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INTRODUCTION

● Delaunay Triangulation (2D)

● Delaunay Tetrahedralization (3D)

● Constrained Delaunay Triangulation (2D) [2]

● Constrained Delaunay Tetrahedralization (3D)
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APPLICATIONS

● Finite Element Methods

● Ray Tracing accelerators [8]
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MOTIVATION

● Insufficiency of memory

● Need for memory efficient algorithm

● Developed out-of-core divide-and-conquer algorithm
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RELATED WORKS

● Cignoni et al.’s Divide-and-conquer 

Dewall algorithm [3]
○ Not constrained

● Smolik & Skala’s out-of-core algorithm [6]
○ Not constrained
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RELATED WORKS

● Blelloch et al.’s parallel divide-and-

conquer algorithm[1]
○ Not constrained
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TETGEN

● Quality tetrahedral mesh generator [5]

● Constrained Delaunay Tetrahedralization

● Base case of our Divide and Conquer algorithm

● Need to satisfy its requirements, which we will describe shortly
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OUR APPROACH

● Estimating the memory required by TetGen using 

Linear Regression

● Dividing the input mesh into two using CGAL’s clip 

function [7]

● Repairing overlapping vertices and edges

● Recursively calling our algorithm to construct 

tetrahedralization of both sides

● Merging both tetrahedral meshes
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OUR APPROACH
Memory Estimation

Linear regression model generated from 
the below data is 

X: number of vertices

y: expected memory requirement in MB
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OUR APPROACH
Subdivision

● Used CGAL’s clipping routine [7]

● Cut the object from the middle into two

● TetGen requires closed surface

● 2D Triangulation of one side by CGAL

● Copy triangulation to the other side
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OUR APPROACH
Subdivision
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OUR APPROACH
Repairing

● Overlapping vertices

● Overlapping edges

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 12/26



OUR APPROACH
Repairing

● Overlapping edges
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OUR APPROACH
Merging

● Two mesh files are merged into one

● Missing neighbour relations around the cut plane

● Spatial hashing
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OUR APPROACH
Merging
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RESULTS

● Used computer with Intel Xeon E5-2620 2.10 GHz processor and 64 GB of RAM

● Tracked peak physical memory usage using Task Manager
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RESULTS
Runtime and Memory

● Our algorithm used less memory but took more time

● Clipping and repairing take time
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RESULTS
Runtime and Memory

TetGen fails when physical memory and virtual memory exhausted
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RESULTS
Runtime and Memory
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RESULTS
Runtime and Memory
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RESULTS
Quality

● Used aspect ratio measure of TetGen (longest edge / smallest height)

● Ours produced slightly worse tetrahedra
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RESULTS
Quality

● Boundary tetrahedra causing bad quality
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CONCLUSION

● Our method uses less memory than TetGen

● TetGen is faster

● Worst case when cutting plane  coincides input

● Later, cleverer algorithm for plane selection (curved etc.) or subdivision

● Worse quality tetrahedra

● Later, refinement step to increase quality

● Not considering mesh densities

● Later, handling varying mesh densities
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CURRENT WORK

● Subdividing the mesh 

without inserting 

vertices to surface

● Closing open surfaces 

using concave 

decomposition
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CURRENT WORK

● Moving vertices to 2D 

plane

● Applying convex 

decomposition

● Inserting vertices inside 

the object not on the 

surface

● Closing the surface

● Moving back to 3D
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