

Karagöz: A Hierarchical Modeling and Animation
System for Turkish Shadow Theater
by Ugur Güdükbay & Tolga Abaci

In this paper, we describe a hierarchical modeling
and animation system for the Turkish Shadow
Theater, Karagöz. Using hierarchical modeling,
Karagöz is able to animate characters of the Turkish
Shadow Theater by using model parameters related
to the dierent parts of the body and the
jointparameters between these parts. The system
consists of two parts: the animation editor that is
used as an authoring tool to create keyframe
animations, and the model editor, that is used for
creating the models used in the animations (e.g.
Hacivat and Karagöz). The most important feature
of Karagöz is its ability to support characters with an
arbitrary structure. This is possible since in Karagöz,
hierarchical modeling is implemented in a generic
way, and direct manipulation techniques are used in
the user interface, which eliminate the need for
character-specic control knobs.

The first performances of Karagöz (Karagheus), the
traditional Turkish Shadow Theatre date back to the
16th century. It was one of the most popular forms of
entertainment right up until the cinema replaced it in
the late 1950s [1, 2, 4]. The shadow play is
performed on a translucent screen by manipulating
shadow play characters, like Karagöz and Hacivat,
behind the screen. The characters are manipulated by
using sticks attached to different parts of the
characters. While the characters are manipulated, the
light source behind the screen causes the shadows of
the characters to appear on the screen.

In this paper, we describe a hierarchical modeling

This months Feature
Last month’s reviews
Index of all reviews
Review guidelines

and animation system to simulate the Turkish
Shadow Theater, Karagöz. The system, called
Karagöz, uses hierarchical modeling to construct and
animate two-dimensional articulated characters
containing body parts and joints between these body
parts. Different characters that have different body
parts and joints have different hierarchical structures.
Texture mapping [5] is used for rendering the
characters since different body parts are modeled as
simple two-dimensional polygon meshes and have a
predefined texture that can be mapped to these
polygons as the model animates. To animate the
models, the system uses keyframing based on the
model parameters of the characters. These model
parameters include the positions and orientations of
the characters and the joint angles between different
body parts of the characters. The Karagöz system
consists of two major components:

These model parameters include the positions and
orientations of the characters and the joint angles
between different body parts of the characters. The
Karagöz system consists of two major components:

The animation editor functions as an
authoring tool creating keyframe
animations involving these characters, by
editing the character parameters such as
position and orientation for different
keyframes. These animations can then be
played back by reading the animation
parameters for each keyframe from a file
and interpolating between the keyframes.
The interpolated frames are rendered by
using texture mapping on the characters
appearing on the frame.

The model editor is the component of
the system where new character models
can be created. This component actually
includes another sub component: The
node editor, using which individual nodes
of a hierarchical model are created, by
specifying the geometry and the texture.
The models created by the model editor
can be saved and later used in animations
to be authored in the animation editor.

The integration of two components outlined above
provides a complete and easy-to-use environment,
which allows fast creation of animations. The main

contributions of this paper are solutions to the issues
related to the design and implementation of such a
system, which are twofold:

A generic implementation of
hierarchical modeling The ability to add
new characters to the system requires that
the system provide a generic
implementation of hierarchical modeling,
rather than one in which hardwired
implementations are provided for each
character present in the system.

A powerful and easy-to-use interface is
very important for allowing an artist to
leverage his/her creative capabilities.
However, there is a technically important
side to the user interface of Karagöz as
well. The importance of the user interface
is that by employing direct manipulation
techniques, it becomes the prime means
of integration between the two
components of Karagöz [7]. Such a
well-designed interface helps tie the
components together in a stronger
fashion.

Figure 1

(a) Karagöz hierarchy

(b) Hacivat hierarchy.

In the rest of this paper, we describe how Karagöz, in
its current state, solves the above issues. First, the

generic hierarchical modeling in Karagöz is
examined. In the next section, we have a look at the
user interface components of Karagöz. Then, some
important points and experiences regarding the
implementation of Karagöz are mentioned. The last
section concludes our discussion.

Hierarchical Modeling in Karagöz

Hierarchical modeling is a technique to model and
animate articulated structures consisting of links
connected by joints. Hierarchical modeling
accomplishes this as follows: once simple parts of a
hierarchy are defined as primitives, we combine
these simple parts into more complex hierarchical
(articulated) objects. The main theme of hierarchical
modeling is that a group of parts (aggregate objects)
can be treated just like a primitive object. Any
operation that can be performed on a primitive object
can be applied to aggregate objects too [3].

Since Karagöz requires the ability to support
arbitrary hierarchical models, it needs a data
structure that can represent any hierarchical model. It
can be said that the most suitable data structure for
the representation of a generic hierarchy is an n-way
tree, so Karagöz uses this structure for the
representation of hierarchical models. Since the main
theme of hierarchical modeling is the treatment of
aggregate objects just as in the same way as the
simple objects, a tree suits in very well, due to its
recursive nature.

Each node in the model tree has a primitive object
associated with it. The leaf nodes in the model tree
represent the simplest objects such as arms or legs,
while subtrees of the model tree represent aggregate
objects such as the body, the hip, or even the whole
model. It is important to emphasize the difference
between the simple and the primitive objects. For
example, a close examination of Figure 1 reveals that
a leg is a simple object consisting of a single
primitive object, while the lower body is an
aggregate object that is a combination of the two legs
(that are the child nodes of the lower body node), and
the hip, which is the primitive object associated with
the lower body node. As in this example, the
primitive objects associated with the intermediate
nodes are used as connectives that bring together
various other objects, whether aggregate or simple.
As a result, moving from the bottom of the tree to the

top, the leaf objects and the connectives reduce to the
whole model, following the hierarchical pattern.

The main operation defined on the hierarchical
model tree is drawing. The model is drawn by
traversing the tree from the top to the bottom. During
the traversal, the course of action described in Figure
2 is taken at each node n. Regarding the tree traversal
operation defined in Figure 2, there are two points
that are of interest:

First, as is made explicit in the course of
action given above, the order in which
the child nodes are traversed and the
primitive objects are drawn is important.
If we return to the example of -the lower
body- given above, it is obvious that if
the model is facing right, the left leg
should be rendered first, then the hip
should be rendered, and at last the right
leg should be rendered. As a result, the
order of the child nodes specified within
the tree should not be ignored during the
traversal for drawing, if we want the
resulting image to be the same as the
intended one.

Second, while transformations that are
related to an object represented by a
subtree t rooted at node n are being
applied, the formerly applied
transformations must not be lost. In other
words, the state of the graphics renderer
at the second step of the traversal of the
subtree t must be a combination of the
transformations applied at the nodes on
the path from node n up to the root node
of the model. This property is essential
for being able to treat aggregate objects
in the same way as simple ones, since it
guarantees that the transformations
applied on a node are also in effect
during the rendering of the child nodes of
that node. A similar constraint applies to
the last step, that the undoing of the
transformations results just in the
combination of the previously applied
transformations.

Figure 2:
Pseudocode of the algorithm for traversing the hierarchical model tree.

The hierarchical model renderer of Karagöz provides
operations that can be used to create, manipulate, and
destroy model trees, along with operations that are
used for rendering using OpenGL and general user
interaction. These operations are used by the help of
the user interface components of Karagöz.

Karagöz User Interface

Figure 3:
Karagöz user interface in animation editing mode

As mentioned before, Karagöz consists of the
following two components: The Animation Editor
and The Hierarchy (Model) Editor. In the following

sections, the features provided by these components
are examined in detail.

Hierarchy (Model) Editor
The hierarchy editor facilitates quick creation of
reusable models for animations. When Karagöz
operates in this mode, the main work area behaves as
a model canvas. The construction of an hierarchical
model using the Karagöz Model Editor comprises of
the following actions:

Definition of the primitive objects (parts
of the models) through the node editor.

Declaration of the hierarchical
relationships between the simple /
aggregate objects.

Specification of the relative
transformations between
hierarchically-related simple / aggregate
objects.

Each of these actions is accomplished through the
graphical user interface of the Karagöz Model Editor,
which means that no textual representation is
required. Although due to obvious reasons, the
actions must be logically performed in the order of
the list given above, there is no need to perform the
actions in strictly-separated steps. For example, after
defining a number of primitive objects and declaring
the hierarchical relationships between them, the user
can define other primitive objects and declare other
relationships, and specify the relative transformations
in the very end. However, it is clear that you cannot
specify relative transformations between objects
before they even exist.

Definition of primitive objects is accomplished
through the Node Editor, as mentioned above. The
node editor allows the user to load an image to be
used as the source for the textures. This image should
contain all textures to be used for the model. The
user can then specify on the image the boundary
points for each primitive object. This operation can
be considered analogous to cutting figures from a
piece of paper. As the node definitions are
completed, they appear on the model canvas, as
individual, independent, simple (leaf node) objects.
Nodes that have already been defined can be edited
(without altering the hierarchical relationships

already defined on them) as well, by selecting them
on the model canvas (cf. Figure 4).

Declaration of hierarchical relationships is
performed on the model canvas, on the simple or
aggregate objects that have been defined (cf. Figure
5). After selecting a primitive object a, with the
specific key and mouse button combination, clicking
on a different primitive object b, makes the node
associated with object a, a direct child of the node
associated with primitive object a. Since only
primitive objects can be selected, the following
should be elaborated:

* The case of selecting a simple object is trivial,
since they contain only one primitive object.

Figure 4:
Node Designer Tool
of the Hierarchy
Editor; this tool is
used to create the
parts of an articulated
character by using
textures and polygons
defined by using
mouse.

* The case of selecting an aggregate object is
accomplished through selecting the primitive
(connective) object associated with the root node of
the subtree defining that aggregate object.

Figure 5:
Karagöz user
interface in
hierarchy editing
mode; this part
constructs the
hierarchical
structure by
defining the
parent child
relationships between the parts using mouse and
key combinations.

Specification of the relative transformations is also
performed on the model canvas. Actually, the model

editor deduces the relative transformations between
hierarchically-related objects automatically, from the
state of the objects on the model canvas. The user
interacts with the model, as it appears on the canvas,
by applying transformations such as translation and
rotation on the objects. For each transformation that
can be applied, a key and mouse button combination
exists. For example, for specifying a relative angle
between two hierarchically-related objects, the user
first selects the child object on the model canvas, and
while holding down the appropriate mouse-button
and key combination, rotates the chosen object by
dragging it with the mouse. When the mouse button
is released, the relative angle between the
hierarchically-related objects is determined, from the
state of the objects on the canvas.

Animation Editor
The animation editor has been designed specifically
for very fast creation of professional animations with
little effort. The editor actually functions as an
authoring tool to create keyframe animations. The
keyframes are produced by the user adjusting the
various model parameters, such as orientation and
position. Once the keyframe specification is
completed, the system may play back the animation
by interpolating between the keyframes. It should be
noted that it is possible to incorporate any model that
has been defined through the Model Editor in any
one of the keyframes of an animation.

When Karagöz operates in the animation editor
mode, the main work area functions as the animation
canvas. For creating a new keyframe, the user first
specifies the sequence number for the keyframe.
Then, the models that will appear in the keyframe
will be selected, and the selected models will appear
immediately on the canvas. After this, the user can
directly manipulate the positions, orientations and
postures of the models on the canvas. For example,
for the Hacivat model in Figure 3, the user can click
on one of the legs, and dragging with the mouse,
rotate that leg. It is also possible to rotate or move
the whole object. Since the models are hierarchical,
when a parameter of an aggregate object is changed,
the simpler objects that constitute it will also change
parameters accordingly. For example, when the hip
of the Hacivat model in Figure 3 is rotated, the legs
will also rotate with it. It is important to note that the
animation editor does not allow the user to
manipulate a model in such a way that its integrity is

broken. For example, in the Hacivat model of Figure
3, the user can easily rotate the legs, but he cannot
tear them apart from the rest of the model. If such
actions are intended, the model editor must be used.
However, the changes made in the model editor are
applied globally, so all keyframes will be modified,
which also means that interpolation cannot be
applied in such cases.

It should be noted that all properties of the model
that can be manipulated by the user will be subject to
the interpolation operation. Therefore, it is possible
for a model to simultaneously rotate its parts, change
position, and rotate around itself. The employment of
direct manipulation techniques in the user interface is
the main source of the power of Karagöz. Karagöz
supports virtually any number of different models,
each with virtually an unlimited number of primitive
objects (thus, drawing parameters). If direct
manipulation were not used, we would have to
supply the user with a number of user interface
objects (such as sliders or input-fields) that could
provide the user with a means of indirect
manipulation. For example, for rotating the leg of the
Hacivat model in Figure 3, the user would have to
enter the desired angle (by moving a slider or
entering the angle value in an input-field) till he
could obtain the posture he intended to produce. This
would be a very time-consuming process, and
contradict with the design goals of the Karagöz
animation editor. It is also very difficult to nicely tie
the user interface components and the on-screen
representations of the models. Such an attempt would
very likely result in a limitation in the range of
models that could feasibly be supported, and it would
also decrease the degree of integration between the
two components of Karagöz.

Implementation

Most features of the Karagöz animation system
described in the previous sections have been
implemented using OpenGL [6] and XForms [8]
library, on X workstations.

This section will provide some information on the
fine-points of the implementation and on the
experience obtained. In the current Karagöz
implementation, the OpenGL matrix stack is
employed in the first and the last steps of the
tree-traversal operation described previously. The

current implementation compiles and runs on SGI
workstations and PCs running Linux. Recall that
while the transformations are being done or undone,
the effects of the transformations previously applied
must be preserved. Using the matrix stack, the first
step (applying transformations) of the traversal of a
subtree t rooted at a node n reduces into pushing a
transformation matrix m into the matrix stack. The
pushed matrix stays in the stack until the traversal of
the subtree t is completed, that is, until the last step
of the processing of node n. This ensures that all
subtrees of subtree t (all simpler objects that
constitute the aggregate object described by subtree
t) have the transformations described by matrix m
applied. This is the prime requisite for implementing
hierarchical modeling. When the traversal of subtree
t is completed, the matrix m is popped into the stack.

The fact that OpenGL is solely a "graphics library"
(i.e. very little support is provided for user
interaction) has affected the implementation of direct
manipulation severely. For a quality implementation,
clicks on the primitive objects on the screen must be
captured correctly, that is, boundaries of the
primitive objects should be checked. For a general
implementation of this, the feedback mode of
OpenGL is used. When this mode is used, OpenGL
does not render the objects actually on the screen, but
it returns information on how they would have been
rendered. Using this information, the Karagöz user
interface code determines whether a mouse click is
inside the boundaries of one of the primitive objects.
After this phase, the OpenGL renderer is invoked
once more, this time in rendering mode, for
displaying the objects on the screen.

Actually, the method of capturing the logical mouse
click locations may seem ugly at first, since for each
frame that is to be displayed, the rendering process is
executed twice. However, a closer inspection of the
situation at hand clearly indicates that this is not so
unpleasant, since the objects that are to be rendered
on the screen are fairly simple and two dimensional.
Also, the availability of hardware acceleration for the
rendering process is another relief for us. Figure 6
gives still frames from two different Karagöz
animations. Sample animations can be found at
http://www.cs.bilkent.edu.tr/~gudukbay/karagoz.html.

Conclusions and Future Work
This paper introduced an animation system for
modeling and animating Karagöz, the Turkish
shadow theatre. The system uses hierarchical
modeling to construct and animate two-dimensional
articulated characters containing body parts and
joints between these body parts. Texture mapping is
used for rendering the characters. To animate the
models, we use keyframing based on the model
parameters of the characters. These model
parameters include the positions of some body parts
and the joint angles between different body
parts.After the user defines the keyframes, the system
interpolates these keyframes and displays the
characters by rendering them using texture mapping
to produce animation. The animation system works
as an authoring tool to create keyframe animations
involving these characters by editing the character
parameters for different keyframes.

Figure 6: Still frames from two different shadow plays.

(a) One of the unending conversations Karagöz and
Hacivat.

(b) Celebi is wooing a Zenne.

The animations can be played back by reading the
animation parameters for each keyframe from disk
and then interpolating between the keyframes. The
interpolated frames are rendered using texture
mapping. The most important feature of the system is
its ability to support arbitrary characters. This is
achieved by a combination of a generic hierarchical
model renderer, and a user interface that employs
direct manipulation techniques.

There are possible future extensions to this work.

The real shadow theater is performed by using sticks
attached to different parts of the characters and these
sticks are used to move the parts of the models.
These sticks could be simulated by binding them to
different keyboard/mouse buttons to interactively
animate the models as in the real shadow theater.
This may enable an operator/artist to give live
performances.

Sound-track: Dialogue, sound effects and music are
components that are crucial to Karagöz. Currently,
the software does not include these features, so a
sound-track must be added in the post-production
stage, using a standard sound editor. A music
composer, effects library and dialogue program could
be integrated into the software.

Acknowledgments

The characters used in the animations are scanned
from Hayali Kücükali Shadow Play Collection of the
Turkish National Library and from the book Dünkü
Karagöz by Ugur Göktas, Akademi Kitabevi, 1992.
http://www.cs.bilkent.edu.tr/~gudukbay/home.html

We are grateful to Fatih Erol for implementing an
earlier version of the animation system for shadow
theater and to Nezih Erdogan for valuable comments.

References

[1] And, M., Karagöz - Turkish Shadow Theatre,
Dost Yayinlari, 1975.

[2] Diker, V.G., "The Stock Characters in Karagöz",
http://www.ie.boun.edu.tr/assist/diker/stockchar

[3] Foley, J.D., van Dam, A., Feiner, S.K., Hughes,
J.F., Computer Graphics: Principles and Practice,
Second Edition in C, Addison-Wesley, 1996.

[4] Göktas, U., Dünkü Karagöz, Akademi Kitabevi,
1992 (in Turkish).

[5] Heckbert, P., "Survey of Texture Mapping",
IEEE Computer Graphics and Applications, Vol. 6,
No. 11, pp. 56-67, Nov. 1986.

[6] Neider, J., Davis, T. and Woo, M., OpenGL
Programming Guide, Second edition,

Addison-Wesley, 1997.

[7] Shneiderman, B., "Direct Manipulation: A Step
Beyond Programming Languages", IEEE Computer,
Vol. 16, No. 8, pp. 57-63, 1983.

[8] Zhao, T.C. and Overmars, M., "Forms Library: A
Graphical User Interface Toolkit for X",
http://world.std.com/ xforms/.

