
ARTICLE IN PRESS
0952-1976/$ - se

doi:10.1016/j.en

�Correspond
fax: +90312 26

E-mail addr

gudukbay@cs.b

cetin@ee.bilken
Engineering Applications of Artificial Intelligence 21 (2008) 952–960

www.elsevier.com/locate/engappai
A video-based text and equation editor for LaTeX

Özcan Öksüza, Uǧur Güdükbaya,�, A. Enis C- etinb

aDepartment of Computer Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
bDepartment of Electrical and Electronics Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

Received 29 August 2006; received in revised form 18 July 2007; accepted 7 August 2007

Available online 5 November 2007
Abstract

In this paper we present a video based text and equation editor for LaTeX. The system recognizes what is written onto paper and

generates the LaTeX code. Text and equations are written on a regular paper using a board marker, and a USB camera attached to a

computer is used to capture and record the pen-tip positions in each consecutive image frame. Characters and symbols are represented as

separate finite state machines (FSMs). They are written in an isolated manner and they are recognized on-line using the FSMs. In the last

step, LaTeX code corresponding to recognized characters and symbols is generated.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Pattern recognition; Handwritten character recognition; On-line recognition; Mathematical notation recognition; Mathematical expression

recognition; LaTeX
1. Introduction

In this paper, we present a video based text and equation
editor for LaTeX Lamport (1999). In this system, each
character or symbol is represented as a separate finite state
machine (FSM). The user writes text and equations on a
paper and a camera attached to a computer records the
actions of the user. Written characters are recognized on-
line and the corresponding LaTeX code is generated at the
end of each page.

In our system, the user writes on regular paper or a white
board and a USB camera attached to the computer
captures the image frames while he or she writes text and
equations. We detect the pen-tip positions using the
captured image frames and store them in a linked list.
After the user finishes writing, he or she starts the
recognition and LaTeX code creation procedure. This
procedure is explained in the sequel.
e front matter r 2007 Elsevier Ltd. All rights reserved.

gappai.2007.08.003

ing author. Tel.: +90312 290 13 86;

6 40 47.

esses: oksuz@cs.bilkent.edu.tr (Ö. Öksüz),

ilkent.edu.tr (U. Güdükbay),

t.edu.tr (A.E. C- etin).
First, we convert the picture frame at the end of the
video sequence into a binary image and find the bounding
boxes of each character or symbol. Then, we calculate the
chain codes, from information about changes in direction
of the pen tip, and the region codes, from the position of
the pen tip within the bounding box sub-rectangles. Then
characters and symbols are recognized by feeding the
calculated chain and region codes to the FSM in the
training set. Finally, LaTeX codes corresponding to the
recognized characters and symbols are generated.
The contributions of the paper can be summarized as

follows:
1.
 The main contribution of the paper is a framework for
automatic LaTeX code generation. The proposed
framework uses an on-line character recognition ap-
proach based on a pen-input interface. The interface
uses a standard USB camera and pen and paper to input
user-specified text. The system recognizes the text on-
line based on pen movements and converts it into
LaTeX code automatically. To the best of our knowl-
edge, this is a first attempt to generate LaTeX code
automatically based on hand-written user input. In the
current implementation, the framework requires some
special marks in the input to specify some of the LaTeX

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2007.08.003
mailto:oksuz@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:cetin@ee.bilkent.edu.tr
mailto:cetin@ee.bilkent.edu.tr
mailto:cetin@ee.bilkent.edu.tr


ARTICLE IN PRESS
Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960 953
commands. However, we plan to improve the imple-
mentation so that the LaTeX code is generated directly
from the user input that does not contain any special
marks to specify LaTeX commands.
2.
 The proposed character recognition algorithm uses both
region and chain codes. Unlike the previous methods
that use Graffitit-like characters, we use the actual
representations of the characters in the English alpha-
bet. In other words, our character set is not a subset of
the alphabet and the user do not need to memorize
artificially created characters to write documents. In the
existing methods, characters are specially chosen so that
their chain codes are guaranteed to be different. That is,
the chain codes are enough to separate and recognize
each character in their character set. However, we are
using regular alphabet characters and some of the
character share the same chain codes. For example,
chain codes of character c is included in chain codes of
character e. In order to differentiate and improve
recognition rate, we propose a new method that
incorporates region codes in addition to chain codes.

The rest of the paper is organized as follows: related
work in the area of handwritten character recognition and
the recognition of handwritten mathematical notation is
presented in Section 2. In Section 3, key features of our
character recognition system are explained. LaTeX code
generation process is explained in Section 4. Conducted
experiments and their results are presented in Section 5.
Finally, Section 6 contains conclusions and suggestions for
future work.
2. Related work on handwriting recognition

Handwriting recognition can be classified into two
categories: on-line and off-line (Plamondon and Srihari,
2000). These differ in the form the data is presented to the
system. In off-line systems, something is written on a
paper; this paper is then digitized and the writing is
decoded (Arica and Yarman-Vural, 2001). In on-line
systems, however, the handwriting is recognized while it
is being produced.

On-line recognition has some advantages over off-line
recognition, mostly related to the increased amount of
information that can be obtained. This is information
about the spatial properties of the stylus, the number of
strokes, their order, the direction of writing for each stroke,
and the speed of writing. Another advantage of on-line
recognition is that there is a close interaction between the
user and the machine. Thus, the user can correct any
recognition error immediately when it occurs. Moreover,
on-line handwriting recognition promises to provide a
dynamic means of communication with computers through
a pen-like stylus, rather than just a keyboard. This seems to
be a more natural way of entering data into computers
(Bunke et al., 1999; Wienecke et al., 2001).
In the literature, many different handwritten character
recognition methods are proposed and implemented. Tang
and Lin (2002) developed a robust stroke-tracing algorithm
for a video-based recognition system for handwritten
Chinese characters. Their algorithm works effectively
against various shadow and noise problems. They accu-
rately extracted the temporal stroke information in a
fashion similar to an on-line OCR system. Wienecke et al.
(2001) proposed a complete recognition system based on
visual input. Acquired images are processed for pen
tracking, then features are extracted and recognition is
performed using hidden-Markov-models.
The trajectory of the pen tip is the essential information

for on-line handwriting recognition. Therefore, the posi-
tion of the pen tip has to be determined in every frame of
the video sequence. In general, special devices are necessary
to obtain the pen trajectories. For example, a laser pointer
is a robust text entry device in changing lighting and
background conditions and it was used by Özer et al.
(2001). A video-based data acquisition approach was
proposed by Munich and Perona (1996); in their method,
ink traces left on the paper while written characters are
extracted automatically using difference images.
The use of FSM in character recognition is investigated

by many researchers. Özer et al. (2001) proposed a vision-
based system for recognizing isolated Graffitit characters.
In their system, recognition is performed by a bank of
FSMs whose input is the chain code of the hand drawn
character. Erdem et al. (2004) extended the work, moving
from isolated Graffitit recognition to continuous Graffitit

recognition. They used a modified version of the Graffitit

alphabet and obtained a word recognition rate of 93%.

2.1. Recognition of handwritten mathematical equations

There are many different approaches to recognition of
handwritten mathematical (Blostein and Grbavec, 1997;
Chan and Yeung, 2000). Some important problems that
should be addressed in recognition of handwritten math-
ematical formulas are (Zanibbi et al., 2002) locating the
mathematical expressions in a document image (Kacem
et al., 2001; Fateman, 1999), recognition of large number of
mathematical symbols that uses many different fonts,
typefaces, and sizes, distinguishing between noise and small
symbols such as periods and commas (Berman and
Fateman, 1994), distinguishing between inline, superscript
and subscript relations (Wang and Faure, 1988) (this is also
related with bad writing habits such as wrong symbol
placement), resolving ambiguous spatial relationships and
symbol identities using contextual analysis (Miller and
Viola, 1998; Zanibbi, 2000) (this is even more difficult in
online recognition systems), and different handwriting
styles for mathematical notation.
The mathematics recognition system described by

Zanibbi et al. (2002) is an offline recognition system that
makes three successive passes over the input and uses tree
transformation approach. They match the mathematical



ARTICLE IN PRESS

Fig. 1. Chain codes. (a) chain codes for different directions, (b) chain

coded representation of character E ¼ 444666000444666000.

Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960954
expressions to tree structures and convert these trees to
LaTeX expressions. Our system, on the other hand, is an
online recognition system that uses pen-tip trajectory for
recognition.

Smithies et al. (1999) presented a system for editing
equations based on handwritten input. They use an on-line
recognition algorithm based on nearest-neighbor classifica-
tion. The systems described in Toyozumi et al. (2001)
and Garain and Chaudhuri (2004) are also examples of
online recognition systems for mathematical expressions.
Toyozumi et al. use Freeman chain code to recognize
strokes and combine several strokes into a character based
on their positions and combinations. Then, they make a
structural analysis by dividing the formula into blocks.
Garain and Chaudhuri uses a two stage approach, namely
symbol recognition and structural analysis. They use online
and offline features together to identify the spatial
relationships among symbols. Fukuda et al. (1999) and
Sakamoto et al. (1998) use directional approaches to
capture writing directions of strokes for character recogni-
tion. Other notable examples of studies on recognition of
mathematical notation are Anderson (1977), Chan and
Yeung (1999, 2000, 2001), Chou (1989); Chang (1970);
Okamoto and Miao (1991); Phillips and Chhabra (1999);
Eto and Suzuki (2001); Kanahori and Suzuki (2001);
Winkler et al. (1995); Faure and Wang (1990); Grbavec
and Blostein (1995).

3. Character recognition system

Our system lets users write on paper as in an off-line
system. However, instead of waiting for a whole page to be
written and then scanned into a computer, a USB Camera
attached to the computer is used to capture a sequence of
the character images while they are being written. Next, the
binary image is obtained using thresholding and the
bounding boxes corresponding to each written character
or symbol are extracted. Then, chain and region codes are
calculated and fed into the FSMs in the training set. The
character or symbol whose FSM generated the smallest
error is given as the recognized result. Finally, LaTeX
codes are generated using the recognition results.

Key features of our character recognition system are
described in following subsections.

3.1. Pen trajectory and chain codes

The trajectory of the pen tip is the essential information
for on-line handwriting recognition. The user writes the
characters using an ordinary black board marker. A blue
band is attached near the pen tip and the position of this
blue band is recorded at each frame of the video sequence.
After the user has finished writing and has started the
recognition process, the pen trajectory points are processed
for chain code extraction. A chain code is a sequence of
numbers between 0 and 7 obtained from the quantized
angle of the pen tip’s point recorded at fixed intervals.
Chain code values for angles and chain coded representa-
tion of the character ‘E’ are shown in Fig. 1.
In our system, each symbol is represented with several

different chain code sequences. For instance, chain code
sequences for the character ‘N’ is shown in Fig. 2. By this
way, our system can handle variations in the writing styles
and different users can adopt to our system easily.
Therefore, users need little training to use the system.
Chain codes show the writing direction for the character

and they are used for character representation and
recognition. One requirement in our system is that each
symbol must be represented with at least two different
chain code values; in other words, each symbol must have
at least two strokes. Since ‘.’ and ‘,’ cannot be represented
with at least two chain code values, we used different
symbols in place of these punctuation marks. We used ‘n’
to represent ‘.’ and we used ‘L’ to represent ‘,’.

3.2. Bounding boxes and their sub-rectangles

When the user starts the character recognition and the
LaTeX code generation routine, all the pen trajectory
points for all the letters written are in the picture frame at
the end of the video sequence. We need to separate the
trajectory points of each letter from the rest of the points.
First of all, the coordinates of the pen trace points are

corrected because there is a gap between the blue band
attached to the pen and the pen tip. Then, the stored
picture frame is converted into a binary image using
thresholding. Next, this binary image is processed to
determine the bounding box of each character or symbol;
this is the minimum rectangle enclosing the written
character or symbol. For each bounding box, we start
from the first point of the linked list holding the pen-tip
trajectory points and test whether this point lies inside that
bounding box or not. If it is not in the bounding box, we
continue to the next point and test again until we find a
point that lies inside it. This first point lying inside of the
bounding box is marked as the ‘entrance’ point. After the
entrance point is marked, we continue testing the rest of
the points in the sequence. The first point lying outside of
the bounding box is marked as the ‘exit’ point. Thus the



ARTICLE IN PRESS

Fig. 2. Chain code sequences for character ‘N’.

Fig. 3. Bounding box sub-rectangles, and their preclassification groups.

(a) group 1 (b) group 2.

Fig. 4. Region coded representation. (a) E ¼ 162263, (b) Z ¼ 103.

Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960 955
points between the entrance and the exit points are the
trajectory points belonging to the character or symbol
inside the current bounding box. In this way, the trajectory
of each written character or symbol is separated from all
the other trajectory points and corresponding chain codes
are generated.

Each symbol is represented by several different chain
code sequences and some symbols cannot be differentiated
just by considering chain codes. For example, if the user
writes ‘N’, the system returns both ‘N’ and ‘L’ as the
recognition outcome only when the chain code values are
used. For that reason, separated pen movement points are
further investigated and their relative positions in the
bounding box are used during the classification period. In
order to use the positional information, each calculated
bounding box is divided into sub-rectangles. Bounding
boxes for character group 1 (A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, b, d, f, g, h, j,
k, l, p, q, y, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (, ), [, ], {, },

p
,
P

,
Q
,R

, D, l, Y, g, d, b, O, F) are divided into 9 different sub-
rectangles, and bounding boxes for character group 2 (a, c,
e, i, m, n, o, r, s, u, v, w, x, z, *, +, /, o, 4, ¼ , ‘.’, ‘,’, n, p,
y, a, �, s, ^) are divided into five sub-rectangles, as shown in
Fig. 3. Then a region-coded representation of each
character is determined such that each separate character
stroke is described with the minimum number of bounding
sub-rectangles, as shown in Fig. 4. If one stroke cannot be
bounded within one sub-rectangle, sub-rectangles are
merged until the stroke is bounded. Therefore each
character is assessed using both chain and region codes.
Consequently, if the user writes ‘N’, the system uses both
chain and region code values to identify it only as ‘N’.

3.3. Finite state machines

The recognition system uses FSMs corresponding to
individual characters and symbols. FSMs for new char-
acters or symbols are easily defined and added to the
system. As an example, we will create the FSM of the
character ‘N’. From different writing styles of ‘N’ (see
Fig. 2), we see that the first stroke of the letter follows
direction 1 or 2 of the chain code and it is completely
bounded by the subrectangle 4, as shown in Fig. 5(a).
Therefore the state of the first stroke is ‘‘C ¼ 1; 2þR ¼ 4’’
where ‘C’ represents the chain code and ‘R’ represents the
region code. For the second stroke, we see that it follows
direction 7 of the chain code and its minimum bounding
subrectangle is the whole bounding box which is repre-
sented by subrectangle 0, as shown in Fig. 5(b). So, the
state for the second stroke is ‘‘C ¼ 7þR ¼ 0’’. The chain
code of the last stroke is the same as the first one, namely 1
or 2. However, the region code is 5 for that stroke, as
shown in Fig. 5(c). Therefore, the state of the last stroke is
‘‘C ¼ 1; 2þR ¼ 5’’. The FSM for the character ‘N’ is
shown in Fig. 6(a). Similarly Fig. 6(b) shows the FSM
corresponding to ‘

P
’.

Separated chain codes and calculated region codes are
inputs to the FSMs in the training set. The weighted sum of
the error from each state determines the final error for a
character in the recognition process. The FSM generating
the minimum error identifies the recognized character or
symbol.
An example of how FSMs work in our system follows.

When the 23222217771112 chain code and the
44444440005555 region code are applied as an input to
N’s machine, the first elements, chain 2 and region 4, are
correct values at the FSM’s starting state. Therefore, the



ARTICLE IN PRESS

Fig. 5. Individual states of ‘N’, where C ¼ Chain Code, R ¼ Region Code. (a) C ¼ 1; 2þR ¼ 4, (b) C ¼ 7þR ¼ 0, (c) C ¼ 1; 2þR ¼ 5.

Fig. 6. Finite state machines of (a) N and (b)
P

, where C ¼ Chain Code,

R ¼ Region Code.

Fig. 7. The character recognition algorithm.

Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960956
FSM is started with error count 0. The second element,
chain 3, generates an error and the error counter is set to 1.
The FSM remains in the first state for the other 2s of the
chain and the 4s of the region code values. It remains in the
same state with the subsequent 1 since 1 and 2 are the
inputs of the machine’s first state for N. Input of chain
code 7 and region code 0 makes the FSM go to the next
state, and the subsequent chain codes of three 7s and
region codes of three 0s make the machine remain in that
state. Whenever the chain code becomes 1 and the region
code becomes 5, the FSM moves to the final state. The rest
of the input data, chain codes 1 and 2 with region code 5,
makes the machine stay in the final state; and when the
input is finished, the FSM terminates. For this input
sequence, the machine’s error for character N is 1.
However, the other FSMs generate either greater or infinite
error values for this input.
3.4. Steps of the character recognition algorithm

While characters are being written in each frame, the
position of the blue band attached to the pen tip is stored in



ARTICLE IN PRESS

Fig. 8. Recognized text window. (a) generated LaTeX codes, (b) detailed

information about the current recognition process, (c) recognition errors

associated with each character.

Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960 957
a linked list. After characters are written, the last image of
the video is converted into a binary image using thresh-
olding. Then the character recognition algorithm is applied
to the binary image. The algorithm is given as pseudo-code
in Fig. 7. The overall recognition and LaTeX code creation
takes an average of 0.3 seconds in our test PC.

4. LaTeX code generation

The last step in our system is the generation of LaTeX
codes corresponding to the recognized characters. Our
LaTeX code generation routine is based on assigning
character combinations to LaTeX keywords. A limited
number of character combinations are used and some of
the character combinations have different effects in
different environments. The following LaTeX environ-
ments are supported: array construction, citation, section,
itemization, equation and normal text environment Lamport
(1999). Character combinations and corresponding LaTeX
codes are shown in Table 1.

To create an array, the user first writes ‘‘oa’’ to indicate
the start of the array. Then he writes the column value;
next, he writes ‘‘,’’ to separate each column of array. In
order to move to the next row of the array, he writes ‘‘n’’.
Finally, to exit from array creation mode, the user writes
‘‘4a’’. Other supported modes are created in a similar
manner and keywords for other modes are shown in
Table 1.

When all the recognized characters are in hand, words
and character combinations, which are separated from
each other by a space character, are stored in an array.
Then each array entry is processed sequentially. First, the
array entry is compared with the first column values of
Table 1. If the entry matches one of the column values, the
corresponding LaTeX code is written in the place of the
entry and the next entry is processed. If there is no match,
the entry is compared with

R
,
P

,
Q
; if they match, we

search the array to find their lower and upper bounds and
Table 1

Character groups and corresponding LaTeX codes

Characters LaTeX code

oa begin{array}

, in array mode &
n in array mode nn

4a end{array}

oc ncite{

4c g

oe begin{equation}

4e end{equation}

oi begin{itemize}

nitem

n in itemize mode nitem

4i end{itemize}

os nsection{

4s g
their arguments. If the entry does not also match with
R
,P

, or
Q
, the entry is written as it is.

A dialog box is used to present the recognition results to
the user and to provide some means of changing the text
when required (Fig. 8). It consists of three parts. The
editbox holding the generated LaTeX codes is shown in
Fig. 8(a). In Fig. 8, the currently recognized word is
bounded by a blue rectangle. The user can edit the words in
this area when any recognition error occurs. Fig. 8(b) gives
detailed information about the current recognition process.
The following properties are recorded at each row:
recognized character, bounding rectangle index, index of
chain in which recognition process started (entrance index),
index of chain in which recognition is completed (exit
index) and total length of the chain. Fig. 8(c) shows the
recognition errors associated with each character. In Fig. 8
the character ‘‘Z’’ is recognized with error ¼ 1 and the
character ‘‘e’’ is recognized with error ¼ 2.

5. Experiments

We use an ordinary board marker that is black and we
attach a blue band near its tip to detect pen tip movement
while characters are drawn. We write characters on white
A4 paper or a white board.



ARTICLE IN PRESS
Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960958
We have performed two experiments using two different
USB CCD cameras on a test PC with an AMD Athlon
1400 processor having 768 Mbytes of memory. The tests
and their results are given below. In both tests we used at
least 20 samples for each character and a total of 2170
characters.
�

Fig
Test 1: We used a USB CCD camera that can capture 30
frames per second with 320� 240 pixels. The system
handle only 40 characters per minute due to the
limitations of the USB camera we use. We attain a
92% recognition rate at a writing speed of about 40
characters per minute.

�
 Test 2: We used a USB CCD camera that can capture 30

frames per second with 640� 480 pixels. Due to high
volume of frames available and higher resolution, we
obtained a 93% recognition rate at a writing speed of
about 40 characters per minute.

The main recognition errors were due to inaccurate
writing habits and ambiguity related to similar shaped
characters. Most of the confusion was between character
. 9. The character recognition system at work. The images are ordered in a c
pairs such as ‘e’ and ‘c’, ‘5’ and ‘S’, and ‘u’ and ‘v’. This
could be avoided by using a dictionary to check for
possible character combinations. Contextual knowledge
will help to eliminate the ambiguity. For example, if the
user wrote ‘‘can’’, our system could recognize the first letter
either as ‘e’ or ‘c’ with different error counts. If the error
count for ‘e’ is less than error count for ‘c’, the system
would recognize the written word as ‘‘ean’’. However, if a
dictionary were included, the system could search all the
found character combinations and choose the one in the
dictionary with the smallest error count.
Another type of recognition error arises from using a

blue band to detect the pen-tip position in each image
frame. This blue band may not be visible to the camera at
all times due to the writing habits of the user; thus for some
frames, pen-tip positions may not be detectable. As a
result, the generated chain and region codes may not
represent the written character or symbol and it may be
either recognized as a different character or not recognized
at all. This kind of recognition errors are visible with a
USB CCD camera having low capture rates and they are
mostly eliminated using a better frame grabber with high
olumnwise fashion. (a) written characters, (b) corresponding LaTeX codes.



ARTICLE IN PRESS
Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960 959
capture rates. In addition, this type of errors can be further
eliminated by using high resolution fram graber and/or
detecting pen-tip using difference images Munich and
Perona (1996).

In Fig. 9, some examples of written characters and their
LaTeX codes are given. Each picture in this figure consists
of two columns. The left one is the last frame captured
while characters are being written. The pen movement
points are shown in blue. The right one shows the binary
image with the bounding boxes and pen trace points falling
within each bounding box.
6. Conclusion and future work

In this paper, we present a video based text and equation
editor for LaTeX. In our system, the user writes text
and equations on paper and a camera attached to a
computer records the actions of the user. Later, we detect
the pen-tips in each image frame and determine the
bounding boxes of each character. Next, we find the
preliminary classification group of the written characters.
Then, we calculate the chain and the region codes. Finally,
characters are recognized using FSMs and LaTeX codes
are generated.

The experimental results show a 92% correct recognition
rate using a USB CCD camera that has a 320� 240
capture resolution and a 93% correct recognition rate
using a USB CCD camera having a 640� 480 capture
resolution. Mainly there are two kinds of recognition
errors. First kind of recognition errors are due to
inaccurate writing habits and ambiguity arising from
similar shaped characters. Recognition accuracy can be
improved by using a dictionary to check possible character
combinations or by using a pop-up menu for confusing
characters. The presence of contextual knowledge could
help to eliminate the ambiguity. The second kind of
recognition errors are caused by using a blue band to detect
pen-tip position in each frame. This kind of recognition
errors are mostly eliminated using a high-rate frame
grabber and they can be further eliminated by detecting
pen-tip using difference images.

Forcing the user to enter text and equations in a specific
format are the restrictions that limit user flexibility. In
future work, we will remove these restrictions step by step
and give much more space and freedom to the user.
Besides, in order to eliminate some of the recognition
errors and have a better recognition rate, we will detect
pen-tip positions using difference images.
Acknowledgments

This work is partially supported by European Commis-
sion 6th Framework Program with grant number FP6-
507752 (MUSCLE Network of Excellence Project). We
are grateful to Kirsten Ward for proofreading and
suggestions.
References

Anderson, R.H., 1977. Two-dimensional mathematical notations. In: Fu,

K.S. (Ed.), Syntactic Pattern Recognition Applications. Springer,

New York, pp. 147–177.

Arica, N., Yarman-Vural, F.T., 2001. An overview of character

recognition focused on off-line handwriting. IEEE Transactions on

System Man and Cybernetics Part C 31 (2), 216–233.

Berman, B.P., Fateman, R.J., 1994. Optical character recognition for

typeset mathematics. In: Proceedings of the International Symposium

on Symbolic and Algebraic Computation, pp. 348–353.

Blostein, D., Grbavec, A., 1997. Recognition of mathematical notation.

In: Handbook of Character Recognition and Document Image

Analysis. World Scientific, Singapore, pp. 557–582.

Bunke, H., von Siebenthal, T., Yamasaki, T., Schenkel, M., 1999. Online

handwriting data acquisition using a video camera. In: Proceedings of

International Conference on Document Analysis and Recognition,

pp. 573–576.

Chan, K., Yeung, D., 2000. Mathematical expression recognition: a

survey. International Journal Document Analysis and Recognition 3

(1), 3–15.

Chan, K.-F., Yeung, D.-Y., 1999. Recognizing on-line handwritten al-

phanumeric characters through flexible structural matching. Pattern

Recognition 32, 1099–1114.

Chan, K.-F., Yeung, D.-Y., 2000. An efficient syntactic approach to

structural analysis of on-line handwritten mathematical expressions.

Pattern Recognition 33, 375–384.

Chan, K.-F., Yeung, D.-Y., 2001. Error detection error correction and

performance evaluation in on-line mathematical expression recogni-

tion. Pattern Recognition 34, 1671–1684.

Chang, S., 1970. A method for the structural analysis of two-dimensional

mathematical expressions. Information Sciences 2, 253–272.

Chou, P.A., 1989. Recognition of equations using a two-dimensional

stochastic context-free grammar. Visual Communication and Image

Processing IV, 852–863.

Erdem, İ.A., Erdem, M.E., Atalay, V., C- etin, A.E., 2004. Vision-based

continuous graffiti-like text entry system. Optical Engineering 43 (3),

553–558.

Eto, Y., Suzuki, M., 2001. Mathematical formula recognition using virtual

link network. In: Proceedings of the Sixth International Conference on

Document Analysis and Recognition, pp. 762–767.

Fateman, R.J., 1999. How to find mathematics on a scanned page.

Proceedings of SPIE 3967, 98–109.

Faure, C., Wang, Z.X., 1990. Automatic perception of the structure of

handwritten mathematical expressions. In: Plamondon, R., Leedham,

C.G. (Eds.), Computer Processing of Handwriting. World Scientific,

Singapore, pp. 337–361.

Fukuda, R., Tamari, S.I.F., Ming, X., Suzuki, M., 1999. A technique of

mathematical expression structure analysis for the hand-writing input

system. In: Proceedings of the Fifth International Conference on

Document Analysis and Recognition, pp. 131–134.

Garain, U., Chaudhuri, B.B., 2004. Recognition of online handwritten

mathematical expressions. IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics 34 (6), 2366–2376.

Grbavec, A., Blostein, D., 1995. Mathematics recognition using graph

rewriting. In: Proceedings of the Third International Conference on

Document Analysis and Recognition, pp. 417–421.

Kacem, A., Belaı̈d, A., Ahmed, M.B., 2001. Automatic extraction of

printed mathematical formulas using fuzzy logic and propagation of

context. International Journal of Document Analysis and Recognition

4 (2), 97–108.

Kanahori, T., Suzuki, M., 2001. A recognition method of matrices by

using variable block pattern elements generating rectangular area. In:

Proceedings of the Fourth International IAPR Workshop Graphics

Recognition, pp. 455–469.

Lamport, L., 1999. LaTeX: A Document Preparation System. Addison-

Wesley, Reading, MA.



ARTICLE IN PRESS
Ö. Öksüz et al. / Engineering Applications of Artificial Intelligence 21 (2008) 952–960960
Miller, E.G., Viola, P.A., 1998. Ambiguity and constraint in mathematical

expression recognition. In: Proceedings of the 15th National Con-

ference on Artificial Intelligence, pp. 784–791.

Munich, M.E., Perona, P., 1996. Visual input for pen-based computers.

Proceedings of the International Conference on Pattern Recognition,

vol. 3, pp. 33–37.

Okamoto, M., Miao, B., 1991. Recognition of mathematical expressions by

using the layout structures of symbols. Proceedings of the First Inter-

national Conference on Document Analysis and Recognition 1, 242–250.

Özer, Ö.F., Özün, O., Tüzel, C.Ö., Atalay, V., C- etin, A.E., 2001. Vision-

based single-stroke character recognition for wearable computing.

IEEE Intelligent Systems 16 (3), 33–37.

Phillips, I., Chhabra, A., 1999. Empirical performance evaluation of

graphics recognition systems. IEEE Transactions on Pattern Analysis

and Machine Intelligence 21 (9), 849–870.

Plamondon, R., Srihari, S.N., 2000. On-Line and off-line handwriting

recognition: a comprehensive survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence 22 (1), 63–84.

Sakamoto, Y., Xie, M., Fukuda, R., Suzuki, M., 1998. On-line recognition

of handwriting mathematical expression via network. Proceedings of

the Third Asian Technology Conference on Mathematics (ATCM),

Tsukuba, Japan.

Smithies, S., Novins, K., Arvo, J., 1999. A handwriting-based equation,

editor. In: Proceedings of Graphics Interface, pp. 84–91.
Tang, X., Lin, F., 2002. Video-based handwritten character recognition.

Proceedings of International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’02), vol. 4, pp. 3748–3751.

Toyozumi, K., Suzuki, T., Mori, K., Suenaga, Y., 2001. A system for real-

time recognition of handwritten mathematical formulas. Proceedings

of International Conference on Document Analysis Recognition

(ICDAR), Seattle, WA, pp. 1059–1063.

Wang, Z.X., Faure, C., 1988. Structural analysis of handwritten

mathematical expressions. In: Proceedings of the Ninth International

Conference on Pattern Recognition, pp. 32–34.

Wienecke, M., Fink, G.A., Sagerer, G., 2001. Video-based on-line

handwriting recognition. In: Proceedings of International Conference

on Document Analysis and Recognition, pp. 226–230.

Winkler, H., Fahrner, H., Lang, M., 1995. A soft decision approach for

structural analysis of handwritten mathematical expressions. In:

Proceedings of the International Conference on Acoustics, Speech

and Signal Processing, pp. 2459–2462.

Zanibbi, R., 2000. Recognition of mathematics notation via computer

using baseline structure. Technical Report, School of Computing,

Queen’s University.

Zanibbi, R., Blostein, D., Cordy, J.R., 2002. Recognizing mathe-

matical expressions using tree transformation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 24 (11),

1455–1467.


	A video-based text and equation editor for LaTeX
	Introduction
	Related work on handwriting recognition
	Recognition of handwritten mathematical equations

	Character recognition system
	Pen trajectory and chain codes
	Bounding boxes and their sub-rectangles
	Finite state machines
	Steps of the character recognition algorithm

	LaTeX code generation
	Experiments
	Conclusion and future work
	Acknowledgments
	References


