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Abstract-<:ontinuous deformable models are generally represented using a grid of control points. The 
elastic properties are then modeled using the interactions between these points. The formulations based on 
elasticity theory express these interactions using stiffness matrices. These matrices store the elastic 
properties of the models and they should be evolved in time according to changing elastic properties of the 
models. However, forming the stiffness matrices at any step of an animation is very difficult and 
sometimes the differential equations that should be solved to produce animation become ill-conditioned. 
Instead of modeling the elasticities using stiffness matrices, the interactions between model points could be 
expressed in terms of external spring forces. In this paper, a spr!ng force formulation for animating 
elastically deformable models is presented. In this formulation, elastic properties of the materials are 
represented as external spring forces as opposed to forming complicated stiffness matrices. !%: 1997 
Elsevier Science Ltd 

I. INTRODUCTION 

An important aspect in realistic animation is model- 
ing the behavior of deformable objects. To simulate 
the behavior of deformable objects, we should 
approximate a continuous model by using discretiza- 
tion methods, such as finite difference and finite 
element methods. For finite difference discretization, 
a deformable object could be approximated by using 
a grid of control points where the points are allowed 
to move in relation to one another. The manner in 
which the points are allowed to move determines the 
properties of the deformable object. Simulating the 
physical properties (such as tension and rigidity), 
static shapes exhibited by a wide range of deformable 
objects (including string, rubber, cloth, paper, and 
flexible metals) can be modeled. For example, to 
obtain the effect of an elastic surface, the grid points 
are connected by springs. The physical quantities, 
such as forces, torques, velocities. accelerations, 
kinetic and potential energies. should be used to 
simulate the dynamics of these objects. 

1.1. Previous work for deformable models 
There are some formulations which employ con- 

tinuous elasticity theory to model the shapes and 
motions of deformable models. The primal [1] and 
hybrid [2] formulations are in this category. In these 
formulations, elastic properties of the materials are 

’ Author for correspondence. 

represented using potential energy functionals and 
stored in niffness matrices. Potential energies of 
deformation are defined using the concepts from 
differential geometry and spline energies. 

There are other approaches to model and animate 
deformable models. Some of these approaches are 
explained in the sequel. 

Witkin el al. formulate a model for nonrigid 
dynamics based on global deformations with rela- 
tively few degrees of freedom [3]. This model is 
restricted to simple linear deformations that can be 
formulated by affine transformations. The use of 
deformations that are linear in the state of the system 
causes the constraint matrices in equations of motion 
to be consta.nt. Hence, pre-inverting these matrices 
yields an enormous benefit in performance. In [4]. 
Pentland and Williams describe the use of modal 
analysis to create simplified dynamic models of 
nonrigid objects. This approach breaks nonrigid 
dynamics down into the sum of independent vibra- 
tion modes. This allows Pentland and Williams to 
achieve a level of control not possible with the 
massed equations normally used in dynamic simula- 
tion. This approach reduces the dimensionality and 
stiffness of the models by discarding high-frequency 

modes. High-frequency modes have no effect on 
linear deformations and rigid body dynamics. Both 
of these melhods achieve large computational sav- 
ings at the expense of limited deformations. 

Another method, based on physics and optimiza- 
tion theory, uses mathematical constraint methods to 
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Fig. 1. Numbering of the grid. 

create realistic animation of flexible models [5]. This 
method of Platt and Barr uses reaction constraints for 
fast computation of collisions of flexible models with 
polygonal models, and augmented Lagrangian con- 
straints for creating animation effects, such as volume 
preserving squashing, and the molding of taffy-like 
substances. To model the flexible objects, the finite 
element method is used in Platt and Barr’s work. 

a physically correct way with prescribed mass 
distributions and elasticities. Metaxas and Terzo- 
poulos also proposed efficient constraint methods for 
connecting the dynamic primitives together to make 
articulated models. 

Thingvold and Cohen [6] define a model of elastic 
and plastic B-spline surfaces which supports both 
animation and design operations. They develop 
‘refinement’ operations for spring and hinge B-spline 
models which are compatible with the physics and 
the mathematics of B-spline models. Their model can 
be viewed as a continuous physical representation of 
a physical model rather than the more standard 
discretized geometry point mass models. The motion 
of their models is controlled by assigning different 
physical properties and kinematic constraints on 
various portions of the surface. 

Gourret et al. [9] simulate deformations between 
objects and the hand of a synthetic human character 
during a grasping process. They use a numerical 
method based on finite element theory which allows 
them to take into account the active forces of the 
fingers on the object and the reactive forces of the 
object on the fingers. Their solution to the grasping 
problem is based on displacement commands instead 
of force commands used in robotics and human 
behavior. The human skin deformations and object 
deformations are modeled in the same way in their 
work. This improves the modeling of contacts 
between them and allows a realistic skin deformation 
of the human fingers. 

In [7], an approach to imposing and solving 
geometric constraints on parameterized models is 
given. This approach is applicable to animation as 
well as model construction. Constraints are ex- 
pressed as energy functions, and constraint satisfac- 
tion is achieved by solving energy minimization 
problems. Although this approach is not as realistic 
as the above three approaches because of the lack of 
physics, it is simple and general. 

Miller [lo] propose a model for animating legless 
figures such as snakes and worms using mass-spring 
systems. Muscle contractions are simulated by 
animating the spring tensions in his work. He also 
includes directional friction due to the surface 

Metaxas and Terzopoulos [8] propose an approach 
for creating dynamic solid models capable of realistic 
physical behaviors starting from common solid 
primitives such as spheres, cylinders, cones, and 
superquadrics. Such primitives can ‘deform’ kinema- 
tically in simple ways. For example, a cylinder 
deforms as its radius (or height) is changed. To gain 
additional modeling power they allow the primitives 
to undergo parameterized global deformations 
(bends, tapers, twists, shears, etc.). Even though 
their models’ kinematic behavior is stylized by the 
particular solid primitives used, the models behave in 
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Fig. 2. Interactions (couplings) between grid points (general 
case). 
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structure in the dynamic model and legless figure Szeliski and Tonnesen [l l] propose a model of 
locomotion results. Although real snakes and worms elastic surfaces based on interacting particle systems. 
have complex internal structures, the simplified model This model has characteristics of both physically- 
proposed in Miller’s work provides an elegant way to based surface models and of particle systems. It can 
simulate the motion dynamics of these creatures. be used to model smooth, elastic, moldable surfaces 
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Fig. 5. Different elastic surfaces, constrained from four corners, fall. 

and it allows for arbitrary interactions and topolo- 
gies. Their model also has the ability to grow new 
particles. This ability gives the model more fluid-like 
properties which extends the range of interactions. 
For example, the surfaces can be joined and cut at 
arbitrary locations. A potential drawback of their 
technique is the lack of precise control over the 
mathematical form of the surfaces. 

Breen et al. [12] propose a physically-based model 
and a simulation methodology, which when used 
together are able to reproduce many of the attributes 
of the characteristic behavior of cloth.- Their model 
utilizes a microscopic particle representation that 
directly treats the mechanical constraints between the 
threads in a woven material rather than a macro- 
scopic continuum approximation. Their simulation 
technique is hybrid, employing force methods for 
gross movement of the cloth and energy methods to 
enforce constraints within the material. Although 
limited only to cloth object behavior in scope, their 
approach is very realistic since a microscopic particle 
representation is utilized. 

There are other physically-based models of flexible 

objects which are concerned only with the static 
shape. Weil [13] propose a geometric approach for 
interpolating surfaces to produce draped ‘cloth’ 
effects. The clothes synthesized with his model 
contain folds and appear very realistic. The cloth is 
assumed to be rectangular, and is represented as a 
grid of three-dimensional coordinates. He uses the 
catenary curves to define the positioning of the 
points along a given thread. 

Feynman [14] described a technique for modeling 
the appearance of cloth. His computational frame- 
work minimizes energy functions defined over a grid 
of points. Feynman derives his functions from the 
theory of elasticity and from the assumption that 
cloth is a flexible shell. 

1.2. Organizutiorl of the paper 

In Section 2, a spring force formulation for 
animating deformable models is explained together 
with its implementation details. In Section 3, some 
simulation results using the spring force formulation 
are given. Section 4 gives conclusions and sugges- 
tions for further research. 
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Fig. 6. Different elastic surfaces, constrained from tie center of mass, fall. 

2. SPRING FORCE FORMULATION FOR DEFORMABLE 
MODELS 

In other formulations based on elasticity theory 
(primal [l] and hybrid [2] formulations), the elastic 
properties of the materials are stored in the 
stiffness matrix. However, formation of the stiff- 
ness matrix automatically is very difficult and 
sometimes it becomes impossible to solve the 
differential equations for animating the models 
because of numerical ill-conditioning problems. In 
this section, a new formulation for the animation 
of deformable models, called the spring force 
formulation, is presented. In this formulation, 
instead of forming the stiffness matrix automati- 
cally, elastic properties are represented as external 
spring forces. Although handling the elasticities 
using the stiffness matrix approach is elegant and 
the most suitable way, our approach is more 
effective and very fast. 

The inter-node spacings on the grid are h, = Lb/n, 

h2 = L,/m in the horizontal and vertical directions, 

respectively. Initially, we take h, = h2 = h, for simpli- 
city. 

We can apply external forces to many of the grid 
points at the same time. One type of such external 
force can be the gravitational force. These external 
forces are known. Besides, if some of the grid points 
are constrained to fixed positions in space. then there 
will be some unknown spring (constraint) forces at 
these point>. 

The line segments in the grid (Fig. 1) will 
correspond to the spring elements. According to 
the initial positions of the grid points, there will be 
some spring forces on the model. 

The equations of motion for a deformable model 
can be written in Lagrange’s form as follows (this 
should hold for all grid points): 

I\& + c;x + K(x)x = f(x) (1) 

We can take the elastic force expression as an 
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Fig. 7. A stretchy sheet, constrained from its four corners, falls. 

external force fSPr =K(x)x, and take fSPl to the right diagonal matrix which contains masses of the grid 
hand side of the Equation (1). This new form of the points as diagonal elements, and C is the damping 
equation will simplify the formulation procedure. matrix, an (m + 1) (n + l)x(m + 1) (n + 1) diagonal 

The position vector x for the model points is as matrix which contains dampers of the grid points 
follows (T denotes the transpose of a matrix): as diagonal elements. 

XT = [x:x;. XI] (2) 
Note that Equation (1) can be rewritten as 

where xi represents all the position vectors of the grid 
8 d 

points on the ith row, and 
Mdtzx + C,x = f(x) - f&x) (4) 

In this way, there will be no need for calculating 
.r= 

1 [ 
xrxr . ..XT 1.0 l,l ,,n 1 (3) the entries of the stiffness matrix. Instead of this, it is 

necessary to find the expressions for the column 
where xi,j is the position vector of the grid point (i,j) matrix f& (external spring forces representing 
(i=O,l ,..., m; j=O, l,..., n). In Equation (1) M is elasticities). The spring force vector can also be 
the mass matrix. an (m + 1) (n + l)x(m + 1) (n + 1) partitioned as 
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Fig. 8. A stretchy sheet, constrained from its center of mass. falls. 

fs’pr= [f,Tff-f;] (5) For the grid points not on the boundaries, the 

where the entries in the vector fT = [f ;fof ;fi f,‘,] 
elastic force is calculated by adding the spring forces 

correspond to the spring forces acting at the grid 
applied to t:le grid point by its four neighbors. 

If  i=l? ,-, . .,m- 1 and j= 1,2,. ..lz- 1 then (see 
points. Fig. 2) 

Using the discussion in [15](pp. 3599362), the 
terminal equation of a two-terminal spring compo- 

[ 

XiJ - K-1 

nent of free length ! in three-dimensional space is 
6, = k h,, - xi:i-I) - e ,,xi,, _ x,J~l ,, 

1 
given as 

xiJ - xr- I,/ 

fp = k 
[ 

+ k 
(x, - x2) - !,,;; I:;,, 1 (6) 

[ 
(Xii - Xf-lJ) - e ,IXiJ _ x,m,j,, 1 

where x1 and x1 are the position vectors of its 
+ li Cxi,i - xU+l 1 - e iixiJ _ xi,i+, II 

[ 

(7) 
XiJ - &j+l 1 

terminal points. Note that calculation of the vector xiJ -Xxi+lj 

(x1 -x2) is essential; it also appears in the second term 
of this expression. Equation (6) can be used to obtain 

+ k hJ - x,+u) - e //x,,, _ x,+,,j,, 
[ 1 

expressions for the entries of fspr in Equation (5). For the grid points on the boundaries, three 
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Fig, 9. A piece of cloth collides with an impenetrable ellipsoid 

neighbors have an effect on the elastic force (Fig. 3). 
For the grid points on the corners, only two 
neighbors have an effect on the elastic force (Fig. 
4). The elastic force expressions for the grid points 
on the boundaries and corners can be easily derived 
in a similar way. 

2.1. Implementation of the spring force formulation 

l Since the initial position vectors of the grid points 
are known, the vector fspr can be calculated from 
the external spring force equations. 

l Then by solving the differential equation in 
Equation (4) at the first step, next values of the 
position vectors of the grid points are determined. 

l The next value of the vector & is calculated and 
the process is repeated. 

internal stresses in the system. If h = !, then fspr = 0. 
On the other hand, if hl # h2, then f,,# 0 initially 
(assuming that all the springs have the same lengths). 
We may select the lengths of the horizontal springs 
as !, =h, and the lengths of the vertical springs as 
e2 = hz. In this case, fsPl = 0 initially, and some of the 
P factors will change to e1 and the remaining ones to 
CJ in the external spring force equations. Other 
modifications are also possible; e.g. on the spring 
coefficients (k). 

As initial positions, we have h #e in general. 
Therefore & # 0. In other words, there will be some 

3. SIMULATION EXAMPLES USING SPRING FORCE 
FORMULATION 

In the spring force formulation, by setting the 
stiffness constants to different values it is possible to 
obtain different elastic properties. In Fig. 5, a flat 
surface, which is assigned different elastic properties 
by setting the spring constant k to different values 
and constrained from its four corners, is animated. 
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Fig. 10. A stretchy sheet drops over a toroid 

The surfaces in each part of the figure correspond to 
a different animation of the same surface with 
different elastic properties. Each part of the figure 
shows the surface after a specific number of 
animation frames, which is the same in Fig. 5(a), 
(b), (c). (d) and (e). 

Figure 6 gives the animation frames for the same 
flat surface, which is assigned different elastic 
properties and constrained from its center of mass. 
This figure also shows how objects with different 
elastic properties can be modeled by setting spring 
constants to different values. 

In Fig. 7, a stretchy sheet constrained from its four 
corners falls with the effect of gravity. In Fig. 8, a 
stretchy sheet constrained from its center of mass 
falls. In Fig. 9, a piece of cloth collides with an 
impenetrable obstacle, which is an ellipsoid. In Fig. 
10, a stretchy sheet drops over a toroid. In Fig. 11. 
an elastic surface drops over a toroid with a very 
small hole. In Fig. 12, an elastic surface passes 
through a toroid. 

Any point on a model could be constrained to a 
fixed location in space so that when the model is 
animated, the constrained points remain in their 
initial positions. The constraint forces are taken into 
account in the following way. When a constrained 
point tends to move, an opposite force for bringing it 
back to its original position is calculated and added 

to the total external force for that point. Each 
constrained point has an effect on the total external 
force for all points in the model depending on the 
difference between the body coordinates of the 
points. This coupling effect is taken into account 
automatically according to the elastic properties of 
the models. The constraint force that connects a 
material point u0 on a deformable model to a point 
p0 in space by a spring is 

f,(u. t) = k(p, - X(2@, t))h(u - U”) (8) 

where k is tile spring constant and (5 is the unit delta 
function [l]. 

The forces due to the collision of deformable 
models with impenetrable obstacles are calculated 
using the cbstacle’s implicit (inside-outside) func- 
tion. The obstacle exerts a repulsive force on the 
deformable model which can be calculated as a 
function of the obstacle’s implicit function such that 
the force grows quickly if the model attempts to 
penetrate the obstacle. This is achieved by creating a 
potential energy function c e.~p(,f(x)/;) around each 
obstacle, where .f’ is the obstacle’s implicit function. 
and c and 5 are constants determining the properties 
of the obstacle. The repulsive force due to an 
impenetrabl: obstacle (expressed using the gradient 
V of the pol.ential energy function) is 
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Fig. Il. An elastic surface drops over a toroid with a small hole. 

f,(u, t) = -c((Vf(x)/~)exp(-f(x,/5) . nh (9) 

where n(u.t) is the unit surface normal vector of the 
deformable body’s surface [l]. 

4. PROCESSING TIMES FOR THE SPRING FORCE 
FORMULATION 

The graph in Fig. 13 gives the processing times of 
the animations of the BCzier surfaces of different 
sizes, using the spring force formulation. Times are 
measured on a Sun/Spare Server (Spare Processor). 
The processing times for each frame given in the 
tables include 

l the time for calculating the external forces 
(gravitational, constraint, and collision forces) 
for each model point, 

l the time for calculating elastic forces (which are 
modeled as external spring forces) between model 
points, 

l the time for calculating the 3-D positions of model 
points, and 

l wireframe rendering time of the calculated 
frame. 

Processing times for the models increase almost 
linearly with the number of model points since the 
equations to be solved to calculate the 3-D positions 

of model points contain only diagonal entries and 
can be solved in linear time. 

Calculation of the external forces and elastic 
forces, and wireframe rendering of the calculated 
frames also increase linearly with the number of 
model points. 

Although the proposed spring force formulation 
seems to be a drastic simplification, it provides a 
simple and very fast technique for the animation of 
deformable models. Deformable surfaces containing 
1000 model points can be animated at interactive 
speeds. Since the deformation forces at one point 
effect only the neighbors of that point, the method 
provides a rough simulation model. Therefore, it can 
be used for applications not requiring a very high 
accuracy. 

If  the stiffness matrices had to be formed to model 
elastic properties, the processing times would increase 
quadratically with the number of model points. 

5. CONCLUSION 

A new formulation for animating deformable 
models, called the spring force formulation, is 
presented in this paper. 

5.1. Contributions of the paper 

Contributions of the paper could be summarized 
as follows: 
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Fig. 12. A small elastic surface passes through a toroid. 

l In the spring force formulation that is presented, 
the elastic properties of the materials are repre- 
sented as external spring forces, instead of using 
the stiffness matrix approach. In this way, the 
problem of automatically constructing the stiffness 
matrix is avoided. 

l Since the stiffness matrix is not formed, models 
could be animated faster than the other ap- 
proaches. The linear system of equations that 
should be solved to compute animation frames 
contains only mass and damping values which are 
the diagonal entries. This allows us to use simple 
linear system solving methods. 

l The elastic properties of the materials could be 
given by setting the spring constants to proper 
values. 

l Since the formulation models a deformable object 
using a finite number of grid points, it is possible 
to give different elastic properties to different parts 
of a model. 

5.2. Future research directions 
Future extensions to the research explained in this 

paper could be summarized as follows: 

l The equations of motion proposed for deformable 
models could be modified in such a way that new 
types of constraints will be taken into account by 
using external forces. This approach allows 
modeling and animating articulated bodies con- 
sisting of rigid and nonrigid parts by creating 
complex models from simpler primitives using 
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Fig. 13. Processing times using the spring force formulation. 

point-to-point constraint. Also, other constraints, 
such as point-to-path and orientation, could be 

used to control the motion of the models. 
l The current implementation of deformable models 

allows the animation of a single object. The 
implementation could be improved to animate 
more than one object at the same time. Parallelism 
could be utilized for this in the sense that different 
processors handle the motion of different objects 
and a host processor animate all the objects. 
Collisions of the objects could be detected by the 
host processor to prevent the objects sailing 
through each other. 

REFERENCES 

I. Terzopoulos, D., Platt. J.. Barr, A. H. and Fleischer. 
K.. Elastically deformable models. ACM Conzputer 
Graphics f Proc. SIGGRAPH’87). 1987. 21, 205-214. 

2. Terzopoulos, D. and Fleischer, K.. Modeling inelastic 
deformation: viscoelasticity. plasticity. fracture. ACM 
Computer Graphics (Proc. SIGGRAPHBSI. 1988. 22, 
269-278. 

3. Witkin. A., Gleischer, M. and Welch. W., Interactive 
dynamics. ACM Computer Graphics i Proc. SIG- 
GR.4PH’901, 1990, 24, 1 l-22. 

4. Pentland, A. and Williams, J., Good vibrations: model 
dynamics for graphics and animation. ACM Compurrr 
Graphks ( Pvoc. SIGGRA PH’89). 1989, 23, 2 155212. 

5. Platt. J. and Barr, A. H., Constraint methods for 
flexible models. ,tCM Computer Gruplric~.~ (Proc. 
SIGGRAPHW), 1988, 22, 279-288. 

6. Thingvold, J. A. and Cohen, E., Physical modeling with 
B-spline surfaces for interactive design and animation. 
ACM Computer Graphics (Proc. SIGGRAPH’YU !. 
1990, 24, 1299137. 

7. Witkin, A., Fleischer. K. and Barr. A. H.. Energy 
constraints on parameterized models. ACM Computet 
Graphics (Proc. SIGGRAPH’87). 1987, 21, 225-232. 

8. Metaxas, D. and Terzopoulos. D., Dynamic deforma- 
tion of solid primitives with constraints. .4c’M Compu- 
ter Graphics i Proc SIGGR.4 PH’Y_‘i. 1991. 26, 309% 
312. 

9. Gourret. J.-P., Thalmann. N. M. and Thalmann. D., 
Simulation of object and human skin deformations in a 
grasping task. AC.W Computer Grczpl7ic.r i Prw. SIG- 
GRAPH’89). 1989, 23, ‘t-30. 

IO. Miller. G. S. P.. The motion dynamics of snakes and 
worms. .4CM Computer Graphicx i Proc. SIG- 
GRAPHXSI, 1988, 22, 169-178. 

I I. Szeliski, R. and Tonnesen. D., Surface modeling with 
oriented particle systems. ACM Computw Graphics 
(Proc. SIGGRAPH’92). 1992. 26, 175%180. 

12. Breen. D. E., House, D. H. and Getto. P. H.. 
Physically-based particle model of woven cloth. The 
b”i.wd Computer. 1992. 8, 264177. 

13. Weil, J.. The synthesis of cloth objects. .4CM C~nrprrtcr 
Graphics (Proc. SlGGRAPHJh), 1986. 20, 49-54. 

14. Feynman. C. R., Modeling the appearance of cloth. 
Master’s thesis, Department of Electrical Engineering 
and Computer Science. MIT. Cambridge. MA. 1986. 

15. Tokad, Y ., Analysis qf’ Engineering System-Purr III. 
Bilkent University. Ankara. Turkey. 1990. 


