;

asC þ bsD þ ð1� a� bÞsAÞ: ð2Þ

Note that the expression for sQ is 2D inverse distance

interpolation of the vertices of face ACD with respect to

point Q: View Reference Coordinate System and Normal-

ized Projection Coordinate System are taken to be the

same so that the same weighting values ða; bÞ computed

in Eq. (1) for the successful ray-face intersection test can

be used in computing ðzQ; sQÞ values according to

Eq. (2). Since the exit-point ðzQ; sQÞ values are computed

and the entry-point ðzP; sPÞ values are known, the

sample(s) along the line segment PQ can be taken and

composited using the linear sampling method discussed

earlier.

4. Cell projection algorithm

The CP algorithm falls into the projection methods

category of direct volume rendering methods. The

algorithm runs by projecting the cells onto the screen

one at a time. To project a cell, the cell before it on the

ray path should be projected beforehand.

CP starts by scan converting the front external faces

to generate ray segments in sorted order just like in

Koyamada’s algorithm. The rest of the algorithm

consists of two phases; initialization for visibility ordering

(see Fig. 2) and rendering (see Fig. 3). In the first phase,

the information to be used in constructing the visibility

order among the cells is gathered and in the second

phase the cells are processed for sampling and composi-

tion while the visibility order is constructed gradually.

Unlike Koyamada’s, SBRC and K-SBRC algorithms,

which composite the image pixel by pixel, CP requires

the explicit maintenance of a partial image-buffer since it

is a pure object-space method. Image-buffer should

maintain a color-opacity component for each pixel. It

stores the composited RGB color values and the opacity

value for a pixel. In order to reduce the memory

overhead, we embed these components to the respective

ray-lists for only active pixels.

In CP, a visibility order with respect to a view plane is

found by using a sorting schema that minimizes both the

additional memory requirement and the execution time.

It uses the concept of dependency between the cells. Cell

a is dependent of cell b; if cell b obstructs cell a in the

Fig. 1. Koyamada’s algorithm.
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visibility order. If a is dependent of b; then b must be

processed before a: We define two kinds of dependen-

cies: internal and external. An internal dependency

occurs between each pair of neighbor cells sharing a

face. An external dependency may only occur between a

pair of external cells when the projection areas of their

external front faces overlap. If the data is known to be a

convex set, then the external dependency generation step

need not to be performed. If an internal dependency

exists between a pair of cells then this dependency will

always exist, but its direction may change with varying

viewing parameters. However, in the case of external

dependencies, both the dependencies and their directions

may change with changing viewing parameters. Each

internal face that is not orthogonal to the image plane

always induces an internal dependency whereas only

external faces may be the source of external dependen-

cies. These two types of dependencies are constructed

during the initialization phase by calculating the

indegree of each cell, which is the number of obstruc-

tions for the cell in the visibility order (see Fig. 2). Note

that each internal dependency contributes by one to the

indegree of a cell, whereas each external dependency

contributes by an amount equal to the number of pixels

shared between the projection areas of the external front

faces of the external cell pair. Fig. 4 (a) illustrates a

sample case for indegree assignments. Note that

indegree value of 3 for cell F stems from an internal

dependency to cell E and 2-pixel external dependency to

cell A:
The rendering phase begins by traversing the ray

buffer to replace the first-ray segment of each active

pixel with an active ray item. Active ray items represent

the active ray-segments in the respective pixels during

Fig. 2. Cell projection algorithm: initialization for visibility ordering.
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the course of the algorithm. The rendering phase

continues by inserting the indices of the cells with

indegree 0 into the cell queue. Fig. 4 shows a sample case

from the execution of the algorithm. There are two tasks

to be performed in processing of each cell; removing the

respective dependencies induced by this cell and scan

converting its back faces. The internal dependencies are

removed by decreasing the indegree fields of the

neighbor cells by 1, which are connected to this cell

through its back internal faces. The process of removing

external dependencies and scan conversion of a back

face are performed in an interleaved manner for

efficiency.

As a back face is scan converted, the resulting ðz; sÞ
values and the ðz; sÞ values stored in the entry ðz; sÞ
component of the active ray item of the ray-list in each

covered pixel are used as the exit-point and entry-point

values of the rays from and into the cell, respectively, for

sampling and composition operations. The color and

opacity values obtained from the sampling are compos-

Fig. 3. Cell projection algorithm: rendering phase.
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ited onto the color and opacity components of the

respective active ray item, and its entry ðz; sÞ component

is replaced by the exit-point values obtained from the

scan conversion. If the back face is an external face, then

it means that the active ray-segment is leaving the

volume. So if there is a ray-segment after the active ray

item in the respective ray-list, then we decrement the

indegree field of the cell that generated the ray-segment,

thus effectively removing one of the pixel-basis external

dependencies induced by the cell being processed.

In the case of an acyclic mesh, the cell queue will

become empty after all cells are processed. In the case of

a cyclic mesh, the cell queue will become empty before

all cells are processed, thus showing the existence of

cycle(s) in the volumetric dataset from the given viewing

parameters.

Like all projection algorithms, CP exploits image-

space coherency. Our internal-dependency generation

scheme is similar to the sorting schemes proposed by

Max et al. [14] and Williams [15] for convex meshes. It

exploits the object-space coherency through connectivity

information. Our external-dependency generation

scheme enhances the algorithm to handle non-convex

meshes at a very low cost. It efficiently exploits the ray-

segments generated for the rendering phase, thus

effectively utilizing image-space coherency. Our internal

dependency generation scheme runs in linear time in the

number of internal faces, and external dependency

generation scheme runs in linear time in the sum of

the projection areas of external front faces. Another nice

feature of the algorithm is that it does not generate a

directed dependency graph explicitly for topological

sorting. Instead, it generates the visibility order on the

fly during the rendering phase by using the indegree

information of the cells gathered during the initialization

phase. Unlike approximate object-space methods, CP

handles the interpolations in face basis rather than cell

basis thereby providing the capability to yield better

quality images as in [14]. Besides, CP scan converts each

face only once. Beyond these advantages, CP—being an

object-space method—suffers from redundancies in cell

processing and image-space coherency utilization, since

it has to sort and scan convert all cells in the volume.

Furthermore, as all other object-space methods, it

cannot handle cyclic meshes and cannot support early

ray termination.

5. Span-buffer ray-casting algorithm

Existing hybrid methods suffer from inability to

support early ray termination and non-redundancy in

cell processing. The Span-Buffer Ray-Casting (SBRC)

algorithm is a hybrid method proposed to overcome

these deficiencies by changing the computational tra-

versal order from object-then-image to image-then-

object without compromising full utilization of image

and object space coherencies. Fig. 5 gives the pseudo-

code for the algorithm. SBRC requires three additional

data structures to maintain active cells, active edges and

span buffers for the active cells.

The algorithm is inspired by the observation that a

ray intersects a face if and only if the pixel that the ray is

shot from is covered by the projected area of that face.

SBRC follows the rays as in Koyamada’s algorithm

using the connectivity relation. When a cell is hit by a

ray for the first time, its span for the current scanline is

created and buffered. Each pixel of the span-buffer

contains the ðz; sÞ values of the exit point and the exit-

face identifier for the respective ray. The current ray uses
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Fig. 4. A sample case from the rendering phase of the CP algorithm: (a) the cell queue is initialized with cell A; (b) after cell A is

processed, its dependents B and E; are placed into the cell queue. Numbers inside cells show their current in degree values.
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the information in the first pixel of the span-buffer for

sampling and enters the neighbor cell for which exit-

point values will be used as the entry-point values. When

a ray shot from the same scanline hits the cell, the

information in the respective pixel of the span-buffer of

the cell is directly used for sampling and next-cell

operation. When the cell is hit by a ray shot from the

next scanline for the first time, a new span is created and

buffered for the cell. Fig. 6 shows a sample case of

following a ray in SBRC.

In the rendering phase, we activate a cell when it is hit

by a ray for the first time. The cell-activation process

begins by allocating an entry in the active cell list for the

cell. Then, we identify the edges necessary for the scan

conversion of back faces of the cell. A tetrahedral cell

has 6 edges and according to the view point at least 2

and at most 6 edges might be necessary for the

activation process. The edges belonging to at least one

back-face are called back-face edges. Then, we sort these

back-face edges to find an order on the edges such that

when they are cut by a virtual line parallel to a scanline,

the intersection points will always appear sorted in

increasing order of x coordinates. This sorting operation

is performed only once when the cell is activated.

After the activation of the cell, its span-buffer for the

current scanline is created. We need to identify the new

states of the back-face edges of the cell for scan

conversion along the current scanline. The scanlines

are processed from top to bottom. We compare the y-

extent of each edge, which is not currently in done state,

with the current scanline. The states of the edges whose

y-extents are above, intersecting and below the current

scanline are set to done, active and inactive, respectively.

If an edge passes from inactive to active state then it is

searched in the active edge list through hashing. After

this step, we have a sorted list of the intersection points

of the current scanline with the active back-face edges of

the cell. The current ðx; z; sÞ values obtained for the

successive intersection-point pairs in sorted order are

used for scan conversion to compute the interpolated

ðz; sÞ values for the successive pixels covered by the cell

along the current scanline.

As the span-buffer for the first scanline intersecting

the cell is created, we can read the values from the

Fig. 5. Span-buffer ray-casting algorithm.
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created span-buffer to determine the exit face and the

ðz; sÞ values at the exit point of the ray from the cell. The

exit face will be used to find the next cell hit by the ray

and the ðz; sÞ values at the exit point will be used as the

entry-point values at the next cell. Then, the ray is

followed as in Koyamada’s algorithm. When another

ray hits the same cell later, we check whether the ray

belongs to the same scanline. If this is the case, we know

that the current span-buffer of the cell is valid and the

information in the respective pixel of the span can be

directly used for sampling and next-cell operation. If

they are not equal then we know that the information in

the span-buffer is not valid for this scanline and we

should create the new span-buffer of the cell for this

scanline. Active edge list is traversed after processing

each scanline to delete the edges that will never be

accessed again. The edges that are not deleted are

rasterized for the next scanline by updating their

coordinates.

Supporting early ray termination in SBRC needs

special attention in span-buffer and cell-entry deletions.

The active life of the span-buffer of a cell ends when the

ray shot from its rightmost pixel location hits the cell.

The active life of a cell ends when it is hit by the ray shot

from the rightmost bottom pixel covered by the

projected area of the cell. However, we can never be

sure that these rays will travel enough in the volume to

hit the cell due to early ray termination. Hence, a

scanline-based deletion scheme is adopted in the

dynamic data structures. For span-buffer deletions, the

span buffer list is initialized through a simple pointer

operation to overwrite the previous span-buffers with

the new span-buffers to be created for the next scanline.

For cell-entry deletions, we use a y-bucket structure,

which has a size equal to the height of the screen. After

the activation of each cell, the pointer to the respective

entry in the active cell list is inserted into the y-bucket

list according to its bottom y-coordinate. After proces-

sing a scanline, the pointers in the respective y-bucket

list are used to delete the cell entries in the active cell list.

SBRC may be viewed as being the hybrid of

Koyamada’s [7], Challinger’s [27], and LSRC [30]

algorithms. It tries to exploit the best features of these

algorithms. Koyamada’s algorithm suffers from the lack

of exploiting the image-space coherency whereas SBRC

utilizes both image and object space coherencies. SBRC

avoids the extensive sorting operations in Challinger’s

algorithm by making use of the connectivity informa-

tion. Both SBRC and LSRC algorithms make maximum

use of both image and object space coherencies.

However, the sorting operations performed during the

3D and 2D sweeps may degrade the performance of the

LSRC algorithm. Furthermore, object-then-image tra-

versal schemes adopted in Challinger’s and LSRC

algorithms compel these algorithms to process all cells,

thus preventing them to support early ray termination

and making them suffer from redundant computations

especially in low resolutions as the portion of the cells

contributing to the image is relatively small. The image-

then-object space traversal scheme adopted in SBRC

overcomes all these deficiencies since a cell is activated

only if it is hit by a ray.

6. Koyamada-SBRC algorithm

In the SBRC algorithm, for cells whose projection

areas occupy a small number of pixels, the benefit of

using image-space coherency by scan conversion might

be suppressed by the overhead of the cell activation

process. So Koyamada’s algorithm can outperform

SBRC when there is a large number of cells with small

projection areas. The similarity between Koyamada’s

and SBRC algorithms allows the emerging of a new

hybrid method called Koyamada-SBRC (K-SBRC)

algorithm that blends these two approaches. The main
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Fig. 6. A sample case of following a ray in SBRC algorithm. (a) Ray r1 hits the cell, activates it, creates the span-buffer, reads the exit-

point values from the span-buffer and continues in the volume. (b) The succeeding rays r2; r3; r4 on the same scanline hit the cell and

directly read the exit-point values from the span-buffer.
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idea is to use Koyamada’s algorithm to render a cell

when the cost of using SBRC to render the cell is more

costly. This approach will also reduce the space

complexity of SBRC by not activating each cell hit by

a ray. The pseudocode for the K-SBRC algorithm is

given in Fig. 7.

In order to decide which algorithm should be

employed to process a cell, we should develop a bias.

If we can estimate the amount of time to be spent to

render a cell by each of the two algorithms with a small

error then the algorithm with the smaller rendering time

should be used to render the cell. The execution times of

both algorithms can be dissected onto four components;

time TNT ¼ aNT N spent for transforming nodes from

World Coordinate System to Normalized Projection

Coordinate System, time TR ¼ aRR spent for generating

ray-segments by scan converting front external faces,

time TS ¼ aSS spent for sampling and composition

operations, and time TI spent for computing the ray-

face intersections. In Koyamada’s algorithm, TI is equal

to the time spent for ray-face intersection tests, i.e., TI ¼
aIT IT : In SBRC, TI can be further dissected into three

components; time TCA ¼ aCAC spent for cell activation,

time TSC ¼ aSCH spent to initialize the scan-conversion

process needed for span-buffer creation, and time TI 0 ¼
aI 0I spent for span-buffer creation and incremental ray-

face intersection using the span-buffers. Note that TSC

involves inserting (edge activation) and retrieving edges

to and from the active edge list. So the expressions for

the rendering times of a dataset by Koyamada’s and

SBRC algorithms are:

TKoy ¼ aNT N þ aRR þ aSS þ aIT IT ; ð3Þ

TSBRC ¼ aNT N þ aRR þ aSS þ aCAC þ aSCH þ aI 0I ;

ð4Þ

respectively. In both equations, N is the number of

nodes in the data, R is the number of ray-segments

generated, S is the number of samples taken, and aO is

the unit cost of the respective operation ‘‘O’’. IT in

Eq. (3) denotes the number of ray-face intersection tests

performed by Koyamada’s algorithm, whereas I in

Eq. (4) denotes the number of ray-face intersections. In

Eq. (4), C and H denote the number of cells activated

and the number of spans created, respectively, by SBRC.

In bias computation, we can ignore TNT ; TR and TS

times because the same routines are employed in both

algorithms. Consider a cell c with a projection area of ac

in terms of pixels, and height (number of spans) hc:
Then, the expected execution cost of each algorithm for

Fig. 7. Koyamada-SBRC algorithm.
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cell c can be written as

ðaÞ tc
Koy ¼ aIT ic

TE2aIT ac

ðbÞ tc
SBRC ¼ aCA þ aSChc þ aI 0a

c ð5Þ

where ic
T denotes the expected number of intersection

tests to be performed on cell c by Koyamada’s

algorithm. As also mentioned earlier, Koyamada’s

algorithm is expected to perform 2 intersection tests

per intersection on the average (i.e., ITE2I). Therefore,

ic
T is approximated by 2ac for cell c in Eq. (5). So, if

2aIT acpaCA þ aSChc þ aI 0a
c then we should use Koya-

mada’s algorithm, otherwise we should use SBRC to

process the cell.

As now the bias is defined, the problem is to find ac

and hc in a fast way. Two schemes, namely Exact Area

and Bounding Box Area, are developed to estimate ac

and hc: Exact Area scheme tries to estimate a very close

approximation to ac: To do this, it calculates the areas of

all faces of the cell in Normalized Projection Coordinate

System and sums them up. The value obtained should be

divided into two because originally it is twice as the

original coverage area, as both front and back faces are

used. Bounding Box Area scheme uses half of the area of

the bounding box of the projection area of a cell as an

approximation to ac: As a tetrahedral cell either forms a

triangle or a four sided polygon when projected onto the

screen, it is very easy to calculate the area of the

bounding box of the projection.

Both schemes compute hc exactly by finding the height

of the projection of the cell in Normalized Projection

Coordinate System. Exact Area scheme will estimate ac

more accurately, but it is computationally more

expensive than Bounding Box Area scheme. Bounding

Box Area scheme is expected to overestimate ac; which
in turn will result in favoring SBRC in cases where the

difference between projection area and the bounding

box area of a cell is large.

The K-SBRC algorithm introduces an overhead of

taking a decision on the algorithm to be employed for

each cell that is intersected by at least one ray. So, if the

bias chooses Koyamada’s algorithm for all cells then this

will result in a larger execution time than the execution

time of Koyamada’s algorithm. On the other hand, if the

bias chooses SBRC for all cells then this will result in a

larger execution time than the execution time of the

original SBRC algorithm.

7. Experimental results

7.1. Datasets and environment

Table 2 displays the properties of the datasets used in

the experimentations. These four datasets were obtained

from NASA-Ames Research Center. All datasets were

originally curvilinear consisting of hexahedral cells, so

we converted them into unstructured standard tetrahe-

dral data format by breaking each hexahedral cell into

tetrahedral cells. Fig. 8 shows the rendered images of the

datasets. Scalar values in the input datasets are shifted

and scaled to fit [0,255] range. A user-specified piece-

wise-linear transfer function, which is generated auto-

matically based on histogram equalization, specifies the

mapping from this range to the set of opacity and RGB

values as described in [9,35].

Experimentations were done on a single processor of

the shared memory parallel machine, Sun Ultra En-

terprise 4000 computer equipped with 512 Mbytes of

memory and 8 UltraSparc II ð250 MHzÞ processors each
with a 256 Kbyte level 2 cache.

The relative performances of the presented algorithms

are evaluated by the visualization of each dataset using

four different views for three image resolutions. Table 3

displays the visualization statistics of each dataset to

guide the comparison of memory usage and the

performance analysis of the algorithms.

7.2. Memory requirements

Table 4 illustrates the memory requirements of the

algorithms for each dataset and three image resolutions

as the average of four views. Koyamada’s algorithm

introduces no additional memory overhead to the

existing data structures. The memory overheads intro-

duced by SBRC and K-SBRC algorithms are due to the

data structures necessary for keeping the information

about the active edges, active cells, and the span-buffers

created. The sources of the memory overhead in CP are

Table 2

List of datasets used for testing

Name Dimensions N C

Blunt Fin (BF) 40� 32� 32 40,960 187,395

Combustion Chamber (CC) 57� 33� 25 47,025 215,040

Oxygen Post (OP) 38� 76� 38 109,744 513,375

Delta Wing (DW) 56� 54� 70 211,680 1,005,675

Dimensions are the original NASA Plot3D sizes. N and C denote the number of nodes and tetrahedral cells, respectively.
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indegree field added for each cell, color-opacity compo-

nent needed for each active pixel, and the cell queue

structure. The major overhead for CP comes from the

color-opacity component and this fact can be clearly

observed from the higher rate of increase in the memory

overhead with increasing resolution relative to the other

algorithms.

As shown in Table 4, the percent memory overhead of

SBRC with respect to the core data size is always below

30%, and it decreases with increasing dataset size at a

fixed image resolution. As expected, K-SBRC behaves

even slightly better than SBRC due to less number of cell

activations. CP algorithm introduces considerable

amount of memory overheads of 60% and 67% for

smaller datasets Blunt Fin and Combustion Chamber,

respectively, at highest resolution ð900� 900Þ: However,

percent memory overheads drastically reduce below

23% for larger datasets Oxygen Post and Delta Wing.

The ray buffer structure occupies more space than the

core data for the smaller datasets at highest resolution,

but for the larger datasets the percentage of the ray

buffer structure to the core data reduces below 50%.

7.3. Performance analysis and comparisons

Table 5 displays the dissection of execution times of

the algorithms for V1: TR in all algorithms and TV in CP

were accurately measured as they constitute distinct

phases. However, TS and TI cannot be measured

directly because of their highly interleaved manner of

execution. To determine TS and TI ; each program was

run twice for each visualization instance, one with

sampling and the other without sampling. The measured

time of the latter run directly gives TI ; and the measured

time difference between the former and latter runs yields

TS : However, dissection of TI into TCA; TSC ; and TI 0 in

Blunt Fin Oxygen Post

Combustion Chamber Delta Wing

(b)(a)

(c) (d)

Fig. 8. Rendered images of the datasets. (a) Blunt Fin, (b) Oxygen Post, (c) Combustion Chamber, (d) Delta Wing.
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SBRC cannot be computed through measurement.

Instead, we have estimated the unit costs aCA; aSC and

aI 0 for these operations statistically using the Least-

Squares Approximation method, and used these unit

costs to determine them approximately as TCA ¼ aCAC;

TSC ¼ aSCH; and TI 0 ¼ aI 0I : The average error in

estimating TI using these costs as TI ¼ aCAC þ aSCH þ
aI 0 I is measured to be below 6%. Dissection of TI is not

given for K-SBRC because of the increased number of

parameters.

Table 3

Visualization statistics of the datasets for different views

Dataset Image res. View

V1 ¼ ð0; 0; 0Þ V2 ¼ ð0; 90; 0Þ V3 ¼ ð90; 0; 0Þ V4 ¼ ð45; 45; 45Þ

P R I P R I P R I P R I

300� 300 28.4 28.4 2645 57.7 57.7 5584 22.0 22.0 1687 47.9 48.3 3924

BF 600� 600 114.1 114.1 10615 231.5 231.5 22408 88.3 88.3 6771 192.4 193.7 15751

900� 900 257.1 257.1 23907 521.5 521.5 50476 198.8 198.8 15251 433.5 436.3 35481

300� 300 54.7 54.7 3655 60.9 66.4 6165 37.0 38.8 3499 52.1 52.4 3412

CC 600� 600 219.2 219.2 14671 244.4 266.2 24746 148.5 155.6 14044 208.9 210.3 13696

900� 900 493.8 493.8 33047 550.5 599.7 55741 334.6 350.6 31633 470.5 473.7 30850

300� 300 67.4 67.4 7481 13.7 14.2 1187 13.7 20.8 1188 43.5 47.1 4039

OP 600� 600 270.4 270.4 30010 55.2 57.0 4766 55.2 83.7 4768 174.7 189.2 16214

900� 900 609.0 609.0 67599 124.2 128.3 10734 124.2 188.4 10740 393.6 426.3 36524

300� 300 54.9 60.5 7508 46.5 46.7 3312 56.9 56.9 3204 58.5 59.3 5209

DW 600� 600 220.1 243.0 30146 186.7 187.3 13294 228.3 228.3 12861 234.5 238.1 20908

900� 900 495.7 547.2 67866 420.7 422.0 29944 514.2 514.2 28970 528.3 536.3 47097

The 3-tuples for each view define the Euler angles of rotation around x; y and z axes, respectively. P; R and I denote the numbers of

active pixels ð103Þ; ray-segments ð103Þ and ray-face intersections ð103Þ; respectively. If R > P then the respective visualization instance is

non-convex. Since mid-point sampling schema is used, the number of intersections is equal to the number of samplings ðI ¼ SÞ:

Table 4

Memory consumptions of the algorithms in MBytes (averages of 4 views)

Dataset Image resolution Core Ray buffer Memory overhead

Koy. SBRC K-SBRC CP

EA BBA

300� 300 1.0 0.0 1.5 1.2 1.2 0.8

BF 600� 600 7.2 4.1 0.0 1.8 1.6 1.6 2.1

900� 900 9.2 0.0 2.1 1.9 1.8 4.3

300� 300 1.3 0.0 1.6 1.5 1.3 1.0

CC 600� 600 8.2 5.1 0.0 1.7 1.7 1.7 2.7

900� 900 11.4 0.0 1.9 1.9 1.9 5.5

300� 300 1.0 0.0 3.1 2.6 2.4 1.4

OP 600� 600 19.6 4.0 0.0 3.5 2.9 2.8 2.6

900� 900 9.0 0.0 3.8 3.3 3.1 4.5

300� 300 1.3 0.0 6.3 4.8 4.7 2.6

DW 600� 600 38.3 5.3 0.0 7.0 5.6 5.6 4.4

900� 900 11.8 0.0 7.6 6.4 6.3 7.4

‘‘Core’’ column denotes the memory occupied by the dataset itself (i.e., node and cell arrays). ‘‘Ray-Buffer’’ column represents the

memory usage for the ray buffer structure containing ray-segment lists. The following five columns illustrate the additional memory

overhead introduced by the respective algorithms.
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As shown in Table 5, TR and TS components are

almost the same in all algorithms for a fixed visualiza-

tion instance, thereby verifying the accuracy of our

method for dissecting TT into TR; TS ; and TI (and TV in

CP). Although TR increases with increasing image

resolution for a fixed dataset, it always remains

negligible in total rendering time TT :
In Koyamada’s algorithm, TI increases almost

linearly with I as expected. This can be explained by

the fact that it does not exploit image-space coherency.

In SBRC, cell activation time TCA is directly propor-

tional to number of cells touched during rendering,

instead of total number of cells. Therefore, in Table 5,

TCA gently increases with increasing resolution for Blunt

Fin, Oxygen Post and Delta Wing datasets. However, it

remains constant for Combustion Chamber, because all

cells are sufficiently large so that all of them are hit by a

ray even at the lowest resolution. It is also observed that

the rate of increase in TI 0 with increasing resolution for a

fixed dataset is much more pronounced than that of TSC :
This is due to the fact that number of spans created is

related to the height dimension of the resolution whereas

number of intersections is associated to both width and

height dimensions. Table 5 also shows that TCA becomes

negligible with increasing resolution, and TSC and TI 0

become the dominating components in TI : K-SBRC

shows similar characteristics as SBRC for different

datasets and resolutions.

TV component of CP is directly affected by two

factors, namely, number of faces (and cells) and number

of ray-segments generated. The former factor is inde-

pendent of both viewing parameters and resolution

Table 5

Execution-time dissection of the algorithms for view V1

Algorithm Exec. time Image resolution

300� 300 600� 600 900� 900

Dataset

(s) BF CC OP DW BF CC OP DW BF CC OP DW

TR 0.2 0.4 0.5 0.9 0.4 0.8 1.0 1.4 0.7 1.4 1.6 2.0

Koyamada TS 1.2 1.7 4.0 3.3 4.9 7.1 15.1 13.4 10.6 15.6 32.9 29.9

TI 9.1 14.0 26.6 25.4 36.6 55.6 105.9 100.7 82.8 125.1 238.4 225.5

TT 10.6 16.2 31.3 30.0 42.0 63.6 122.2 115.9 94.1 142.2 273.1 257.8

TR 0.2 0.5 0.6 1.0 0.5 1.0 1.2 1.6 1.0 1.9 2.3 2.7

TS 1.3 1.7 3.5 3.6 5.0 6.9 14.2 14.3 11.3 15.6 32.0 32.1

SBRC TCA 1.6 3.5 3.6 8.1 2.2 3.5 4.7 11.9 2.4 3.5 5.3 13.5

TI TSC 2.0 6.1 6.1 10.3 5.3 14.2 14.6 26.7 7.0 21.5 24.4 46.0

TI 0 1.5 2.2 4.5 4.5 5.3 9.5 18.0 18.1 14.3 21.5 40.6 40.7

TT 6.6 14.1 18.6 27.9 18.4 35.4 52.9 73.0 36.2 64.2 104.9 135.5

TR 0.2 0.4 0.5 1.0 0.4 0.8 1.0 1.4 0.7 1.4 1.7 2.1

K-SBRC TS 1.4 2.0 3.7 4.5 5.6 7.8 14.9 14.3 11.9 16.1 34.3 32.1

(EA) TI 5.0 12.8 13.9 19.5 14.2 29.3 38.7 55.4 26.0 50.5 73.8 104.2

TT 6.6 15.3 18.3 25.4 20.3 38.0 54.8 71.6 38.7 68.1 109.9 138.8

TR 0.2 0.4 0.5 0.9 0.4 0.8 1.0 1.4 0.7 1.4 1.7 2.4

K-SBRC TS 1.4 1.9 3.6 3.6 5.4 8.0 15.1 14.5 11.1 15.6 33.3 28.7

(BBA) TI 5.0 13.4 13.6 18.8 14.1 28.7 40.0 54.2 26.9 50.4 78.7 113.6

TT 6.6 15.7 17.9 23.8 20.0 37.6 56.3 70.4 38.8 67.5 113.9 145.0

TR 0.2 0.4 0.5 0.9 0.4 0.8 0.9 1.4 0.7 1.4 1.6 2.0

TV 0.6 0.9 1.7 3.1 0.9 1.4 2.2 3.6 1.3 2.1 3.1 4.5

CP TS 1.3 1.8 3.5 3.3 5.1 6.7 14.0 13.1 11.6 14.6 32.0 30.8

TI 4.6 8.7 13.4 25.5 10.5 18.9 30.3 46.5 19.4 34.1 55.7 75.6

TT 6.6 11.4 18.9 32.3 16.6 27.1 46.8 63.6 32.3 50.9 91.0 111.2

TR; TS ; TI ; and TT denote ray-segment generation, sampling/composition, ray-face intersection, and total rendering times,

respectively, In SBRC, TCA; TSC ; and TI 0 denote cell-activation, span-buffer initialization, and span-buffer creation and incremental

ray-face intersection times, respectively. In CP, TV denotes preprocessing time for visibility ordering.
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whereas the latter one depends on both. Therefore, the

time spent for generating internal dependencies is

constant for a fixed dataset. As shown in Table 5,

percent TV=TT ratio reduces from 9% at 300� 300

resolution to 4% at 900� 900 resolution, on the

average. Hence, TV can be considered to be negligible

especially at higher resolutions.

Table 6 shows the average relative run-time perfor-

mances for four views. For each visualization instance,

the execution times of the proposed algorithms are

normalized with respect to that of Koyamada’s algo-

rithm. Then, each value in Table 6 is computed by

averaging the normalized execution times of the

visualizations of the same dataset with a fixed resolution

from four different views. Relative performances of all

proposed algorithms with respect to Koyamada’s

algorithm increase with increasing resolution for each

dataset, thereby stressing that the benefit of using image-

space coherency is more at high resolutions due to the

increase in the projection areas of the cells. This rate of

performance increase is much more pronounced in CP

for all datasets except Combustion Chamber in which

SBRC and K-SBRC achieve slightly larger rate of

performance increase, because the number of cells

processed by SBRC and K-SBRC does not increase

with increasing resolution in Combustion Chamber that

has large cells.

As shown in Table 6, for all datasets except

Combustion Chamber, K-SBRC performs better than

SBRC at low resolutions, but its relative performance

decreases with increasing resolution. The reason is that

the projection areas of cells increase with increasing

resolution, resulting most of the cells to be processed by

SBRC. Consequently, it performs worse than SBRC due

to the bias-computation overhead. By nature, K-SBRC

is expected to give the best payoff in situations where the

variation in cell projection areas is large. Table 6 shows

that K-SBRC performs considerably better than SBRC

at both 300� 300 and 600� 600 resolutions of Oxygen

Post and Delta Wing datasets that have large variation

in cell projection areas. On the contrary, K-SBRC

performs worse than SBRC for Combustion Chamber

dataset that has almost equally sized large cells.

In SBRC, Bounding Box Area scheme always per-

forms better than Exact Area scheme at low resolutions,

and this performance difference decreases with increas-

ing resolution so that Exact Area scheme begins to

perform better than Bounding Box Area scheme at high

resolutions. At low resolutions, the errors introduced by

Bounding Box Area scheme do not exaggerate the cell

Table 6

Execution times normalized with respect to those of Koyamada’s algorithm (averages of 4 views)

Dataset Image resolution Algorithm

Koy. SBRC K-SBRC CP

EA BBA

300� 300 1.00 0.67 0.65 0.64 0.73

BF 600� 600 1.00 0.48 0.51 0.49 0.46

900� 900 1.00 0.42 0.44 0.44 0.39

300� 300 1.00 0.93 1.00 0.96 0.78

CC 600� 600 1.00 0.59 0.64 0.63 0.50

900� 900 1.00 0.49 0.52 0.52 0.43

300� 300 1.00 1.03 0.83 0.79 1.67

OP 600� 600 1.00 0.70 0.64 0.62 0.77

900� 900 1.00 0.57 0.55 0.56 0.55

300� 300 1.00 1.05 0.89 0.86 1:85n

DW 600� 600 1.00 0.70 0.67 0.66 0:83n

900� 900 1.00 0.57 0.57 0.62 0:59n

Averages

Avg. of 300� 300 1.00 0.92 0.84 0.81 1.26

Avg. of 600� 600 1.00 0.62 0.61 0.60 0.64

Avg. of 900� 900 1.00 0.51 0.52 0.53 0.49

Overall averages 1.00 0.68 0.66 0.65 0.80

Values with * for CP are averages of views V1 and V4 because of the cyclic meshes obtained in other views V2 and V3; which cannot be

handled by CP.
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projection areas enough causing the bias to select SBRC

approach erroneously. As resolution increases, these

errors cause the bias to select SBRC for cells which

should be processed by Koyamada’s approach indeed,

thus resulting in worse performance.

As shown in Table 6, K-SBRC based on Bounding

Box Area scheme ðK-SBRCBBAÞ achieves the best run-

time performance at 300� 300 resolution in all datasets

except Combustion Chamber in which CP achieves the

best. At 600� 600 resolution, CP achieves the best

performance for Blunt Fin and Combustion Chamber

datasets, but K-SBRCBBA performs still better than CP

in Oxygen Post and Delta Wing datasets by taking the

advantage of large variation in cell projection areas. At

900� 900 resolution, CP outperforms SBRC and K-

SBRC in Blunt Fin and Combustion Chamber datasets,

however, it cannot beat K-SBRC based on Exact Area

scheme ðK-SBRCEAÞ in Oxygen Post dataset, and it still

performs worse than both SBRC and K-SBRCEA in

Delta Wing dataset. When we consider the averages over

datasets for different resolutions given at the bottom of

Table 6, we see that K-SBRCBBA achieves the best

performance both at 300� 300 and 600� 600 resolu-

tions, and all the proposed algorithms perform nearly

the same at 900� 900 resolution. Finally, K-SBRC

turns out to yield the best performance among the

proposed algorithms on the overall average.

8. Conclusion

Three distinct categories, namely image-space, object-

space, and hybrid methods, were investigated for fast

direct volume rendering of unstructured grids. One of

the main objectives was to identify the relative super-

iority and inferiority of the algorithms in terms of the

supported features of these categories both theoretically

and experimentally. Various algorithmic features were

identified for a relative performance analysis.

Three new and fast algorithms were proposed. The

Cell Projection (CP) algorithm, that falls into object-

space category, scan converts each face only once, and is

capable of rendering non-convex meshes through a

simple yet efficient sorting schema that exploits both

image and object space coherencies. Existing hybrid

methods use object-then-image traversal order which

enforces the processing of each cell. Thus, these

algorithms perform redundant operations and lack

supporting early ray termination. The Span-Buffer

Ray-Casting (SBRC) algorithm is a hybrid method

proposed to overcome all these deficiencies by changing

the computational traversal order from object-then-

image to image-then-object without compromising full

utilization of image and object space coherencies. The

Koyamada-SBRC (K-SBRC) algorithm relies on the

observation that the benefit of using image-space

coherency for cells with small projection area might be

suppressed by the overhead of scan conversion process.

It extracts the best features of hybrid and image-space

methods by blending SBRC approach with Koyamada’s

algorithm, which is an efficient image-space algorithm.

All proposed algorithms are capable of handling acyclic

non-convex meshes and generating images of high

accuracy. SBRC and K-SBRC algorithms have the

additional capabilities of rendering cyclic meshes and

supporting early ray termination.

The proposed algorithms and Koyamada’s algorithm

were implemented and experimented in a common

framework for relative performance analysis. Through

experimental results we have concluded the following.

Image-space methods are slow in general, but their

relative performance is better at low resolutions. Object-

space methods are fast and especially at high resolutions

their relative performance is very good, but they may

perform unexpectedly bad at low resolutions, especially

for large datasets. Hybrid methods constitute the most

promising category, because they may perform as fast as

object-space methods at high resolutions, much faster at

low and medium resolutions, and are much more

flexible, in general. In hybrid approaches, the proposed

image-then-object traversal schema performs better than

the currently employed object-then-image schema. K-

SBRC, which supports all identified features, appeared

to be the fastest algorithm in our experimentations. This

verifies the impact of these features on the performance.

As a possible future work, some optimizations could

be done to reduce the space complexity of the proposed

algorithms by totally avoiding ray lists without com-

promising the run-time efficiency.
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