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Abstract

Determining the crystal structure parameters of a material is an important issue in crystallography and material science. Knowing the crystal
structure parameters helps in understanding the physical behavior of material. It can be difficult to obtain crystal parameters for complex structures,
particularly those materials that show local symmetry as well as global symmetry. This work provides a tool that extracts crystal parameters such
as primitive vectors, basis vectors and space groups from the atomic coordinates of crystal structures. A visualization tool for examining crystals
is also provided. Accordingly, this work could help crystallographers, chemists and material scientists to analyze crystal structures efficiently.
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1. Introduction

Obtaining the parameters for crystal structures is an im-
portant issue in crystallography. The physical properties of a
material are closely related to its crystal structure. In material
science, crystal parameters are used to classify materials. Such
classification is quite useful in analyzing physical properties,
particularly, in complex cases such as alloys whose atomic ra-
tios can change.

Crystallography mainly uses X-ray diffraction techniques to
determine the crystal structure of materials; X-ray absorbance
data reveals crystal geometry [1,2]. These techniques generally
give satisfactory results but sometimes the results are inade-
quate. In those cases, crystallographers must try several crys-
tal geometries manually. At other times, scientists may work
on theoretical materials where no sample is available and thus
no X-ray diffraction data. Therefore, a tool that can determine
crystal parameters from atomic coordinates could be very use-
ful.

There is a considerable amount of research based on ex-
tracting pattern information from the atomic coordinates of a
crystal structure; these studies can be grouped into three cat-
egories. The first category is crystallographic tools; Computa-
tional Crystallography Toolbox [3], an open source program, is
in this category. These tools allow users to define their own unit
cell by entering unit cell parameters. Users can examine atomic
placements, perform several analyses, etc. Basically, these tools
allow users to examine every known detail of unit cell structure
to understand the crystal structure more clearly. However, since
every essential unit cell parameter must be given to those tools
as input, all they actually do is to provide a user interface where
input parameters are converted to unit cell parameters.

There exists some notable work on identifying space group
information from atomic coordinates [4,5]. For example, FIND-
SYM [5] identifies the space group symmetry and gives the
lattice parameters and Wyckoff positions of atoms in a standard
setting. ADDSYM [6–8] is a tool to search for additional sym-
metries in a given coordinate set. Hanneman et al. [9] describe
two algorithms that allow the determination of the primitive
cell of a structure, including its translational symmetry and the
space group identification. However, due to the limitations of
the simulation, the primitive cells identified are always triclinic
and exhibits no symmetry elements. Hundt et al. [10] describe
an algorithm to overcome the these limitations by employing
some tolerance parameters, which are implemented in the pro-
gram KPLOT.

The second category is crystallographic visualization tools,
RasMol [11] is a well-known example. These tools provide
a good understanding of crystal geometry by allowing users
to examine crystal structures in 3D space. They provide sev-
eral drawing models, the ball model, the ball-stick model, the
wire frame model, etc. They allow users to disable the appear-
ance of some atom types, changing their colors and sizes, etc.
They allow the user to build multi-cells and to cut the crystal
structure according to user-defined planes. They allow users to
shape the crystal structure in any way they want. They also pro-
vide a sophisticated 3D visualization environment. Generally,
crystallographic visualization tools are combined with crystal-
lographic tools to maximize usefulness. Crystal Maker [12] and
Crystal Builder [13] tools are two important examples of such
combinations.

The tools in the third category are related to pattern recog-
nition, computer vision and 3D shape matching. Since crystals
follow some pattern, the proposed techniques can be used to
find such patterns. Some notable examples of techniques in this
category are proposed in [14] and [15].

The aim of this work is to extract pattern information from
any crystal structure by using raw atomic coordinates to find
the primitive vectors and basis vectors, and identify the space
group. This task is relatively easy for a human for simple struc-
tures but it becomes quite difficult for complex structures. The
molecular structure of crystals further complicate this process.
These molecular structures can be simple molecules, such as
H2O, or they can be quite complex, like buckyballs, C60, or bi-
ological materials, such as DNA or protein. A computerized
approach is essential to handle such complex cases. To this
end, we propose a framework that extracts crystal parameters
for such complex structures. It finds primitive vectors and ba-
sis vectors, and identifies the space group; it also calculates
additional unit cell parameters, such as the lengths of primi-
tive vectors and the angles between them. The algorithms use
atomic coordinates in crystal structure as input data.

Since crystal structures are repeated patterns of atomic posi-
tions in 3D space, a 3D visualization tool would be quite useful
for observing crystal geometry. The second motivation of this
work is to provide a good 3D visualization tool that allows users
to explore crystal structure, such as cleaving surfaces or form-
ing supercells. The proposed visualization tool works on unit
cell data that is either extracted from atomic coordinates or pro-
vided by the user directly. The tool allows the user to look at
unit cells from several angles, to combine several unit cells to
obtain larger crystal segments, to show or hide several atom
types, to cut crystal to obtain the desired surface, to dump the
atomic coordinates that are shown, etc.

In this work, we assume that the atomic coordinates of
atoms, which lie inside a sufficiently large volume of crystal
structure, are available as input within a small error margin. For
example, the atomic coordinates can be generated by using the
packing of atomic spheres or X-ray diffraction data. It is impor-
tant to identify the type of each atom in the input data. Since
there can be more than one alternative combination of primitive
vector triplets and basis vector sets that define a crystal struc-
ture, the tool is designed to be semi-automatic; throughout the
analysis it asks the user the preferred primitive vector triplet al-
ternative and preferred origin choice.

The organization of the paper is as follows. Section 2
presents the proposed framework. Section 3 gives implemen-
tation details. Section 4 presents experimental results and per-
formance evaluation. Section 5 gives conclusions.

2. A framework for pattern information extraction

In any crystal structure, if a lattice point is translated by any
integer combinations of primitive or lattice vectors, an identi-
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cal point is obtained. In order for two atoms to be identical,
they must belong to the same atom type and their position in
the crystal structure must be the same. In other words, if A and
B are identical, every atom C in the crystal structure has a cor-
responding atom C′ of the same atom type, where C’s position
relative to A is the same as C′’s position relative to B . This ob-
servation leads to the fact that for two identical atoms A and B

in any crystal structure, the vector obtained by coordinate dif-
ferences of A and B will be a combination of integer multiples
of primitive vectors. Furthermore, by the definition of primi-
tive vectors, for any atom A, there should be an identical atom
Ai,j,k for all integer values of i, j and k where Ai,j,k’s coordi-
nates differ from A’s coordinates by i × �R1 + j × �R2 + k × �R3,
where �R1, �R2, and �R3 are primitive lattice vectors. These ob-
servations establish the basis for the proposed framework. They
imply that if identical atoms can be grouped together, difference
vectors between every pair of identical atoms in each group can
be extracted. The set of difference vectors will include all in-
teger combinations of primitive vectors. The primitive vectors
can be identified by using the difference vectors. The identifi-
cation of basis vectors and space group will follow.

2.1. Data structures and indexing

Data structures and indexing methods are important in the
efficient solution of this problem. Input data is queried several
times throughout the analysis so that data structure significantly
affects the runtime performance.

The analysis requires point search queries and three-dimen-
sional range search queries for every point inside a cubic bound-
ary. There are several data structure alternatives to store and
index input data. We used an octree structure as the main data
structure. The octree is a tree structure that starts with a cube
enclosing the 3D region of interest (the root node). Then the
cubes at each node are recursively subdivided into eight sub-
cubes until the desired level of detail is reached.

The crystal segment given in the input data is assumed to
have the shape of a cube. The boundary of the cubic volume
to be indexed is known since the input data for the analysis is
available. The cubic region enclosing the data is assigned to the
root node. Each child of a node is assigned one eighth of its
parent’s volume. This is done by halving the volume of the par-
ent node along each axis. All nodes at the same level of the
octree correspond to the same amount of volume. The num-
ber of atoms per volume will not differ for different regions
in the crystal since the crystal structures are usually homoge-
neous. These properties result in a balanced octree structure
where the leaf nodes are all at the same level. This produces
a better search performance than unbalanced octree structures.
In our implementation, only the leaf nodes store data. Interme-
diate level nodes are used to direct the search.

In a general octree implementation, the number of records
stored at each leaf node varies. This requires a linear search
within the leaf nodes to find a record; this is an inefficient
process. In our case, storing one record in each leaf node leads
to a better performance since we perform a lot of point searches,
for example, to identify space groups.
Point-search queries are performed by using an octree search
algorithm. The search starts at the root node and is recursively
redirected to one of the children of the current node until a leaf
node is reached. The leaf node is checked to see whether it
stores a record that satisfies the query constraint. If the answer
is affirmative, a pointer to this record is returned. Otherwise, a
null pointer is returned meaning that the search is unsuccessful.
The complexity of this procedure is O(log(N)), since the depth
of the octree is proportional to log(N), where N is the number
of nodes in the octree structure.

Range search queries can be efficiently answered by the oc-
tree structure. The search procedure finds all the points that
lie inside the query range. Our range search algorithm forms a
linked list of these points and returns a pointer to this linked list.
The other algorithms that use the output of the range queries use
this linked list structure. The search is performed recursively on
every node whose volume intersects with the query range. On
a leaf node, the algorithm checks whether the record satisfies
the query constraint. If this is the case, the search routine ap-
pends this record to the output set. The worst case complexity
of range searching is O(N log(N)), where N is the number of
nodes in the octree structure. Every node must be checked since
the query volume can cover every node in the octree structure.
However, since the range search queries performed during the
analysis have small query volumes, the runtime performance is
much better than O(N log(N)). The query volumes in our case
are all cubic volumes. Only O(M log(N)) nodes will be vis-
ited in order to query a volume covering M leaf nodes. Thus,
the expected complexity will be O(

VQ

VT
N log(N)), where VQ is

the query volume and VT is the total volume. The details of the
octree structure and related algorithms can be found in [16].

2.2. The stages of the proposed framework

In the first stage, the atomic coordinates are read and in-
dexed. Indexing should facilitate to retrieve points in a query
region efficiently. In the second stage, the identical atoms are
grouped together. Two atoms are identical if they are of the
same type and have the same orientation in the crystal structure.
After the grouping process is completed, difference vectors be-
tween every atom couple in every group are found. Then some
of these vectors are eliminated since they are not qualified to be
a primitive vector. Then, the user is asked to select one or more
of the candidate primitive vector-set alternatives. Afterwards,
the basis vectors can be calculated. Then the atoms that can be
used to form a basis vector set are clustered. The atoms in a
cluster are displayed so that the user selects the origin. Then
the basis atoms are listed and the space group of the crystal
structure is identified. This involves testing whether all symme-
try operations of every space group are supported by the crystal
structure. Fig. 1 summarizes the stages of the proposed frame-
work.

Error handling is an important issue in this application. Due
to the precision of the device or the imperfections in crystal
structures, the input data may contain errors. In some cases,
one may even prefer to introduce some error bars in order to
give some flexibility to the input. For example, the atomic ra-
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Fig. 1. The flow diagram of the proposed framework.
dius cannot be known for certain materials [17] and it changes
in small amounts in different materials. For example, the Cl−
ion’s radius is not the same in NaCl and KCl. Accordingly, sev-
eral estimations are made in order to give approximate radius
values of these atoms. There are several measurement standards
and thus several atom-radius tables, such as CPK’s, ionic, cova-
lent and Van-Der-Walls radii [18], S&P [19] and VFI radii [20].
Generally, scientists can obtain approximate radius values from
the appropriate table but these values will have a small margin
of error. Accordingly, scientists sometimes prefer to introduce
errors to input data to cover atomic radius errors. These errors
are mostly small position differences of atoms.

Since small errors in atomic coordinates are very frequent,
the parameter, EPS, is introduced for this purpose. This rep-
resents the amount of maximum coordinate error in each axis
that can be seen in the input data. In other words, if an atom’s
coordinates are given as [x, y, z] in the input data, the actual co-
ordinates can be [x ± EPS, y ± EPS, z± EPS]. The value of the
EPS parameter depends on the error range introduced in atomic
coordinates. Ideally, EPS should be 0 but a value that is signif-
icantly smaller than the radius of the smallest atom in the input
data will also work accurately. Setting the EPS parameter to
high values may reduce accuracy. It is recommended that EPS
be set at the maximum value of error margin in the atomic co-
ordinates. It is also recommended that better data be used if the
coordinate error is higher than 20% of the radius of the smallest
atom.

Another type of error is missing atoms (i.e. vacancies) or im-
purities in the crystal. “Vacancy atoms” are the absence of an
atom in a certain place in the crystal structure where it should
exist in the perfect crystal. “Impurity atoms” are the substitu-
tion or insertion of another type of atom in the host crystal [21].
These imperfections are seen quite frequently. Scientists might
wonder if a crystal structure is the material they expected with
many imperfections, or is another material altogether. For such
cases, the analysis proposed in this work helps scientists to re-
veal the actual pattern in the crystal data, thus revealing the
crystal’s form. Users can introduce such errors to the input data
for this kind of analysis. All these errors cause the algorithms
proposed in this framework to fail if they are not taken into ac-
count.

2.2.1. Reading and indexing the data
The input data contains one line for each atom’s informa-

tion. Each line contains an atom-type identifier string followed
by three Cartesian coordinate values. Each line is read and an
atom structure is generated based on this data. The atom struc-
ture contains the Cartesian coordinates of the atom, a unique
identification number generated for each atom type, and several
pointers to the related atoms. This procedure also determines
the boundaries of the cubic crystal segment to be indexed.

After the input data is read, the atom records are indexed by
using the octree structure. To do this, the octree is initialized by
calculating the boundaries of the cubic crystal segment; this is
calculated from the input data and the volume is assigned to the
root node. Then, every atom record is iteratively inserted into
the octree structure.

2.2.2. The algorithm for grouping identical atoms
Grouping identical atoms together is a crucial task in this

analysis. For two atoms to be identical, they must belong to
the same atom type and their relative orientation to their neigh-
bors should be the same. If A and B are identical atoms, for
every atom around A, there should be a corresponding atom
of the same type around B with the exact relative positioning.
Unless A and B are the same atoms, this definition requires
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the crystal structure to be infinitely large in order for A and B

to be identical. For practical purposes, it is sufficient to make
sure that there is always a corresponding atom around B for all
atoms around A within a pre-specified neighborhood.

If any point in a crystal structure is translated by integer mul-
tiples of primitive vectors, identical points are obtained. Three
primitive vectors �R1, �R2, and �R3 define a paralleloid, which
can be considered as the unit cell of a crystal. If an atom A is
taken as the origin, a volume VA will be defined by the primi-
tive vectors. The matching volume of an atom A is simply a list
of all atoms whose coordinate differences with A at each axis
are smaller than the matching range value. This list contains
these atoms’ relative coordinates with respect to A and their
atom types. Calculating the matching volume of an atom is ba-
sically a range search query with the corresponding boundary
parameters.

If we want to check whether A and B are identical, it is
enough to check whether the matching volumes VA and VB are
identical. This is because any point that does not lie inside VA

or VB can be translated by integer combinations of primitive
vectors to another point that does lie inside these volumes. Ac-
cordingly, any point outside the volume has an identical corre-
sponding point inside these volumes. If any point outside causes
a mismatch, it is guaranteed that some point inside the volume
will also cause a mismatch.

Since the primitive vectors are unknown, it is impossible
to determine the volumes of atoms. However, trying to match
some larger volumes including these volumes will give cor-
rect results. We use cubic volumes around each atom because
searching all atoms in a rectangular boundary is much more
efficient than searching all atoms in any randomly-shaped vol-
umes. We call half of the edge length of this cube the match-
ing range. The boundary from the minus matching range to
the matching range at each axis around the atom is used as
this atom’s matching volume. The user is asked to determine
a value for the matching range parameter. The user should se-
lect a matching range parameter with a matching volume large
enough to contain a unit cell of crystal. Values that are too low
may produce inaccurate results, while values that are too high
affect the performance. For most cases, selecting a matching
range value that produces a matching volume covering about
10–20 atoms will give correct results, since atoms that are not
identical tend to have significantly different positioning.

The algorithm for grouping identical atoms calculates the
matching volume of each atom and groups atoms with identi-
cal matching volumes. The algorithm tries to match each atom
with previously found groups. If an atom matches some group,
it is included in this group. Otherwise, it forms another group.
Only a subset of input atoms whose matching volumes are com-
pletely specifiable from input data are actually analyzed. In
this way, complications caused by comparing partially speci-
fied matching volumes are avoided.

The grouping algorithm is severely affected by errors. Any
error in the input data may cause two atoms that should belong
to the same group to be put in different groups. Accordingly,
the algorithm must be modified so that it calls two matching
volumes identical even in the case of such errors in input data.
Since the coordinates of atoms have an error margin ±EPS,
the relative coordinates of two atoms will have an error margin
±2EPS. The indexes on matching volumes are used to handle
these errors. The number of groups will be much smaller than
the number of atoms processed in the grouping algorithm. It is
a good idea to index the matching volumes of the groups and
search for a corresponding point in the group’s matching vol-
ume for every point in an atom’s matching volume. The creation
and maintenance of an octree index on each group’s matching
volume is easy and inexpensive since the number of groups is
low.

Missing atoms is the most important type of error for the
grouping algorithm. Since the matching volume of an atom is
a significantly big volume which contain several atoms, any
atom is also placed in several other atoms matching volumes.
Accordingly, if an atom is missing, none of the atoms that in-
clude this missing atom in its matching volume will be able
to match its actual group. Accordingly, even a few missing
atoms will cause the grouping algorithm to fail if no modifica-
tions are done. To handle this type of error, another parameter
is introduced to specify how many atom mismatches are al-
lowed to still consider two matching volumes identical. Most
errors in the grouping algorithm can be corrected by allowing
a small number of mismatches. The probability of a mismatch
occurring in a matching volume is relatively small; and, the oc-
currence of more mismatches in the same matching volume is
even smaller. By setting this parameter to a small value, most of
the erroneous cases can be handled without scarifying accuracy.

In the grouping algorithm, if there are no errors, the first
atom’s matching volume for each group can be used as the
matching volume for the group. Errors in atomic coordinates
cause small errors in relative coordinates of the matching vol-
umes but these errors are easily handled by using the input data
with an error margin. However, if the matching volume con-
tains a missing atom, this will cause a mismatch with any other
atom’s matching volume. Allowing a small number of mis-
matches handles most cases, but if the atom’s matching volume
also contains missing atoms, it may not match though it should.
This problem is solved during the process of testing an atom
against a group. If for a point P in the atom’s matching volume,
no corresponding point in the group’s matching volume can be
found, but the atom matches this group, P is inserted into the
group’s matching volume. Since the atom’s matching volume
cannot contain extra atoms that do not exist, the group’s match-
ing volume must have a missing atom corresponding to P .

Such modifications cover most of the cases that cause errors
in the grouping algorithm. However, there can still be errors that
may cause the formation of unwanted groups. These can be fil-
tered out to obtain the desired groups. Since these error cases
are rare, such unwanted groups contain only a small number of
atoms. If the number of atoms belonging to a group is smaller
than a specified threshold, the group is eliminated. In princi-
ple, the value of this threshold should be determined by input
size and the expected number of groups. For example, NaCl
should contain two groups. The actual groups usually contain
about half the atoms given in the input data. A reasonable input
contains thousands of atoms but unwanted groups mostly con-
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Algorithm 1. The grouping algorithm.
tain a few atoms only. Therefore, using a value of around 20
works for most cases. However, if the input quality is poor, or
the input crystal structure is not complete, there will be many
groups with a relatively high number of atoms. For such cases,
the value of the threshold should be increased. The grouping
algorithm is given in Algorithm 1.

2.2.3. The algorithm for extracting primitive vectors
Translating any lattice point in crystal structure by an integer

combination of lattice (primitive) vectors gives identical points.
The vectoral distance between any two atoms A and B within
the same group is equal to some integer combination of primi-
tive vectors. Hence, a list containing vectoral distances between
all atom pairs in a group can be constructed. It is possible to se-
lect any three vectors from the vector list and check if they can
produce all other vectors in the list as their integer combina-
tions. Accordingly, vector triplets that can be used as primitive
vectors can be extracted from this list.

The proposed algorithm for extracting primitive vectors has
three stages:

(1) A vector set containing vectoral distances between atom
pairs of the same group is generated.

(2) The redundant vectors that cannot be a primitive vector are
filtered out.
(3) Primitive vectors are found by testing vector triplets to see
whether they can generate every other vector in the set as
their integer combinations. This stage generates alternative
primitive vector sets.

2.2.3.1. The vector set generation. This part takes each atom
pair in a group and adds the vectoral distance between them
to the vector list. The aim of extracting vectors is to construct a
vector list that can be used to calculate primitive vectors. There-
fore, the vector list should contain vectors to form a primitive
vector triplet and several other vectors to test if a vector triplet
can be used as a primitive vector set.

Every atom pair in a group can be used to extract a vector.
Most of these are duplicate vectors. To improve the extrac-
tion process, a reference atom can be defined and the relative
distances of all other atoms to this atom can be used as the
extracted vectors. Since every atom’s relative distance to the
reference atom defines a vector, integer combinations of primi-
tive vectors within some range are added to the vector list. It is
quite unlikely that a desired primitive vector set contains a long
vector. Accordingly, eliminating long vectors would reduce the
number of extracted vectors to a reasonable number. In general,
this approach works perfectly and extracting vectors from one
group is sufficient. However, since the input coordinates may
contain errors, a vector list obtained from only one group may
cause problems. Additionally, missing atoms will cause some
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Algorithm 2. The vector set generation algorithm.

Algorithm 3. The algorithm for filtering out redundant vectors.
vectors not to be extracted. The effect of such errors can be re-
duced by extracting vectors from each group and merging. The
vector set generation algorithm is given in Algorithm 2.

2.2.3.2. Filtering out redundant vectors. Three primitive vec-
tors should be able to produce all other vectors as their integer
combinations. If a vector �R is a scalar multiple of another vec-
tor, it is impossible for any vector triplet containing �R to pro-
duce all other vectors as their integer combinations. The proof
is given in [22]. Eliminating such vectors will reduce the size
of the vector list, and significantly improve the performance. In
this algorithm, every vector pair is checked to see if one of them
can be generated from the other; if this is the case, the longer
vector is eliminated. Checking whether a vector is a scalar mul-
tiple of another vector is done by comparing the proportions of
the x-, y-, and z-components of each vector. If these propor-
tions are equal (with some error tolerance), they are considered
scalar multiples of each other and the longer one is filtered out.
The algorithm for filtering out redundant vectors is given in Al-
gorithm 3.

2.2.3.3. Finding primitive vector alternatives. After the re-
dundant vectors are eliminated, a list of vectors is obtained that
can form primitive vector-triplet alternatives. A simple way of
calculating the primitive vectors is to take every vector triplet
(derived from the vector list) and check whether all other vec-
tors in the list can be produced by integer combination of these
vectors. This procedure has a O(n4) time complexity where n
is the number of vectors in the list; filtering redundant vectors
reduces the list size significantly, but there might still be many
vectors in the list. A more efficient solution is to sort the vector
list according to the length of the vectors and limit the number
of vectors in the set. A parameter value specified by the user
eliminates long vectors. Parameter values of around 100 give
quite good performance. Triple combinations of these shortest
vectors are selected to form candidate primitive vector triplets.

In order to check if given three vectors �R1, �R2 and �R3 can
produce the vector �R, it is necessary to solve the following
equation.

�R = i × �R1 + j × �R2 + k × �R3.

Since the vectors are 3-dimensional, the equation is linear
with three unknowns: i, j and k. If integer solutions can be
found for i, j and k, it is concluded that the vectors �R1, �R2 and
�R3 can produce the vector �R. Otherwise, the vectors �R1, �R2,

and �R3 cannot be a primitive vector set alternative.
Since each vector will have an error margin of ±2EPS, find-

ing integer solutions might not be possible. However, since er-
ror margins will be much smaller than the sizes of the vectors,
i, j and k values should be close to integer values if the primi-
tive vector candidates can produce �R. Accordingly, it is possible
to solve this equation and eliminate primitive vector candidates
that do not produce i, j and k values that are sufficiently close
to integer values. This eliminates most of the primitive vector
set alternatives. Following this, another test is used to make the
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Algorithm 4. The algorithm for calculating primitive vector alternatives.
final decision. The equation given above can be rewritten as

�R ± 2EPS = i × ( �R1 ± 2EPS) + j × ( �R2 ± 2EPS)

+ k × ( �R3 ± 2EPS)

which is equivalent to

�R ± (
2 × EPS × (i + j + k + 1)

)

= i × �R1 + j × �R2 + k × �R3.

Since the calculated i, j and k values cannot be too far from
their actual integer values, converting these values to the closest
integer values is logical. Then, these integer i, j and k values
and the vector parameters can be used to test if the given equa-
tion holds. If the answer is yes, then �R1, �R2, and �R3 can produce
�R as their integer combination. The algorithm for calculating

the primitive vector alternatives is given in Algorithm 4.
After finding all vector triplets that can be used as primitive

vector sets, the user is asked to select one or more primitive vec-
tor set alternatives. The algorithm for extracting basis vectors
and identifying space group continues according to the user’s
selections.

2.2.4. The clustering algorithm
Crystal structure is defined by lattice vectors and basis vec-

tors. Basis vectors are atomic coordinate vectors of atoms that
lie inside the paralleloid defined by lattice vectors. In order to
define basis vectors, an origin must be defined. In principle, any
point can be used as the origin from which the basis vectors that
define crystal structure together with the primitive vectors can
be calculated. However, scientists usually prefer to use the po-
sition of a certain atom or point as the origin; this results in a
simpler geometric structure.

Since every atom in a group is identical, specifying one atom
for each group is sufficient. However, specifying a random atom
from each group is undesirable; this does not always allow the
user to observe the relative positioning of specified atoms. Ac-
cordingly, atoms should be clustered as close to each other as
possible so that the relative coordinates of atoms in a cluster
can be easily observed.

The clustering is performed iteratively. Since each cluster
has to have one atom from each group, the initial step is to as-
sign each atom of the most crowded group to a different cluster.
Then the remaining groups are iteratively processed. Process-
ing group G is an example. For all clusters and atoms in G,
the atom–cluster pair is found with the least distance between
the atom and cluster center. Then, a direction vector is defined
by using this pair as the atom’s relative coordinate according to
the cluster center. Then for all clusters C in the clusters list, an
atom A whose relative distance to C is equal to the direction
vector is assigned to C. It is necessary to find a direction vector
since the clusters should have the same structure; every atom
assigned to each cluster must have the same orientation.

After the cluster assignments are completed, the clusters that
do not have atoms from each group are eliminated; a cluster
without one atom from each group is incomplete. Such incom-
plete clusters can be seen on the surfaces of crystals but they
are not suitable as origin alternatives. Once the clusters are ob-
tained, they are sorted according to the distance between their
center and the origin of input data. The cluster with the smallest
distance is returned. The clustering algorithm is given in Algo-
rithm 5.

The aim of this algorithm is simply to give the user a can-
didate basis set from which to select the origin. Taking the
atoms closest to the origin of input data from each group could
produce a good solution with much better runtime complexity.
However, using this clustering algorithm will produce a geo-
metrically more meaningful cluster. Since this cluster will be
closer to the desired basis set, the relations between atoms will
be easily visualized. After the coordinates of atoms in a cluster
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Algorithm 5. The clustering algorithm.
are shown to the user, (s)he can either select one atom from the
proposed list as the origin, or manually enter the coordinates of
the origin.

2.2.5. The algorithm for finding basis vectors
Basis vectors can be defined as the coordinates of atoms. The

atoms lie inside the unit cell defined by the primitive vectors and
the origin. With ideal data, it would be enough to find each point
lying inside the unit cell. However, since the atomic coordinates
may contain errors, a point that should be inside the cell might
be placed outside or vice versa. This situation is quite common
since the origin and primitive vectors are generally selected to
place the atoms at the corners, edges or faces of the unit cells.
Accordingly, a different approach must be followed.

Equal number of atoms belonging to each group should be
placed in every unit cell. The clustering algorithm is used for
this purpose. The desired basis vectors can be obtained with
some modifications to the clustering algorithm. Basic modifica-
tion is done on the direction vector calculation. In the original
clustering algorithm, atom–cluster pairs with the smallest dis-
tances are found and used to calculate the direction vector.
However, in the algorithm for finding basis vectors, the di-
rection parameters come from the unit cell structure. Another
modification is to use the origin of the unit cell as the cluster
center, instead of using average coordinates of the atoms.
In the original clustering algorithm, the atoms belonging to
the cluster closest to the origin are returned after the clusters
are calculated. However, this approach may not work for find-
ing basis vectors since a cluster contains one atom for each
group. On the other hand, the user might use a vector set
that is not primitive. For example, for the face-centered cu-
bic crystal structure, the primitive vectors are R1 = 1

2 [0, a, a],
R2 = 1

2 [a,0, a], and R3 = 1
2 [a, a,0]. This structure contains

one basis atom placed at the origin. However, due to its geomet-
ric simplicity, users often prefer the vector set R1 = [a,0,0],
R2 = [0, a,0], and R3 = [0,0, a], with 4 basis atoms. Accord-
ingly, the user is allowed to enter such vector triplets manually
to be used as the lattice vector set. For this purpose, the user is
expected to enter vectors that define a valid unit cell to guaran-
tee that the unit cell defined by the vector set contains either the
whole cluster or no part of that cluster. In other words, a unit
cell will contain an equal number of atoms belonging to each
group. The clustering process for finding basis vectors deter-
mines the shape of each cluster according to the volume defined
by given vectors. Thus, a unit cell can be filled completely with
clusters such that no part of these clusters left outside. Then the
average coordinates of atoms are used as the cluster center and
the atoms of every cluster whose center lies inside the unit cell
are returned. The algorithm for finding basis vectors is given in
Algorithm 6.
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Algorithm 6. The algorithm for finding basis vectors.
2.2.6. The algorithm for identifying space group
The space group of a crystal structure is determined by

checking whether it supports some symmetry operations. There
are several symmetry operations: rotations, mirror operations,
glide operations, etc. A crystal structure is tested to find out
which symmetry operations it supports. Accordingly, it is clas-
sified into one of 230 predefined space groups. Any crystal
structure should belong to one of these space groups [23]. The
aim of this algorithm is to find the space group to which the
crystal structure belongs.

A symmetry operation can be considered as a 3D coordinate
operation, which translates a point into an identical point. In
general, any symmetry operation can be defined in terms of ro-
tation followed by translation [2]. Symmetry operations can be
expressed by using a rotation matrix and a translation vector;
applying a symmetry operation on a point can be expressed as
a matrix vector multiplication and a vector addition.

In order to identify the space group of a crystal structure, it
should be tested to find out whether it supports every symmetry
operation of a given space group. If this is the case, it belongs to
that space group. The space group with the highest group num-
ber that the crystal structure supports is returned as the space
group of the crystal structure.

Checking if a symmetry operation is supported by a crys-
tal structure can be done by applying this operation on several
crystal points that cover the basis set. If the symmetry operation
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Algorithm 7. The algorithm for deriving valid vectors.
is supported, the translated point must be identical to the orig-
inal point. There are two available coordinate systems for this
procedure. These are the fractional coordinate system and the
Cartesian coordinate system. For each alternative, appropriate
space group symmetry matrices and vectors should be used. In
this work, the fractional coordinate system is used since it re-
quires fewer coordinate conversions. In addition, the symmetry
matrices and vectors are generally given in fractional coordi-
nates.

Testing whether a crystal structure supports a symmetry op-
eration seems to be quite an easy task but it has some complica-
tions. Using arbitrary primitive vectors will not work for each
space group. For example, in order to test if the crystal structure
belongs to a space group from the cubic lattice class, a vector
set defining a cubic unit cell must be used. But not just any vec-
tor set producing a cubic unit cell can be used. Primitive vectors
should define the minimal cubic unit cell. Similarly, in order to
test other lattice classes, vector sets defining the minimal unit
cells of those classes should be used. Since there are seven lat-
tice classes [1,17,21,23], seven different sets of vectors must be
derived and used.

In order to derive such vector sets, primitive vectors must
be used. Each integer combination of primitive vectors defines
a valid vector. Accordingly, several choices of integer combi-
nations of primitive vectors are used to define a set of valid
vectors. Valid vectors are generated as integer combinations of
primitive vectors. It is clear that infinitely many vectors can be
generated by this approach. To keep numbers reasonable, valid
vectors are limited to those vectors generated by using the inte-
gers i, j and k that satisfy inequality i2 + j2 + k2 < K where
K is a predefined constant. After valid vectors are defined, they
are sorted according to length in order to process shorter vectors
earlier. Then every vector triplet is checked to see if it defines
a unit cell belonging to one of seven lattice classes. If a vector
triplet matches a class where no previous match has been found,
it is recorded. The algorithm for deriving valid vectors is given
in Algorithm 7.

Afterwards, each combination of three vectors from the set
of derived valid vectors is checked to see if these vectors de-
fine a unit cell belonging to one of these seven classes. If this
is the case, this unit cell is recorded and these vectors are used
in space group tests belonging to this lattice class. To improve
performance and ensure getting the minimal unit cell, vector
triplets to be checked are sorted first. The algorithm is designed
to check the vector triplets with smaller vectors before the vec-
tor triplets with larger vectors. Accordingly, the minimal unit
cells belonging to each lattice class are obtained before other
unit cells belonging to the same class. Once a unit cell is found
for a class, other unit cells belonging to the same class are dis-
carded. The algorithm for deriving unit cells of lattice classes is
given in Algorithm 8.

After determining vector sets for each class, test points must
be gathered. In principle, the set of test points should cover at
least one point identical to each point in the basis set. How-
ever, it is also effective to use all atoms within some volume
that can contain a unit cell. In this work, a cubic volume that
is large enough to cover any possible unit cell is determined
and all atoms lying in this volume are used as test points. Then,
all symmetry operations of space groups are tested with all of
the test points. Space groups are tested starting from the space
group with the highest group number. When a crystal struc-
ture supports all the symmetry operations of a space group, this
space group is returned as the space group of the crystal. The al-
gorithm for identifying the space group is given in Algorithm 9.

Space groups are defined in order to classify the symmetry
properties of crystal structures. A small difference in the primi-
tive vectors or basis vectors can change the symmetry properties
and hence, the space group. For example, the NaCl and TlF
structures are quite close. NaCl has a cubic unit cell and its
space group number is 225. TlF’s structure can be considered
as a slightly distorted NaCl structure. Its unit cell is not cu-
bic. Axis lengths differ a small amount, making the unit cell
orthorhombic. Thus, it cannot support the symmetry operations
that cubic unit cells support; its space group number is 69. Dis-
tortions in TlF are as small as a certain level of noise can cause.
In the presence of errors, it is quite easy to confuse the NaCl
and TlF structures. If the error tolerance were set to a high level,
distorted materials would be treated as higher symmetry mate-
rials. Otherwise, high symmetry materials would be treated as
low symmetry materials. Unfortunately, there are no guidelines
that can help to distinguish structural distortions and distortions
caused by errors. It is therefore strongly recommended that
ideal data be used and that the EPS parameter be set to a very
small value in order to identify the space group correctly. With
ideal data, it is enough to return the highest symmetry space
group. However, we return all space groups that are supported
for a material so that the user can further analyze the struc-
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Algorithm 8. The algorithm for deriving unit cells of lattice classes.

Algorithm 9. The algorithm for identifying the space group.
ture manually. In spite of such modifications, the algorithm for
identifying the space group is not very reliable in the presence
of errors.

The algorithm for identifying the space group requires
knowing the symmetry operations of each space group. In this
implementation, we obtained the space group data of 273 space
groups (some space groups have more than one form depending
on the origin or the axis selections), from Bilbao Crystallog-
raphy Server [24]. The source of symmetry operations stated
in [25] are considered the most common reference tables used
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in crystallography. Every time the tool is executed, this data is
read and the space group data are loaded.

3. Implementation

We implemented the proposed framework as a software tool,
called BilKristal. The tool consists of three programs, Ana-
lyzer, VisualizationTool and UserInterface. Analyzer performs
the pattern extraction analysis and calculates the unit cell pa-
rameters. VisualizationTool uses unit cell parameters and pro-
vides facilities to visualize the crystal structure. UserInterface
provides the necessary interface to interact with the user and
other parts of the tool. We use three different programs, rather
than one, to obtain a modular structure. This makes mainte-
nance easier and produces high performance with a functional
user interface. Since extracting pattern information from crystal
structures is a computationally demanding process, we used C
language in the implementation of Analyzer and Visualization-
Tool. Because VisualizationTool uses graphics to display crystal
structures, the OpenGL and GLUT libraries are used in the im-
plementation of this part. C++ with .NET Platform provides a
suitable environment for developing programs with good user
interfaces and so we used it for the implementation of UserIn-
terface.

3.1. Analyzer

Analyzer is the program that executes the pattern extraction
algorithms and finds the unit cell parameters. When it is ex-
ecuted, it obtains as arguments initial parameters, such as the
input data path and analysis constants, such as EPS. Throughout
the analysis, it requests some other parameters from the user,
such as the origin choice or the primitive vector selections. It
displays appropriate messages to inform the user, such as per-
centage values for the progress of the analysis. It outputs the
results to files. Analyzer is a console application and it is not
designed to be a stand-alone program.

3.2. VisualizationTool

VisualizationTool is responsible for visualizing the crystal
structure. It uses the unit cell parameters as input and has sev-
eral features to visualize the crystal structure more effectively.
VisualizationTool is a console application and does not have a
user interface. Both Analyzer and VisualizationTool are called
from the UserInterface part.

VisualizationTool gets the required parameters from a file
created by UserInterface. This file contain the unit cell para-
meters, such as the primitive vectors and the basis vectors, as
well as atom parameters, such as the color and the radius of
each atom type in the basis set. Initially, a single unit cell is
shown. Afterwards, depending on the user’s choices, the dis-
played structure is extended. The user can use the mouse or
keyboard to rotate and zoom in/out on the displayed structure.
The tool provides the following facilities:
(1) Creating multi-cells: VisualizationTool draws a single unit
cell by translating the coordinate system by some integer
combination of the primitive vectors and drawing each ba-
sis atom. Multi-cells are defined by determining the fre-
quencies for each primitive vector. These frequencies rep-
resent the integer coefficients that are used to determine the
translation vector of the coordinate system. There are two
frequencies for each primitive vector. The first one is the
minimum value and the second is the maximum value of
those integer coefficients. In general, a unit cell is drawn for
every integer-coefficient combination whose value for each
primitive vector lies between these minimum and maxi-
mum values.

(2) Changing drawing options: the user can change the drawn
size of atoms, enable or disable the display of sticks be-
tween atoms, the display of unit cells, the display of primi-
tive vectors, and the display of controls.

(3) Enabling or disabling the drawing of certain atom types:
A part of the interface can be considered the legend. In this
part, the atom types in the crystal are listed. The colors of
those atom types are also indicated so that user can iden-
tify them. In addition, the user can enable or disable the
drawing of each atom.

(4) Defining cut planes: VisualizationTool can define cut planes
that divide the crystal structure into two parts. It is defined
by three numeric values and a cut operation. These three
numeric values are given in the crystal indexing system [1].
The crystal indexing system takes primitive vectors as its
three main axes. In order to define a plane in the crystal
indexing system, the positions where this plane intersects
with each of these main axes should be calculated. The in-
verses of these values by multiplication define this plane.
For example, consider the primitive vectors �R1, �R2, and �R3
as the coordinate axes. Let the plane P intersect each coor-
dinate axis at points (i �R1,0,0), (0, j �R2,0) and (0,0, k �R3),
respectively. Then, ( 1

i
, 1

j
, 1

k
) are the values that define the

plane P in the crystal indexing system; these are called
Miller indices. Cut operations are simple comparison op-
erators, such as >, <, �, �, and =. Any atom that does
not satisfy a cut operation will not be drawn. In order to de-
fine cut planes, the crystal indexing system is used because
it is the common indexing system for planes in crystallog-
raphy. The user is allowed to define as many cut planes as
(s)he desires. Accordingly, (s)he can give any convex poly-
hedral shape to the crystal structure.

(5) Dumping atomic coordinates: after performing several op-
erations, users might want to obtain a list of atomic coor-
dinates to be used as input to other utilities. Accordingly,
the user is allowed to dump into a file the atomic coordi-
nates (either fractional or Cartesian) of all atoms that are
currently shown on the screen.

(6) Animations: The user can animate the crystal structure in
3D by simply rotating the structure around three principal
axes in small amounts. The aim of the animation is to help
the user to observe the crystal structure in 3D. The user
can select animation styles and speed. The animation styles
defined are: rotation as a combination of three principal
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Fig. 2. The crystal visualization tool screenshot.
axis rotations (Euler angles); rotation around an arbitrary
user-defined vector; and a random combination of rotations
around the principal axes. Fig. 2 shows a snapshot of Visu-
alizationTool.

4. Experimental results and performance analysis

We tested our framework with several test data that cover
materials in most of the crystallographic classes (Fig. 3). Real
crystal parameters of actual materials are used. Test data is gen-
erated automatically. To generate the data, each basis vector is
translated by some integer combinations of primitive vectors. If
the translated point lies inside a predefined cubic volume cen-
tered at the origin, the point is written to the file. This operation
is repeated with different integer combinations of the primitive
vectors, until the predefined volume is completely full. In this
way, cubic crystal segments are obtained. The boundaries of
this predefined volume are selected as −20.0 to 20.0 Å at each
axis. In this way, we are guaranteed to obtain input data that
can be used with the default threshold parameter, 20.0. Since
the points that do not lie inside this predefined volume are not
included in the output, there will be incomplete unit cells. In ad-
dition, the atomic ratios in the input data will not be equal to the
atomic ratios in the unit cell. Two sets of data are generated for
each kind of material. The first set is the ideal input data. The
second set of data contains coordinate errors and missing atoms.
The generation of the second set of data is a similar process to
the generation of the first set, except that after calculating the
actual position of a point, a small amount of noise (±0.03) is
added to the coordinate values. Another difference is that even
though a point qualifies to be written into the output file, it is not
written with a small probability (0.0001) to simulate the effect
of missing atoms.

We tested our implementation with the materials (NaCl,
La2O3, Cu3Au, PtS, Al3Ti, Mg, CoSn, αHg, and TlF) whose
crystal parameters are obtained from [26], as well as MgF2

and Ca3SiBr2 structures [5,9,10]. Both ideal and noisy data for
these materials are analysed. During the analysis, default values
of the analysis parameters are used. Detailed information about
the analysis parameters can be found in [22]. Three sets of tests
are performed. In the first part, primitive vectors and basis vec-
tors are calculated and compared with the actual values. In the
second part, the outputs of the intermediate stages for identi-
fying the space group are produced. Finally, the tests for error
handling performance is carried out.

4.1. Extracting primitive vectors and basis vectors

With the ideal data, the extracted primitive vectors are all
accurate. The other primitive vector-set alternatives that the
tool proposed are also accurate. However, the primitive vectors
extracted from noisy data contain distortions. The vectors are
close to the actual vectors, but not identical. Since the margin
of error for each vector is ±2EPS with the noisy data used in
the tests, distortions up to ±0.06 Å error margin is considered
acceptable. No distortions higher than this limit are observed
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Fig. 3. Unit cells of crystals generated by BilKristal. (a) NaCl; (b) Cu3Au; (c) La2O3; (d) PtS; (e) Al3Ti; (f) Mg; (h) CoSn; (i) αHg; (j) TlF.
on the extracted primitive vectors. Therefore, the primitive vec-
tors obtained with the noisy data are considered acceptable (see
Table 1). The results of the basis vectors are quite similar to the
primitive vector results. With the ideal data, exact basis vectors
are obtained and with the noisy data acceptable distortions are
observed (see Table 2).

4.2. Space group identification

The algorithm for identifying the space group is significantly
affected by errors. Since the presence of errors is very important
for this algorithm, three different tests are performed for each
test material. In the first test, ideal data are used and EPS is
set to a low value, 0.001. In the second test, ideal data and the
default EPS values are used. Finally, in the third test, noisy data
and default EPS values are used. Test results for some materials
are given in Table 3.

The space groups are found correctly in all three tests for

• cubic structures: NaCl, La2O3, Cu3Au,
• tetragonal structures: PtS, Al3Ti, Ca3SiBr2,
• hexagonal structures: Mg, CoSn,
• trigonal structures: MgF2.
None of these structures are a distorted form of a higher sym-
metry structure. Accordingly, these materials are in the highest
symmetry form that their structures allow. There is no way that
these materials can be confused with another higher symmetry
structure even in the presence of a reasonable level on noise.
Thus, their space groups are identified accurately. The space
group of the trigonal structure, αHg, is also identified accu-
rately in all three tests. However, errors may be observed with
structures similar to αHg. The αHg structure can be considered
a distorted simple cubic structure. Its unit cell can be considered
as a simple cube with increased diagonal length. Accordingly,
α, β and γ angles, which are the angles between each primi-
tive vector pair, are all equal and smaller than 90 degrees. The
αHg structure has different forms, depending on such angles.
According to the environmental properties such as tempera-
ture and pressure, those angles change their values within some
range. Accordingly, αHg’s unit cell might become quite close
to a simple cubic unit cell. In the test data, these angles are set
to 70 degrees. However, if these angles are set to a value close
to 90 degrees, it is quite possible to obtain a 221st space group
in the second and third tests. This represents the simple cubic
structure.

Some problems are observed with the TlF structure. TlF is
a distorted version of NaCl. In other words, a high symmetry
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Table 1
Primitive vectors of different material structures (actual, produced with ideal data input, and noisy data input)

Material Vectors Actual Ideal data Noisy data

NaCl �R1 [0.00 2.83 2.83] [0.00 2.83 2.83] [0.00 2.81 2.82]
�R2 [2.83 0.00 2.83] [2.83 0.00 2.83] [2.82 0.00 2.80]
�R3 [2.83 2.83 0.00] [2.83 2.83 0.00] [2.82 2.82 0.00]

Cu3Au �R1 [3.14 0.00 0.00] [3.14 0.00 0.00] [3.13 0.00 0.00]
�R2 [0.00 3.14 0.00] [0.00 3.14 0.00] [0.00 3.13 0.00]
�R3 [0.00 0.00 3.14] [0.00 0.00 3.14] [0.00 0.00 3.13]

La2O3 �R1 [−2.57 2.57 2.57] [−2.57 2.57 2.57] [−2.57 2.57 2.55]
�R2 [2.57 −2.57 2.57] [2.57 −2.57 2.57] [2.55 −2.56 2.57]
�R3 [2.57 2.57 −2.57] [2.57 2.57 −2.57] [2.60 2.55 −2.58]

PtS �R1 [1.48 0.00 0.00] [1.48 0.00 0.00] [1.46 0.00 0.00]
�R2 [0.00 1.48 0.00] [0.00 1.48 0.00] [0.00 1.47 0.00]
�R3 [0.00 0.00 3.29] [0.00 0.00 3.29] [0.00 0.00 3.28]

Al3Ti �R1 [1.81 0.00 0.00] [1.81 0.00 0.00] [1.80 0.00 0.00]
�R2 [0.00 1.81 0.00] [0.00 1.81 0.00] [0.00 1.80 0.00]
�R3 [0.91 0.91 1.91] [0.91 0.91 1.91] [0.89 0.90 1.90]

Mg �R1 [0.86 −1.49 0.00] [0.86 −1.49 0.00] [0.83 1.48 0.00]
�R2 [0.86 1.49 0.00] [0.86 1.49 0.00] [−0.85 1.50 0.00]
�R3 [0.00 0.00 2.81] [0.00 0.00 2.81] [0.00 0.00 2.81]

CoSn �R1 [1.23 −2.13 0.00] [−1.23 2.13 0.00] [1.23 −2.12 0.00]
�R2 [1.23 2.13 0.00] [1.23 2.13 0.00] [1.23 2.12 0.00]
�R3 [0.00 0.00 4.02] [0.00 0.00 4.02] [0.00 0.00 4.02]

αHg �R1 [2.0 0.33 0.33] [1.99 0.33 0.33] [0.34 1.95 0.29]
�R2 [0.33 2.0 0.33] [0.33 1.99 0.33] [1.96 0.34 0.33]
�R3 [0.33 0.33 2.0] [0.33 0.33 1.99] [0.37 0.27 1.98]

TlF �R1 [0.00 1.17 1.08] [0.00 1.17 1.08] [0.00 1.17 1.06]
�R2 [1.11 0.00 1.08] [1.11 0.00 1.08] [1.11 0.00 1.07]
�R3 [1.11 1.17 0.00] [1.11 1.17 0.00] [1.11 1.14 0.00]

MgF2 �R1 [3.08 0.00 0.00] [3.08 0.00 0.00] [3.08 0.00 0.00]
�R2 [−1.53 2.69 0.00] [−1.53 2.69 0.00] [−1.51 2.69 0.00]
�R3 [0.01 −0.02 4.02] [0.00 0.00 4.02] [0.00 0.00 4.00]

Ca3SiBr2 �R1 [4.49 0.00 0.00] [0.00 4.49 0.00] [0.00 4.48 0.00]
�R2 [0.00 4.49 0.00] [4.49 0.00 0.00] [4.49 0.00 0.00]
�R3 [−2.25 − 2.25 9.65] [2.25 2.25 9.65] [2.26 2.25 9.64]

All units are Å.
structure is converted into a low symmetry structure by small
distortions. In the second and third tests, default EPS values are
used to inform the Analyzer about the possibility of errors in the
input data. The analysis is performed according to the specified
error margin. This flexibility leads to matching the TlF structure
with a higher symmetry group. Thus, the space group identified
may not be reliable for materials that are distorted forms of a
higher symmetry structure unless ideal data is used and the EPS
parameter is set to a low value. If it is impossible to use ideal
data and low EPS values, the user should manually check other
lower symmetry space groups returned by the tool to ensure
reliable results.

We also experimented with the two examples given in [6–8]
for which ADDSYM finds the additional symmetry where
FINDSYM failed in both cases. Although our system found the
primitive vectors and basis vectors correctly, it could not iden-
tify the space group for these structures.

4.3. Error handling

The algorithms perform quite well in the presence of a rea-
sonable level of coordinate errors. The noisy data used in the
tests contain ±0.03 Å coordinate errors at each axis. This level
of noise is sufficient to cover almost all of the cases that this
framework would handle. But to assess the algorithms’ error
tolerance, the proposed framework is tested with further levels
of coordinate errors. During the tests, calculated primitive vec-
tors and basis vectors are examined. The NaCl structure is used
as the test structure. The error margins ±0.2, ±0.4, ±0.6, ±0.8,
and ±1.0 Å are used to generate the test data.

A vector may contain up to ±2EPS coordinate errors. Ac-
cordingly, any found primitive vectors and basis vectors should
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Table 2
Basis vectors of different material structures (actual, produced with ideal data input, and noisy data input)

Material Vectors Actual Ideal data Noisy data

NaCl �B1 Na [0.00 0.00 0.00] Na [0.00 0.00 0.00] Na [0.00 0.00 0.00]
�B2 Cl [2.83 2.83 2.83] Cl [2.83 2.83 2.83] Cl [2.82 2.82 2.86]

Cu3Au �B1 Au [0.00 0.00 0.00] Au [0.00 0.00 0.00] Au [0.00 0.00 0.00]
�B2 Cu [0.00 1.57 1.57] Cu [0.00 1.57 1.57] Cu [0.03 1.55 1.55]
�B3 Cu [1.57 0.00 1.57] Cu [1.57 0.00 1.57] Cu [1.55 −0.03 1.58]
�B4 Cu [1.57 1.57 0.00] Cu [1.57 1.57 0.00] Cu [1.57 1.54 −0.01]

La2O3 �B1 La [0.00 0.00 0.00] La [0.00 0.00 0.00] La [0.00 0.00 0.00]
�B2 O [2.57 0.00 0.00] O [2.57 0.00 0.00] O [2.56 0.01 −0.01]
�B3 O [0.00 2.57 0.00] O [0.00 2.57 0.00] O [0.02 2.54 0.01]
�B4 O [0.00 0.00 2.57] O [0.00 0.00 2.57] O [0.01 0.03 2.53]

PtS �B1 Pt [0.00 0.74 0.00] Pt [0.74 0.00 1.65] Pt [0.00 0.00 0.00]
�B2 Pt [0.74 0.00 1.65] Pt [0.00 0.74 0.00] Pt [0.75 0.76 1.65]
�B3 S [0.00 0.00 0.82] S [0.00 0.00 2.47] S [−0.02 0.72 0.84]
�B4 S [0.00 0.00 2.47] S [0.00 0.00 0.82] S [0.01 0.71 2.46]

Al3Ti �B1 Ti [0.00 0.00 0.00] Ti [0.00 0.00 0.00] Ti [0.00 0.00 0.00]
�B2 Al [0.91 0.91 0.00] Al [0.91 0.91 0.00] Al [0.92 0.93 −0.01]
�B3 Al [0.91 0.00 0.95] Al [0.91 0.00 0.95] Al [0.90 0.02 0.96]
�B4 Al [0.00 0.91 0.95] Al [0.00 0.91 0.95] Al [0.00 0.89 0.92]

Mg �B1 Mg [0.86 0.50 0.70] Mg [0.00 0.00 0.00] Mg [0.00 0.00 0.00]
�B2 Mg [0.86 −0.50 2.10] Mg [0.86 0.50 1.40] Mg [−0.03 1.01 1.41]

CoSn �B1 Sn [0.00 0.00 0.00] Sn [0.00 0.00 0.00] Sn [0.00 0.00 0.00]
�B2 Sn [1.23 0.71 2.01] Sn [0.00 1.42 2.01] Sn [1.27 0.71 2.01]
�B3 Sn [1.23 −0.71 2.01] Sn [0.00 2.84 2.01] Sn [1.24 −0.69 2.03]
�B4 Co [0.62 −0.36 0.00] Co [−0.62 1.07 0.00] Co [0.63 −1.07 − 0.02]
�B5 Co [0.62 0.36 0.00] Co [0.62 1.07 0.00] Co [0.62 1.05 −0.01]
�B6 Co [1.23 0.00 0.00] Co [0.00 2.13 0.00] Co [1.23 0.03 −0.03]

αHg �B1 Hg [0.00 0.00 0.00] Hg [0.00 0.00 0.00] Hg [0.00 0.00 0.00]

TlF �B1 Tl [0.00 0.00 0.00] Tl [0.00 0.00 0.00] Tl [0.00 0.00 0.00]
�B2 F [0.00 0.00 1.08] F [0.00 0.00 1.08] F [0.03 0.06 1.06]

MgF2 �B1 Mg, [0.00 0.00 0.00] Mg, [0.00 0.00 0.00] Mg, [0.00 0.00 0.00]
�B2 F, [0.66 0.33 0.23] F, [0.66 0.33 0.23] F, [0.67 0.32 0.26]
�B3 F, [0.33 0.67 0.77] F, [0.33 0.66 0.77] F, [0.32 0.65 0.78]

Ca3SiBr2 �B1 Si, [0.00 0.00 0.00] Si, [0.00 0.00 0.00] Si, [0.00 0.00 0.00]
�B2 Ca, [0.51 0.51 0.00] Ca, [0.50 0.50 0.00] Ca, [0.50 0.51 0.00]
�B3 Br, [0.67 0.67 0.34] Br, [0.68 0.67 0.66] Br, [0.68 0.67 0.66]
�B4 Br, [0.33 0.33 0.66] Br, [0.33 0.33 0.34] Br, [0.33 0.34 0.34]
�B5 Ca, [0.16 0.16 0.32] Ca, [0.16 0.15 0.68] Ca, [0.16 0.16 0.69]
�B6 Ca, [0.84 0.85 0.68] Ca, [0.84 0.84 0.32] Ca, [0.83 0.84 0.32]

All units are Å.
Table 3
The results of the space group identification stage. The default EPS value is
0.05

Actual space
group number

Ideal data
EPS = 0.001

Ideal data
default EPS

Noisy data
default EPS

NaCl 225 225 225 225
Mg 194 194 194 194
αHg 166 166 166 166
TlF 69 69 138 138

be considered acceptable if the coordinate distortions are all
less than ±2EPS. For input data containing ±0.6 Å or less
errors, the highest coordinate distortions observed on primi-
tive vectors are all smaller than 2EPS (see Table 4). For these
input data, the basis vector results are also similar. The maxi-
mum distortions of fractional coordinates of basis vectors are
all within acceptable limits (see Table 5). For input data con-
taining ±0.8 Å or higher errors, the tool does not produce very
accurate results.

In general, the error tolerance of the framework is quite
good. The tests show that even with the data containing ±0.6 Å
margin of error, acceptable results are obtained for the NaCl
structure. Considering that Na’s radius is 1.16 Å and Cl’s ra-
dius is 1.67 Å in NaCl, ±0.6 Å error in the coordinates can be
considered a fairly large value.
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Table 4
Primitive vector results of error handling tests (Cartesian coordinates are used and all units are Å)

Noise
level

�R1 �R2 �R3 Maximum
distortion

±0.2 [2.63,−2.86,0.00] [2.76,0.00,2.77] [0.00,−2.78,2.80] 0.20
±0.4 [2.56,2.79,0.00] [−0.17,2.79,2.66] [2.69,0.12,2.78] 0.28
±0.6 [2.78,2.77,−0.10] [0.00,2.85,2.77] [2.84,−0.06,2.80] 0.10
±0.8 n.a. n.a. n.a. n.a.
±1.0 n.a. n.a. n.a. n.a.
Table 5
Basis vector results of error handling tests (fractional coordinates are used and
noise level units are Å)

Noise
Level

�B1 �B2 Maximum
distortion

±0.2 Na [0.00,0.00,0.00] Cl [0.55,0.52,0.48] 0.05
±0.4 Na [0.00,0.00,0.00] Cl [0.55,0.51,0.55] 0.05
±0.6 Na [0.00,0.00,0.00] Cl [0.50,0.42,0.55] 0.08
±0.8 n.a. n.a. n.a.
±1.0 n.a. n.a. n.a.

4.4. Performance evaluation

In this section, first the complexity analysis is provided and
then the dissected runtime performance of each stage is evalu-
ated.

4.4.1. Complexity analysis
The complexity of reading input data and inserting the

records of atoms into the octree structure is O(N log(N)) since
each insertion has a complexity of O(log(N)), where N is the
number of atom records.

In the grouping algorithm, the matching volume of each
atom to be analyzed is calculated. Since the crystal data is
usually homogeneous, the number of atoms in each match-
ing volume is constant. If we call this constant M , retrieving
the matching volume of an atom has a time complexity of
O(log(N)+M), since accesses to the boundaries of the match-
ing volume can be done in logarithmic time and maintaining the
linked list of output can be done in linear time. Since matching
volumes of the groups are indexed with the octree structure,
checking if two matching volumes are identical can be done in
O(M log(M)) time. The atoms can be inserted into the atom list
of the corresponding group in constant time. However, if the
atom does not match any group, a new group is created. The
formation of a new group requires copying an atom’s matching
volume into a group’s matching volume and indexing it; this
can be done in O(M + M log(M)) time. If G is the number of
groups generated by the grouping algorithm and A is the num-
ber of atoms that are to be analyzed, the time complexity will
be O(A log(N)+AM +GAM log(M)+GM +GM log(M)).
The first part, A log(N) + AM , represents the complexity of
obtaining matching volumes of every atom to be analyzed. The
second part, GAM log(M), shows the matching volume com-
parison of every atom with every group. Finally, the last part,
GM + GM log(M), represents the group formation times for
each group. In the worst case, the number of groups is equal
to N ; this is the case when every atom defines a group and the
complexity will be O(NAM log(M)). Most of the time, how-
ever, a small number of groups will be generated. Thus, for most
cases, G will be a small constant. Accordingly, the complexity
reduces to O(A log(N) + AM log(M)).

If A is the number of processed atoms and G is the number
of groups, a total of A − G vectors are extracted by the vector
set generation algorithm. Most of those vectors are eliminated
since they are longer than a predefined threshold. However, the
order, O(A), is still correct considering G is a small constant.
Whenever a vector is extracted, it is checked to see if it is a du-
plicate of a previously found vector. A range search performed
on the vector set with an error margin of 4EPS at each axis gives
the duplicate vectors if they exist. Since a range search in an oc-
tree has a logarithmic time complexity, the overall complexity
is O(A log(A)).

The complexity of the algorithm for filtering out redundant
vectors is O(V 2) where V is the number of vectors produced
in the vector set generation algorithm. This leads to a worst
case complexity of O(A2), since V can be as much as A − G.
In general, the vector set generation produces much fewer vec-
tors than A2. Accordingly, the runtime performance can be ex-
pected to be reasonable, even though the worst-case complexity
is quadratic.

The algorithm for calculating primitive vector alterna-
tives first sorts the vector list. Sorting has a complexity of
O(V log(V )), where V is the number of vectors. The number
of candidate vectors for a vector triplet, P , is relatively small.
Accordingly, the total number of primitive vector triplets to be
tested is limited to O(P 3). The maximum number of primitive
vector triplets is P × (P − 1) × (P − 2)). Thus, the sorting
of primitive vector sets has a complexity of O(P 3 log(P )).
Therefore, the overall time complexity of the algorithm is
O(V log(V ) + P 3V + P 3 log(P )). Since V can be at most
A−G, the complexity can be rewritten as O(A log(A)+P 3A).

In the clustering algorithm, the groups are sorted first ac-
cording to the number of atoms in their lists. Then, a cluster
is created for every atom in the least crowded group. This op-
eration takes O(G0) time, where Gi represents the number of
atoms belonging to the ith group. After that, every group is
processed concurrently. To process a group, a direction vector is
calculated. Finding the direction vector requires checking every
cluster–atom pair and it can be done in O(G0Gi) time, since
the number of clusters can be as much as G0. Then, an atom
is found for each cluster whose distance to the cluster center is
equal to the direction vector. This operation also has O(G0Gi)

time complexity. The overall time complexity for the clustering
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Table 6
The execution times of the stages of the framework for different materials (execution times are milliseconds)

Material Total # of
points

# of points
to process

Reading
input

Indexing
input

Grouping
algorithm

Extracting
vectors

Filtering out
vectors

Finding primitive
vectors

Clustering Finding space
group

Finding basis
vectors

NaCl 3371 1331 130 0 40 10 0 20 10 141 0
La2O3 3375 2197 140 0 81 10 0 10 30 180 20
Cu3Au 7813 4631 181 20 300 10 10 80 120 71 70
PtS 36396 17598 500 121 12958 20 10 2484 1612 30 741
Al3Ti 41513 20213 571 110 16494 30 0 3204 2083 20 792
Mg 17752 8954 311 30 2333 20 0 2273 641 20 361
CoSn 17107 8979 300 50 2043 10 0 181 340 50 160
αHg 8865 4573 201 20 330 10 0 2053 0 20 0
TlF 46397 22707 621 140 14020 40 20 5729 5147 161 2033
algorithm is O(Gi) + O(
∑G−1

i=1 G0Gi), which is equivalent to
O(G0(A + 1 − G0)). This expression has its maximum value
when G0 = (A + 1)/2. Thus, the worst case complexity is
O(A2). The complexity of the algorithm for finding basis vec-
tors is the same as the complexity of the clustering algorithm.

The space group identification algorithm checks whether a
symmetry operation is supported by a point. This process con-
sists of two parts. The first part involves applying the symmetry
operation and obtaining the translated point. In the second part,
the coordinates of the translated point are checked for an identi-
cal point. The first part has constant time complexity while the
second part has the logarithmic time complexity since it require
a point search. There are 273 space groups to test and the num-
ber of symmetry operations of each space group is constant.
Since the number of test points are also bounded by a constant
value, the complexity of the algorithm for identifying the space
group is O(log(N)). The number of vector sets that are tested in
order to find a vector set for each lattice class is also constant.
The part that finds those vector sets has a constant time com-
plexity. Thus, the complexity of this algorithm can be written
as O(log(N)).

Overall complexity can be found by adding the complexities
of each stage. The overall complexity is

C = O(N) + O
(
N log(N)

) + O
(
A log(N) + AM log(M)

)

+ O(A2 + P 3A) + 2 × O(A2) + O
(
log(N)

)
,

where N represents the number of points in the octree structure,
A represents the number of points to analyze, M represents the
average number of points in the matching volume and P rep-
resents the maximum number of vectors that forms a primitive
vector to test. The expression can be simplified as

C = O
(
N log(N) + AM log(M) + A2 + P 3A

)
.

4.4.2. Dissected execution times for different stages
Table 6 gives the execution times of each stage obtained with

ideal test data. The results obtained with noisy data are similar
to the ones obtained with ideal data. Figures are given in mil-
liseconds.

The first two columns show the number of atom coordinates
in the input data. The first row shows the number of all atoms
in the input data and the second row shows the number of all
atoms that are to be analyzed. The third column shows the time
required to read the input data and the fourth column represent
the time spent indexing the data by using the octree structure.

The fifth column shows the time spent grouping identical
atoms. The grouping algorithm is based on comparing match-
ing volumes in order to determine each atom’s group. For the
materials that are denser in terms of the number of atoms per
volume, the grouping algorithm requires more time.

The most dominant term in the grouping algorithm’s run-
time complexity is O(GAM log(M)), where G represents the
number of groups, A represents the number of atoms to process
and M represents the number of atoms in each atom’s match-
ing volume. Since the volumes of the crystal segments used in
the analysis are equal for every test material, the values in the
first column are roughly proportional to the number of atoms
per volume of each material. Thus, they are proportional to the
M value. As shown in Table 6, materials with high atom count
values also have much higher execution times for the grouping
algorithm. Since there are other factors in the algorithm’s run-
time complexity, the relationship between atom count and exe-
cution time is not quite clear. In general, the grouping process
can be considered sufficiently fast. Nevertheless, this stage is
the most time consuming stage for some cases.

The sixth, seventh and eighth columns show vector opera-
tions, namely extracting vectors, filtering out redundant vectors
and calculating primitive vector alternatives, respectively. The
stage of extracting vectors turns out to be quite fast. The stage
of filtering out redundant vectors is even faster although its
worst-case complexity is higher than that of extracting vec-
tors. In most cases, its runtime is not measurable. The stage of
calculating primitive vector alternatives is the dominant time-
consuming vector operation. Basically, it checks every vector
triplet obtained from the vector set to see if their integer com-
binations could produce all other vectors in that vector set. In
order to reduce the runtime complexity, we limit the number of
vectors that can be used to form a primitive vector alternative.
This reduces execution times to reasonable levels.

The ninth column shows the clustering times. For some ma-
terials, such as αHg, the clustering is quite fast. During the
clustering phase, each atom of the first group defines a clus-
ter. Since the αHg structure has only one group, its clustering is
trivial. The clustering process checks all atoms of the processed
group against each cluster. This is done for every group except
the first one. Since having a lot of groups reduces the number of
clusters, it decreases the processing time. For CoSn, which has
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6 groups, the clustering times are much smaller than those of
other structures. In general, if the number of processed atoms
is high, the clustering time tends to be higher. However, if the
number of groups is high, the clustering time drops signifi-
cantly.

The tenth column shows the processing times for the stage of
identifying the space groups. This stage does not significantly
depend on the input material. The runtime complexity of this
part is logarithmic in the number of atoms. All materials should
have similar processing times but there are some optimizations
that change this situation. Finding one symmetry operation that
is not supported by the crystal structure is enough to conclude
that the crystal structure does not support the space group and
it is unnecessary to check the rest of the symmetry operations.
As the table implies, the materials whose processing times are
higher are generally the higher symmetry structures.

The eleventh column shows the runtime of the stage that
finds basis vectors. Since this part is quite similar to the cluster-
ing, execution times are similar to those of the clustering stage.

For most cases, the dominant time-consuming part is the
grouping stage. The parts for calculating primitive vector alter-
natives and clustering also demand significant processing times
for some input materials. However, it is not possible to gener-
alize time requirements for the algorithms since they depend
significantly on input characteristics. In general, the runtime
performance of the whole analysis is satisfactory: under 30 sec-
onds and accurate for any input data.

The memory requirement of the system is quite reasonable.
The Analyzer program uses under 40 MB of memory with any
input data. The UserInterface program requires about 20 MB of
memory. The VisualizationTool program requires about 10 MB
of memory. Thus, the overall system requires at most 60 MB;
this is quite reasonable with today’s computers.

4.5. The program files

The program archive file contains the source code, a readme
file, executables, a user manual and input test data (organized
in 11 folders and 186 files). The source code is located in the
three directories: Analyzer, UserInterface, and Visualization-
Tool. They contain the following files.

BilKristal-Analyzer

Header Files
--------
Cluster.h, Groups.h, OglEngine.h,
SpaceGroup.h, Structures.h, UserInput.h,
Vectors.h, math_funcs.h

C Source Codes
---------
Cluster.c, Groups.c, OglEngine.c,
SpaceGroup.c, Structures.c, UserInput.c,
Vectors.c, chull.c, math_funcs.c
BilKristal-UserInterface

Header Files
--------
AVForm.h, AddNewBasisVector.h, AnimateForm.h,
Form1.h, NewCPForm.h, NewPriVectForm.h,
OriginSelecter.h, PriVectList.h, ResultForm.h,
ResultForm1.h, RunForm.h, Structures.h,
VTParameters.h, resource.h, stdafx.h

C Source Codes
---------
AVForm.cpp, AddNewBasisVector.cpp,
AnimateForm.cpp, AssemblyInfo.cpp,
Form1.cpp, NewCPForm.cpp, NewPriVectForm.cpp,
OriginSelecter.cpp, PriVectList.cpp,
ResultForm.cpp, ResultForm1.cpp, RunForm.cpp,
VTParameters.cpp, stdafx.cpp

BilKristal-Visualizer

Header Files
--------
IOHandler.h, Materials.h, OglEngine.h,
Structures.h, UserInput.h, math_funcs.h

C Source Codes
---------
IOHandler.c, Materials.c, OglEngine.c,
Structures.c, UserInput.c, chull.c,
math_funcs.c

4.6. Discussion

The results, the performance evaluation and the error analy-
sis show that the proposed framework and the algorithms that
are used in different stages are quite successful. Correct results
are always obtained with ideal data and runtime performances
are good. However, with noisy data some problems are ob-
served. The primitive vectors and the basis vectors produced
with noisy data contain small errors. These errors are in an ac-
ceptable range considering the margin of error in the input data.

The tool is semi-automatic in the sense that it requires in-
put from the user during the analysis. Selection of the primitive
vector sets by the user is based on the order produced by the al-
gorithm for finding primitive vector alternatives. This order is
much better for ideal data than noisy data. Another problem
with noisy data is the possibility of obtaining invalid primi-
tive vector sets. However these invalid primitive vectors do not
cause any significant problem since the user can identify them
quite easily. Finally, the most important problem with noisy
data is the incorrect space group results. During the tests, we
observed this with only the TlF structure. However, this prob-
lem can be avoided by setting the EPS parameter to a low value.

5. Conclusion

The aim of this work is to extract pattern information from
crystal structures by using atomic coordinates. Determining
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pattern information for crystal structures, such as primitive vec-
tors, basis vectors and space group, has great importance in
crystallography, chemistry and material sciences; the physical
behavior of materials are directly related to these crystal pa-
rameters. This work provides a tool that can help scientists to
identify and classify crystal structures. This work also provides
a crystal visualization tool that allows scientists to observe crys-
tal structures in a 3D environment.

Some approaches that are used in other areas such as 3D
shape matching and pattern recognition are adapted to this
problem and some new approaches are devised. There are two
main challenges in proposing the framework. The first chal-
lenge is to obtain accurate results while achieving reasonable
runtime performance. To this end, we make several critical de-
cisions, such as limiting inputs in intermediate stages. We also
propose several computational optimizations. The second chal-
lenge is the handling of erroneous input data. To overcome this
problem, we re-write the algorithm for finding basis vectors and
modify other algorithms.

This framework is tested with several data showing various
characteristics. The test data are generated by using real crystal
parameters, with different error levels. Experimental results and
error analysis show that the framework can give accurate results
even in the presence of reasonable levels of errors. Runtime
performance is also quite satisfactory.

The implemented software can also be used to visualize
crystals. The visualization part presents several features, such
as defining multi-cells, defining cut planes, and animating crys-
tals for 3D visualization.
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