
Out-of-core constrained Delaunay 
tetrahedralizations for large scenes

Ziya Erkoç1 Aytek Aman1 Uğur Güdükbay1 Hang Si2

1 Department of Computer Engineering, Bilkent University, Ankara 06800 Turkey
2 Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany

NUMGRID 2020



INTRODUCTION

● Delaunay Triangulation (2D)

● Delaunay Tetrahedralization (3D)

● Constrained Delaunay Triangulation (2D) [2]

● Constrained Delaunay Tetrahedralization (3D)

Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si NUMGRID 2020 2/26



APPLICATIONS

● Finite Element Methods

● Ray Tracing accelerators [8]

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 3/26



MOTIVATION

● Insufficiency of memory

● Need for memory efficient algorithm

● Developed out-of-core divide-and-conquer algorithm

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 4/26



RELATED WORKS

● Cignoni et al.’s Divide-and-conquer 

Dewall algorithm [3]
○ Not constrained

● Smolik & Skala’s out-of-core algorithm [6]
○ Not constrained

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 5/26



RELATED WORKS

● Blelloch et al.’s parallel divide-and-

conquer algorithm[1]
○ Not constrained

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 6/26



TETGEN

● Quality tetrahedral mesh generator [5]

● Constrained Delaunay Tetrahedralization

● Base case of our Divide and Conquer algorithm

● Need to satisfy its requirements, which we will describe shortly

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 7/26



OUR APPROACH

● Estimating the memory required by TetGen using 

Linear Regression

● Dividing the input mesh into two using CGAL’s clip 

function [7]

● Repairing overlapping vertices and edges

● Recursively calling our algorithm to construct 

tetrahedralization of both sides

● Merging both tetrahedral meshes

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 8/26



OUR APPROACH
Memory Estimation

Linear regression model generated from 
the below data is 

X: number of vertices

y: expected memory requirement in MB

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 9/26



OUR APPROACH
Subdivision

● Used CGAL’s clipping routine [7]

● Cut the object from the middle into two

● TetGen requires closed surface

● 2D Triangulation of one side by CGAL

● Copy triangulation to the other side

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 10/26



OUR APPROACH
Subdivision

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 11/26



OUR APPROACH
Repairing

● Overlapping vertices

● Overlapping edges

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 12/26



OUR APPROACH
Repairing

● Overlapping edges

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 13/26



OUR APPROACH
Merging

● Two mesh files are merged into one

● Missing neighbour relations around the cut plane

● Spatial hashing

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 14/26



OUR APPROACH
Merging

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 15/26



RESULTS

● Used computer with Intel Xeon E5-2620 2.10 GHz processor and 64 GB of RAM

● Tracked peak physical memory usage using Task Manager

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 16/26



RESULTS
Runtime and Memory

● Our algorithm used less memory but took more time

● Clipping and repairing take time

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 17/26



RESULTS
Runtime and Memory

TetGen fails when physical memory and virtual memory exhausted

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 18/26



RESULTS
Runtime and Memory

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 19/26



RESULTS
Runtime and Memory

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 20/26



RESULTS
Quality

● Used aspect ratio measure of TetGen (longest edge / smallest height)

● Ours produced slightly worse tetrahedra

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 21/24



RESULTS
Quality

● Boundary tetrahedra causing bad quality

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 22/26



CONCLUSION

● Our method uses less memory than TetGen

● TetGen is faster

● Worst case when cutting plane  coincides input

● Later, cleverer algorithm for plane selection (curved etc.) or subdivision

● Worse quality tetrahedra

● Later, refinement step to increase quality

● Not considering mesh densities

● Later, handling varying mesh densities

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 23/26



CURRENT WORK

● Subdividing the mesh 

without inserting 

vertices to surface

● Closing open surfaces 

using concave 

decomposition

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 24/26



CURRENT WORK

● Moving vertices to 2D 

plane

● Applying convex 

decomposition

● Inserting vertices inside 

the object not on the 

surface

● Closing the surface

● Moving back to 3D

NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si 25/26



REFERENCES
[1] Blelloch, G.E., Miller, G.L., Talmor, D.: Developing a practical projection-based parallel Delaunay algorithm. In: Proceedings of 

the Twelfth Annual Symposium on Computational Geometry, SCG ’96, p. 186–195. ACM, New York, NY, USA (1996)

[2] Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1-4), 97–108 (1989)

[3] Cignoni, P., Montani, C., Scopigno, R.: DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed. Computer-

Aided Design 30(5), 333–341 (1998)

[4] Lagae, A., Dutré, P.: Accelerating ray tracing using constrained tetrahedralizations. Computer Graphics Forum 27(4), 1303–

1312 (2008)

[5] Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software 

(TOMS)41(2), 1–36 (2015)

[6] Smolik, M., Skala, V.: Fast Parallel Triangulation Algorithm of Large Data Sets in E2 and E3 for In-Core and Out-Core Memory

Processing. In: Proceedings of the International Conference on Computational Science and Its Applications, ICCSA ’14, pp. 301–

314. Springer (2014)

[7] The CGAL Project: CGAL User and Reference Manual, 5.0.2 ed. (2020). URL https://doc.cgal.org/5.0.2/Manual/packages.html

[8] Woop, S., Schmittler, J., Slusallek, P.: RPU: a programmable ray processing unit for realtime raytracing. ACM Transactions on 

Graphics (TOG)24(3), 434–444 (2005)

26/26NUMGRID 2020Ziya Erkoç, Aytek Aman, Uğur Güdükbay, Hang Si

https://doc.cgal.org/5.0.2/Manual/packages.html

