
Computers & Graphics 26 (2002) 491–503

Technical Section

Visualizer: a mesh visualization system using view-dependent
refinement

U$gur G .ud .ukbaya,*, Okan Arıkanb, B .ulent .Ozg .u-c
a

aDepartment of Computer Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey
bComputer Science Division, Department of Electrical Engineering and Computer Science, University of California,

387 Soda Hall 1776, Berkeley, CA 94720-1776, USA

Abstract

Arbitrary triangle mesh is a collection of 3D triangles without any shape or boundary restrictions. Progressive mesh

(PM) is a multiresolution representation that defines continuous level of detail approximations for arbitrary triangle

meshes. PM representation of a mesh can be processed to obtain a mesh approximation between the original and the

base (simplified) mesh. Furthermore, PM can be refined in a view-dependent fashion to obtain a simpler mesh within a

perceptual image quality. In this paper, we introduce an adaptation and improvements in our implementation for view-

dependent refinement of progressive meshes. Essentially, we use a similar approach to Hoppe’s framework (ACM

Comput. Graphics, Proceedings of SIGGRAPH’97, August 1997, pp. 189–198) for view-dependent refinement with a

different algorithm for constructing PM representation. Our method is simple to implement and fast enough to achieve

interactive frame rates for moderately complex models (models containing hundreds of thousands of polygons) on a

machine with polygon rendering hardware. Moreover, our implementation allows changes to topology and achieves a

simpler and sometimes more realistic refinements. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: View-dependent refinement; Multiresolution modeling; Progressive mesh; Mesh visualization

1. Introduction

Models in computer graphics are usually created using

3D scanners or manually. 3D models are usually

converted into a polygon mesh, which is just a collection

of planar polygons (generally triangles) that are used to

approximate the surface. Linear structure of polygons

make them especially suitable for visualization and

processing to be done on the geometry. Since polygon

rendering is usually implemented at hardware level, it is

faster when compared to rendering other kinds of

surfaces.

Sometimes, only one mesh representation of a model

can bring unnecessary processing burden to the ren-

derer. If the model to render is too far away from the

camera and covers only a couple of pixels on the screen,

a much coarser representation can be substituted for

performance. Using multiple representations of the same

model with different detail levels at different contexts is

a common practice called multiresolution modeling [1].

However, switching between multiresolution models can

create visual artifacts on continuous scenes. Moreover,

this technique requires a lot of memory for mesh

storage.

To obtain multiresolution representations of the

models, mesh simplification algorithms could be used.

The formal definition of mesh simplification is decreas-

ing the number of vertices and faces without compro-

mising much from the overall geometry. There are many

mesh simplification algorithms proposed. The simplifi-

cation algorithms are based on vertex decimation [2,3],

vertex clustering [4], iterative edge contraction [5–7],

and sampling and re-tiling [8]. A comparative survey of

mesh simplification algorithms can be found in [9].

Among these, algorithms based on iterative edge

contraction are more popular and produce good quality

*Corresponding author.

E-mail address: gudukbay@cs.bilkent.edu.tr

(U. G .ud .ukbay).

0097-8493/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 7 - 8 4 9 3 (0 2) 0 0 0 9 1 - 2

approximations. These algorithms produce a simpler

mesh by continuously selecting an edge and collapsing it

to a vertex. At each step, the faces and vertices adjacent

to the selected edge is removed from the mesh, a new

vertex is inserted and connectivity information is

updated accordingly (Fig. 1). We can undo the process

by replacing the newborn vertex with the removed edge

by an operation called vertex split. Thus, if the edge to

be decimated is an interior edge (has two adjacent faces),

at each step, we delete 2 faces and 1 vertex.

A polygon mesh in the rendering pipeline can also

suffer from unnecessary processing. Some parts of the

mesh can lie outside the viewing frustum or look away

from the viewer. Therefore, these parts do not con-

tribute to the final image (Fig. 2). Besides, some parts of

the mesh can be closer to the camera than others,

needing to be more detailed.

1.1. Previous work

Progressive mesh (PM) representation of a mesh is

defined to be a base (simple) mesh and a series of vertex

split operations which, when applied in order, lead to

the original mesh [10]. These vertex split operations can

be performed in a selective manner to obtain the view-

dependent refinement of a mesh in which the detail level

is dynamically controlled. In this way, a version of the

mesh, which is more detailed only on the parts the

viewer pays attention, can be obtained. Moreover, this

refinement can be done quite fast. In other words, for

dynamic view-dependent visualization of complex poly-

gonal environments, selective refinement algorithms are

proposed that can simplify certain parts relatively more

than the remaining parts to capture a perceptual quality.

Xia and Varshney [11] use edge collapse and vertex

split transformations to create a simplification hierarchy

allowing real-time selective refinement. They construct a

merge tree in a preprocessing step. They constrain the

merge tree hierarchy to a set of levels with non-

overlapping transformations and store additional de-

pendencies together with the hierarchy to enforce the

constraints. Although the main reason for using the

dependencies is to prevent folding artifacts, these

dependencies also constrain the refinement process,

Vertex split

Edge collapse

Fig. 1. Edge decimation.

Fig. 2. A general model with some parts outside the view which causes redundant processing.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503492

limiting the degree of drastic simplification. The method

only allows gradual changes from regions of high

refinement to those of low refinement.

Luebke and Erikson [12] propose a method called

hierarchical dynamic simplification (HDS) for dynamic

view-dependent simplification. Their method works by

clustering vertices in a hierarchical fashion. It uses a

vertex tree structure and continuously queries the

structure to generate a scene according to the current

viewpoint. The vertex tree structure is constructed in the

preprocessing step. The method works on non-manifold

meshes and may change the topology of the models. An

active list of visible polygons are maintained for

rendering. When the area occupied by a vertex cluster

on the screen is below a user-specified threshold, the

vertices in the cluster are collapsed into a single vertex

and the triangulation is updated accordingly. The

method utilizes frame-to-frame coherence for greater

speed. However, they state that their implementation

runs with adequate speed on small models, containing

no larger than 20,000 triangles. They claim the

optimizations they proposed, which are exploiting

temporal coherence, using visibility information, and

parallelizing the algorithm, increase the speed by almost

two orders of magnitude, but it is still too slow to be

used for complex models in interactive applications.

Hoppe’s framework [13] essentially uses a PM

structure and checks three criteria for view-dependent

refinement as described in the following sections. Since

Hoppe restricts edge collapses to those that preserve the

manifold topology of the mesh, the possible amount of

simplification is limited. We essentially use Hoppe’s

view-dependent framework, but construct the PM

representation using a simplification method that allows

changes to the topology of the mesh. Possible changes to

the topology include joining disconnected parts during

simplification and eliminating the disconnected parts

that are completely outside the viewing frustum.

2. View-dependent refinement framework

In this section we review the techniques that we used

in our view-dependent refinement framework, namely

the simplification algorithm for constructing PM repre-

sentation, PM and selective refinement techniques.

2.1. Simplification by quadric error metrics

In our implementation, we use Garland and Heckbert’s

mesh simplification algorithm [5]. Their method proceeds

by successively collapsing pairs of vertices into one by a

process, called ‘‘vertex pair contraction’’. Since the vertex

pair in question is not required to have an edge in

between, their algorithm is not confined to edges. There-

fore, this method may change the topology of the mesh.

As a result, parts of the mesh can be totally decimated or

two unconnected parts can merge together on meshes

composed of unconnected sub-meshes (see Fig. 3).

2.2. Progressive meshes

One way to obtain a simpler mesh is to apply

successive vertex pair collapse operations. Each vertex

pair collapse operation is characterized by removal of a

vertex pair (note that it is not necessary to have an edge

between these vertices) and associated faces and

introducing a vertex instead (Fig. 1). At each vertex

pair collapse operation, mesh is simplified by 2 faces

(triangles) and 1 vertex in general (in case of a border

edge, only 1 face is deleted). Successive application of

vertex pair collapses yields a simpler mesh

Mn -
pcol1

Mn�1 -
pcol2

Mn�2 -
pcol3

? -
pcolm

M0:

Each vertex pair collapse operation has a so-called

inverse vertex split. Just as applying vertex pair collapses

on original mesh leads to a simpler mesh, applying

vertex split operations on the simple (base) mesh in the

inverse order of their respective vertex pair collapses,

leads to

M0 -
vsplit1

M1 -
vsplit2

M2 -
vsplit3

? -
vsplitm

Mn:

Thus, the base mesh with the vertex split records form

PM representation [10]. PM representation has some

advantages over the conventional meshes. First, con-

tinuous LOD approximations can be built by traversing

and applying the vertex split records in order. The

Fig. 3. Vertex pair contractions leading to polygon merge.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 493

uniform nature of edge collapses applied during the

simplification provides gradual global increase of detail

in the progress. The number of vertex split records

applied determines how detailed or how close to the

original mesh that the resulting LOD representation will

be. In addition, vertex split records do not necessarily be

traversed consecutively. The level of detail can be

concentrated at some parts of the mesh by selecting

the vertex split operations to be performed. By careful

manipulation of data structures, progressive meshes also

provide an efficient compression scheme and progressive

transmission by definition.

2.3. Selective refinement

The structure of PM is essentially represented as a

base mesh and a series of vertex split operations. Some

of these vertex split operations are applied to obtain a

mesh representation with desired detail level. For

example, an intermediate representation between

the original and simplest mesh can be obtained by

applying only first half of the vertex split records in

order.

While rendering a mesh, polygons lying outside the

viewing frustum and those that look away from us do

not contribute to the final image. Thus, they can be

sorted out to increase performance. Moreover, some

parts of a mesh may be much closer to the screen than

others (especially in a terrain flythrough). These close

parts should be represented in more detail.

By selectively applying these vertex split records, we

can increase the level of detail on parts that we want to

see more detailed without visual discontinuities. For

example, dividing the mesh into different parts and

visualizing each part in a different level of detail would

result in a similar view-dependent refinement for terrain

models. However, such methods may create gaps at the

boundaries and lead to unsatisfactory results [14].

The vertex split operations to be performed are

selected by a refinement function and must satisfy

certain preconditions to become legal. As illustrated by

Hoppe’s terms [13], to use a vertex in a vertex split

operation the vertex must be an active vertex and all the

neighboring faces of two yet to be introduced faces must

be active before the vertex split operation. Active

vertices are the vertices that are used in the current

refinement of the mesh. In Fig. 4, the configuration for a

valid vertex split operation is shown. Here, Vs is the

vertex to be split, and ðfn0;y; fn3Þ are the neighboring

faces of two yet to be introduced faces after the vertex

split operation.

The refinement function determines whether a vertex

needs to be split or not by comparing the split record

against three criteria. These can be summarized as

follows [13]:

Viewing frustum: If a vertex with all its descendants in

our vertex hierarchy lie outside the viewing frustum,

then splitting that vertex does not contribute to the final

image. This can easily be done by comparing the sphere

whose center is the vertex and contains all the

descendants in it against six frustum planes. If the

sphere is outside the frustum pyramid, we should not

split.

Surface orientation: If a vertex with all its descendants

in our vertex hierarchy looks away from the eye, then

splitting that vertex does not contribute to the final

image either. This can be computed by constructing a

cone of normals whose central axis is the normal of the

vertex being considered and the cone angle capturing the

deviation in normals of all the descendants.

Screen space error : If a vertex split operation causes

more than a certain deviation when projected on the

screen, then applying the operation causes unexpected

geometry changes on the model [14]. Thus, by dynami-

cally changing the deviation tolerance we can control the

detail level or the maximum error tolerable on the

screen. This criterion also takes the distance to the eye

into account.

Here, one could argue that the view-frustum culling

process eliminates the faces outside the view-frustum

and the back-face culling process eliminates the faces

that look away from the viewer at the earlier stages of

the rendering pipeline. However, these culling processes

will be done much more efficiently, thereby reducing the

graphics load, if a model is represented using lower

levels-of-detail at these parts.

Vs

f

f f

f
n1

n0 n2

n3

f
n0 f

n2

f
n3Vu

Vt

f
n1

vsplit

ecol

Fig. 4. Preconditions for a vertex split to be selected for refinement.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503494

The refine function could be modified to satisfy

different needs. For example, a collision detection

system might want to decrease the number of polygons

to check, increasing the detail level on possibly colliding

parts while keeping the mesh quite coarse on other parts.

3. Our improvements

3.1. Topology compromise

To create the necessary PM representation, we use

simplification by quadric error metrics, which is

essentially a vertex pair collapse method. Since the

method does not necessarily need to have an edge

between the vertex pairs to collapse them, it can merge

or totally decimate unconnected parts of the original

mesh and compromise the topology leading to a more

compact representation. These features become quite

handy for the view-dependent refinement of meshes. For

example, if the mesh is composed of several unconnected

sub-meshes, then those lying outside the viewing frustum

can be totally omitted.1 Since the changes to topology

are allowed in our view-dependent framework, the

models that can be visualized are not restricted to 2-

manifolds. The framework transforms general manifolds

to general manifolds. That’s why it can work on any

arbitrary triangle mesh without going through complex

geometry checks.

Throughout the paper, we will refer to pair collapses

(pcol) instead of edge collapses that are inverse of vertex

splits to avoid ambiguity. In order to accommodate

these pair collapse operations into our PM representa-

tion, we start with the original mesh and traverse our

pcol records in order.

3.2. Inverse traversal

In our implementation, we have taken our PM

representation as the original mesh and a series of pair

collapse operations. As a logical consequence, our view-

dependent refinement framework takes the original

mesh and decreases the detail level where appropriate

instead of taking the simple mesh and increasing the

detail level. Thus, our resulting PM representation takes

more space to store but using it for view-dependent

refinement provides some advantages. First, our traver-

sal method is much simpler to implement as discussed in

the sequel and fast enough to achieve interactive frame

rates, mainly because of the simplicity of the implemen-

tation.

In Hoppe’s view-dependent refinement method [10],

two new vertices are introduced and one is deleted at

each vertex split operation. Thus, the refine function

must iterate over the active vertex list, which contains

the vertices used in the current refinement, and possibly

consider some vertices more than once executing

unnecessary refine functions [13]. In addition, the

traversal function tends to be more complex because it

requires to check the preconditions stated in Section 2.3.

Furthermore, the vertex split and face records need to

hold some additional information for these precondi-

tions. Specifically, Hoppe’s implementation of the vsplit

and ecol transformations requires adjacencies between

elements of the mesh. Thus, for each face, pointers are

stored to its neighboring faces [16]. Our traversal

algorithm can infer the connectivity information from

the configuration before applying an edge (vertex pair)

collapse. That is why it can work on arbitrary triangle

meshes without going through complex checks to

understand the neighborhood formation. For example,

the mesh in Fig. 5 can be handled without any auxiliary

data structures or processing as opposed to the previous

methods. We should mention that for cases where there

is a large reduction of faces due to limited screen space

resolution, coarse-to-fine refinement might be preferable

since adding detail to the coarse mesh is easier. For cases

where the reduction of faces is not so drastic, fine-to-

coarse refinement (inverse traversal) would be preferable

because of the reasons explained.

We sequentially iterate over the vertex pair collapse

records, which can be taught as inverse of vertex splits.

At each step, if the vertices involved in the collapse

operation are active then we execute the refine function

to determine whether the collapse should be done or not.

We delete two vertices and introduce a new one at each

performed pcol operation. Since we start with original

mesh and decrease the detail instead of starting with

simple mesh and adding detail, our refine function is in

fact just the opposite of that mentioned in Section 2.3. It

considers the vertex pairs used in each pcol operation

and returns True for the pairs that should be collapsed.

Fig. 5. A collapse that lacks the necessary neighborhood

formation.

1Popovi!c and Hoppe described ‘‘progressive simplicial

complex’’ representation that achieves better fidelity approx-

imations by allowing changes to the topology of the models

[15]. However, this representation is not used in a view-

dependent framework.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 495

Since we check pcol operations for refinement and the

number of original vertices is too high, we store the

precalculated data for refinement in pcol records. The

pseudo-code for our view-dependent refinement algo-

rithm is given in Fig. 6.

Notice that we do all the edge (vertex pair) collapse

operations in the worst case. Also, we do not check the

neighboring face data. Moreover, since we do not need

to determine which faces the newborn vertices goes into

as in the case of refinement with vertex split operations,

the construction of the final mesh can be done quite fast.

4. Implementation details

In this section, we present the data structures and

some implementation details to perform view-dependent

refinement of PM efficiently. The overall structure of the

system, called Visualizer, is given in Fig. 7.

4.1. Data structures

The data structures are given in Fig. 8. The data

structures are in a Cþþ-like language format and some

details have been omitted for simplicity and clarity.

PM representation of a model is produced as a

preprocessing step and written into a file. When the

Visualizer runs, it reads this file and produces a forest of

binary vertex trees to store the PM representation in a

hierarchic structure. The vertices at the roots of the trees

correspond to the vertices in the simple mesh. Each

vertex split operation denotes a branch in this tree such

that if v1 and vk are the children of vn; then the removal

of edge between them leads to vn: Note that with this

terminology, vertices that are at the leaves of the trees

represent the vertices in the original mesh.

Our PM representation consists of the original mesh

and a series of pair collapse operations. In order to

decrease run-time memory movement and complexity,

we also store the vertices created by pair collapses in our

base mesh and refer to them by indices.

4.2. View-dependent refinement operations

In order to do view-dependent refinement, the

following operations are done. First, the active flags of

all the vertices and faces in the original mesh are marked

(notice that these flags will change during the refine-

ment). Then, the pcol records are sequentially traversed

and the collapse operations that need to be performed

are determined. For the maximum performance, we do

not actually perform the collapse operations on the faces

at the time a pcol record is designated to be executed.

Instead of this, we simply clear the active flags of

decimated vertices and faces and set the active flag of

newborn vertices. Once the vertices and faces that will be

present in the refined mesh are determined, we start

updating the vertices of final faces.

In order to update the face information, a two-phase

referencing scheme is used. In the mesh structure, v field

of a face is used to reference into a vertex reference

(vref) array. Once the final vertices are determined, the

references in our vref array are changed using the

children field, which keeps the vertex hierarchy. With

the vref array, we do not need to do any modification,

except changing the active flags of faces. For example,

if a pcol collapses vertices 1 and 2 into vertex 3, then the

indices at locations 1 and 2 in vref array will be changed

by 3. Of course, vref array should be used to reference

actual vertices at rendering time. Thus, we save a great

Fig. 6. View-dependent refinement algorithm.

Pmesh Mesh Camera Light 1-7

Disk

User

GUI

Parser

World

OpenGL

Fig. 7. Overall structure of Visualizer.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503496

deal of time instead of going to the face record for each

vertex and update the faces that it appears.

5. Results

In this section, still images of view-dependent mesh

visualizations are presented (a set of animated view-

dependent mesh visualizations in different movie for-

mats can be found in [17]).

In these examples, the rectangular areas or pyramids

containing only a part of the models describe position of

the viewing frustum for the phantom camera spawned

by the user. This is done to demonstrate the view-

dependent refinement process. If the user does not

spawn a phantom camera, the refinement process is

Fig. 8. Primary data structures for the PM representation.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 497

done with respect to the normal camera whose image

plane is the whole window.

Fig. 9 shows the effect of viewing frustum culling in

view-dependent refinement. Notice how the parts lying

outside the viewing frustum are rendered at a lower

detail. The original bunny model has approximately

70,000 triangles. The refinement in (a) and (b) has 32,558

triangles, and the one in (c) and (d) has 32,330 triangles.

It should be noted that since only the parts lying outside

the viewing frustum are refined, the resulting mesh

appears to be the same as the original model when

projected onto the screen.

Fig. 10 shows the effect of surface orientation in view-

dependent refinement. Notice how the parts looking

away from the view is refined to a lower detail. This

refinement decreases the number of triangles from

70,000 to 28,949. Notice that the resulting mesh is not

different from the original model when projected onto

the screen (see Fig. 10(a)).

Fig. 11 shows the effect of screen space error tolerance

on the view-dependent refinement. The meshes in (a), (b)

and (c) have 1657, 7385 and 13,292 triangles, respec-

tively. Notice that the silhouette edges are highly

detailed because the screen space error criterion is more

sensitive in these parts.

Fig. 12 demonstrates the operation of Visualizer on

‘‘Happy Buddha’’ model. The original model has about

1,088,000 triangles. Although it takes minutes to load

the PM representation of such a fairly large model to

memory, the user can interactively manipulate the model

without trouble after the loading process is completed.

When a model does not fit into the main memory, the

interaction with the model will be much slower due to

the swapping operations between the main memory and

the disk.

Fig. 13 demonstrates the effect of topology compro-

mise in simplification. The mesh in (a) leads to one in (b)

when simplified by a topology-preserving algorithm

because the mesh consists of four unconnected sub-

meshes. However, our implementation can handle such

non-topology preserving simplifications that lead to the

mesh in (c) without trouble and sometimes achieve a

better refinement. For example, if the input mesh

consists of several unconnected sub-meshes then our

implementation can totally decimate those sub-meshes

that do not contribute to the final image.

6. Performance

In Table 1 statistics for some data sets and interactive

frame rates for the view-dependent refinement of these

data sets are given. Interactive frame rates are the

averages taken during a 10-s period and the numbers of

Fig. 9. Effect of viewing frustum in view-dependent refinement.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503498

Fig. 10. Effect of surface orientation in view-dependent refinement.

Fig. 11. Effect of screen space error tolerance in view-dependent refinement.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 499

faces and vertices in the simplified models are taken as

typical snapshot values during that period. In the

experiments, the view point is selected to see the whole

model and the model is displayed as large as possible to

fit the display window of size 600� 800 pixels. For the

view points where the model covers only a small portion

of the display window, frame rates increase accordingly.

Different view-dependent visualization parameters such

as screen-space error threshold may result in different

frame rates. The values of these parameters are tuned to

achieve a reasonable image quality. The models are

rendered using Gouraud shading with a single active

light source. The experiments are performed on SGI

Octane with 128 MB of memory and 250 MHz MIPS

R10000 processor. The PM representation is constructed

by an offline process, namely the qslim [5] program that

records the vertex pair collapse transformations and a

converter program that writes these records to a file in

Fig. 12. Operation of Visualizer on ‘‘Happy Buddha’’ model.

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503500

Fig. 13. The effect of topology compromise in simplification.

Table 1

Statistics about some data sets and interactive frame rates for the view-dependent visualizations

Data set Original View-dependent Reduction Frames

model refined model ratio ð%Þ per second

No. vertices No. faces No. pcols No. vertices No. faces

Cow 5773 5804 2869 930 1856 28.5 43.9

Boat 12,198 11,534 6015 1416 2412 20.9 27.8

General 24,385 22,262 11,828 2289 3011 13.5 15.3

Flamingo 25,557 25,080 12,671 2142 3822 15.2 15.0

Bunny 70,728 69,451 34,781 3459 4627 6.7 10.3

H. Buddha I 289,210 293,232 144,563 5297 10,626 3.6 2.5

Dragon 874,615 871,414 436,970 6807 13,759 1.6 0.9

H. Buddha II 1,087,123 1,087,716 543,471 7340 16,494 1.5 0.7

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 501

our system’s PM format. This process is performed on a

machine with larger main memory for very large models.

When the program runs, the PM representation is

loaded into memory in a few seconds for small models

(models containing up to a hundred thousand faces) and

a few minutes for very large models (models containing

a million faces). PM construction, which is an offline

process, takes several hours for Happy Buddha model

containing 1,087,716 faces.

The results in Table 1 show that our view-dependent

refinement implementation is fast enough to be used

with moderately complex models in interactive applica-

tions. Since different hardware is used, a direct

performance comparison with the results presented in

the most notable work of Hoppe [13] would be

misleading. Hoppe used an SGI Indigo2 Extreme

ð150 MHz R4400 with 128 MB of memory) for his

experiments. However, the interactive frame rates for

the experiments we performed are comparable to those

presented in [13]. For example, Hoppe’s implementation

achieved 14.7 frames per second (fps) for the teapot

model (original model has 10,000 faces and simplified

version has 1782 faces). Our implementation achieved

27:8 fps for a boat model of similar size (original model

has 11,534 faces and simplified model has 2412 faces).

For the bunny model, Hoppe’s implementation achieved

an interactive frame rate of 6:7 fps (original model has

69,473 faces and simplified version has 10,528 faces)

whereas our implementation achieved 10:30 fps (original

model has 69,451 faces and simplified version has 4627

faces). For a larger terrain model (Grand Canyon with

400,000 faces), his implementation achieves a frame rate

of 7:2 fps: Approximately 9000 faces are displayed at

each frame. As a comparable model, we experimented

with a simplified version of Happy Buddha model (the

model has 293,232 faces) and achieved a frame rate of

2:5 fps: It should be noted that the simplified version

that is rendered in our experiment has 10,626 faces.

Hoppe’s implementation achieves better frame rates for

larger models. The reason for this performance differ-

ence for larger models is that his implementation utilizes

frame-to-frame coherence and amortization, and uses

generalized triangle strips for rendering. Frame rates of

our implementation could be increased by utilizing

frame-to-frame coherence and amortization, and by

using generalized triangle strips for rendering, as

described in [13]. Besides, since we store the original

model and pair collapse transformations for the

progressive mesh representation, the memory require-

ment of our implementation is high and disk swapping

operations degrades the performance for larger models.

We also would like to emphasize that although we

achieved comparable results with Hoppe’s implementa-

tion for small or moderately complex models, the main

difference between his implementation and ours is that

our implementation allows topological changes to the

models during view-dependent simplification because of

the nature of the simplification algorithm that we used

to construct the PM representation. This is a desirable

property when visualizing complex models composed of

a number of unconnected parts. These unconnected

parts may be joined during simplification, which

produces more compact and realistic simplified models.

If we examine the face reduction ratios for different

models in Table 1, the number of faces has been

decreased to 28.5% compared to the original model for

the smallest model that we tested (cow model). However,

this ratio is approximately 1.5% for the largest model we

tested (Happy Buddha). The reduction ratio depends on

refinement parameters, like screen-space error threshold.

For cases where there is a large reduction of faces due to

limited screen space resolution, coarse-to-fine refinement

might be preferable.

Regarding the space consumption of our view-

dependent refinement framework, since the original

mesh and the vertex pair collapse records for the PM

representation should be loaded to the memory before a

view-dependent visualization begins, the memory re-

quirements can be high.

7. Summary and future work

We described and implemented a framework for

efficient implementation of view-dependent refinement

of PM. The implementation is simple and fast enough to

achieve interactive frame rates for moderately complex

models. Moreover, its ability to work on non-edge

collapses makes it especially suitable for refinement of

models composed of unconnected parts. Since the

implementation allows changes to the topology of the

models and it is not confined into manifold surfaces,

some parts of the mesh can disappear or merge to the

other parts throughout the refinement process. How-

ever, although the pcol structure that is used to keep

vertex pair collapse records is simple and short, the

implementation requires more space since the original

mesh is stored along with pcol records.

The future work categories may include:

(1) Utilizing frame-to-frame coherence and amortiza-

tion: Frame rates could be increased by utilizing

frame-to-frame coherence and amortization (tra-

versing only a fraction of vertices for a frame), and

by using generalized triangle strips for rendering.

(2) Refinement of moving objects : Since eye is naturally

less sensitive to the moving parts of a mesh,

refinement function can also take the motion into

account and decrease the level of detail in propor-

tion with the speed.

(3) PM representations of regular meshes : So far, all

the work on PM confined into triangle irregular

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503502

networks (TIN). However, a suitable PM repre-

sentation for regular meshes can also be developed.

Such a representation will decrease the memory

requirements for landscape visualization applica-

tions drastically.

(4) Mapping on PM: Efficient implementation of

texture or bump mapping on PM can be developed.

Because of the continuous structure of PM

representation, mapping on PMs become tricky to

implement.

(5) Solution to popping problem : Real-time view-

dependent refinement of a progressive mesh can

introduce some visual artifacts when the model is

too close. Since we either do or not do a collapse,

some parts of the mesh may appear to pop. This

problem can be solved by introducing a weight

between 0 and 1 with each collapse. A weight 0

means that a collapse should not be done and 1

means that the collapse should be done completely.

The intermediate values can be used to interpolate

the distance of the collapsing vertices. In order to

incorporate this, refine function should be changed

so that it returns this real value for each collapse

instead of a boolean value.

Acknowledgements

We are grateful to Michael Garland for making his

surface simplification program Qslim publicly available.

Bunny, Dragon and Happy Buddha Models are

obtained from Stanford University, Computer Graphics

Laboratory. Other models are obtained from Viewpoint

Data Laboratories. We thank T .urker Yılmaz for his

help in modifying the implementation to measure the

performance. Special thanks to Varol Akman and U$gur

Do$grus .oz for valuable comments. We also would like to

thank the anonymous referees for their valuable com-

ments to improve the paper. Especially, one of the

referees provided some technical insights that were

included in the manuscript. The work in this paper is

supported by an equipment grant from Turkish Scien-

tific and Technical Research Council (T .UB’ITAK) with

grant number EEEAG 198E018.

References

[1] Funkhouser T, Sequin C. Adaptive display algorithm for

interactive frame rates of complex virtual environments.

ACM Computer Graphics, Proceedings of SIG-

GRAPH’93, August 1993. p. 247–54.

[2] Schroeder WJ, Zarge JA, Lorensen WE. Decimation of

triangle meshes. ACM Computer Graphics, Proceedings of

SIGGRAPH’92, Vol. 26, No. 2, July 1992. p. 65–70.

[3] Soucy M, Laurendeau D. Multiresolution surface model-

ing based on hierarchical triangulation. Computer Vision

and Image Understanding 1996;63(1):1–14.

[4] Rossignac JR, Borrel P. Multiresolution 3D approxima-

tions for rendering complex scenes. In: Falcidieno B, Kunii

T, editors. Modeling in computer graphics: methods and

applications, 1993. p. 455–65.

[5] Garland M, Heckbert PS. Surface simplification using

quadric error metrics. ACM Computer Graphics, Proceed-

ings of SIGGRAPH’96, August 1996. p. 209–16.

[6] Gueziec A. Surface simplification with variable tolerance.

In: Second Annual International Symposium on Medical

Robotics and Computer Assisted Surgery (MRCAS’95),

November 1995. p. 132–9.

[7] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle

W. Mesh optimization. ACM Computer Graphics, Pro-

ceedings of SIGGRAPH’93, August 1993. p. 19–26.

[8] Turk G. Re-tiling polygonal surfaces. ACM Computer

Graphics, Proceedings of SIGGRAPH’92, July 1992.

p. 55–64.

[9] Cignoni P, Montani C, Scopigno R. A comparison of

mesh simplification algorithms. Computers & Graphics

1998;22(1):37–54.

[10] Hoppe H. Progressive meshes. ACM Computer Graphics,

Proceedings of SIGGRAPH’96, August 1996. p. 99–108.

[11] Xia J, Varsney A. Dynamic view-dependent simplification

of polygonal models. Proceedings of Visualization’96,

1996. p. 327–34.

[12] Luebke D, Erikson C. View-dependent simplification of

arbitrary polygonal environments. ACM Computer

Graphics, Proceedings of SIGGRAPH’97, August 1997.

p. 199–208.

[13] Hoppe H. View-dependent refinement of progressive

meshes. ACM Computer Graphics, Proceedings of SIG-

GRAPH’97, August 1997. p. 189–98.

[14] Lindstrom P, Koller D, Ribarsky W, Hodges L, Faust N,

Turner G. Real-time continuous level of detail rendering of

height fields. ACM Computer Graphics, Proceedings of

SIGGRAPH’96, August 1996. p. 109–18.

[15] Popovi!c J, Hoppe H. Progressive simplicial complexes.

ACM Computer Graphics, Proceedings of SIG-

GRAPH’97, August 1997. p. 199–208.

[16] Hoppe H. Efficient implementation of progressive meshes.

Computers & Graphics 1998;22(1):27–36.

[17] G .ud .ukbay U. View dependent refinement of polygonal

meshes. http://www.cs.bilkent.edu.tr/~gudukbay/view

dependent.html

U. G .ud .ukbay et al. / Computers & Graphics 26 (2002) 491–503 503

http://www.cs.bilkent.edu.tr/~gudukbay/view_dependent.html
http://www.cs.bilkent.edu.tr/~gudukbay/view_dependent.html

	Visualizer: a mesh visualization system using view-dependent refinement
	Introduction
	Previous work

	View-dependent refinement framework
	Simplification by quadric error metrics
	Progressive meshes
	Selective refinement

	Our improvements
	Topology compromise
	Inverse traversal

	Implementation details
	Data structures
	View-dependent refinement operations

	Results
	Performance
	Summary and future work
	Acknowledgements
	References

