
www.elsevier.com/locate/mbs

Mathematical Biosciences 209 (2007) 514–527
Mathematical modeling of the malignancy of cancer
using graph evolution

Cigdem Gunduz-Demir *

Department of Computer Engineering, Bilkent University, Ankara TR-06800, Turkey

Received 11 August 2006; received in revised form 8 March 2007; accepted 9 March 2007
Available online 27 March 2007
Abstract

We report a novel computational method based on graph evolution process to model the malignancy of
brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evo-
lution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From
the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade can-
cerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge
between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract
connectivity information including the properties of its connected components in order to analyze the phase
of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate
that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase
properties, which distinguish a tissue type from another.
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1. Introduction

Real-world graphs [1] have been extensively studied to model different phenomena in man-
made [2–4], social [5–9], and biological systems [10–13]. The graphs of man-made systems include
the Internet router graph with routers being the nodes and fiber connections being the edges [2],
the World Wide Web graph with web pages being the nodes and URLs being the edges [3], and the
USA power grid network with generators, transformers, and substations being the nodes and
high-voltage transmission lines being the edges [1]. The graphs of social systems include the Hol-
lywood movie star network with actors being the nodes and co-starring in the same movie being
the edges [1], scientific collaboration network with scientists being the nodes and co-authoring in
the same publication being the edges [5], and the SARS disease spreading network with people
being the nodes and contacts between any two people being the edges [6]. The graphs of biological
systems include the neural network of the worm Caenorhabditis elegans with neurons being the
nodes and neural connections being the edges [1], the protein–protein interaction graph of the
bacteria Saccharomyces cerevisiae with proteins being the nodes and direct physical interactions
being the edges [10], and metabolic graphs of different organisms with substrates being the nodes
and actual metabolic reactions being the edges [11]. Obviously, all these systems are self-organiz-
ing structures and have very different domain and sizes. However, these systems exhibit common
classes of topological properties which are quantified with the definition of graphs.

In this paper, we propose to use graphs to model the malignancy of brain cancer called glioma.
From the photomicrograph of a tissue, we construct a cell-graph by defining nodes as individual
cells within the tissue and generating edges between these nodes depending on the Euclidean dis-
tance between them. The proposed method relies on modeling the changes in the cell distribution
of a tissue that are caused by cancer as well as modeling the degree of these changes. For that, it
employs graph evolution process, which is quantified with the definition of graph phases. In this
work, we gradually increase the connectivity level of a graph such that it evolves from an empty
graph to a connected graph (i.e., from having isolated nodes to having all nodes being connected
to each other) and analyze the phases that the graph passes through during its evolution. Working
with brain tissues of 12 different patients, which are diagnosed as normal, low-grade cancerous
(gliomatous), and high-grade cancerous (gliomatous), we demonstrate that cell-graphs generated
for different types of tissues evolve differently. Moreover, we show that this difference can be used
to differentiate the tissue types, i.e., to distinguish normal, low-grade gliomatous, and high-grade
gliomatous tissues from each other. To the best of our knowledge, this is the first demonstration
of the use of graph evolution process for the purpose of modeling the malignancy of cancer. This
demonstration opens up possibilities to quantitatively model the dynamics of cancer and simulate
its progress using graph evolution.

In our previous studies [14–16], we propose to use cell-graphs for the purpose of cancer diag-
nosis. In those studies, we construct simple [14,15] and weighted [16] graphs from tissues and com-
pute their local and global graph metrics in order to distinguish cancerous tissues (regardless of
their malignancy grades) from non-cancerous ones. As opposed to our previous studies, this work
proposes a novel computational model based on the use of graph evolution process for the pur-
pose of cancer grading. The correct grading of cancer is very important since the selection of treat-
ment largely relies on this grading as well as the malignancy grade is an important predictor for
the survival time of a patient. Nevertheless, there may exist a considerable amount of intra- and
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inter-observer variability in cancer grading [17,18]. Therefore, mathematical modeling provides an
objective measure to help to reduce this variability.

The remaining of the paper is organized as follows: In Section 2, we briefly describe the meth-
odology to generate a cell-graph from a tissue image as well as the details of the connectivity anal-
ysis to determine the phase of the generated cell-graph. In Section 3, we present our experimental
results. We discuss our results and provide a summary of our work and a future perspective for
our research in Section 4.
2. Methodology

2.1. Cell-graph generation

We construct a cell-graph from a tissue image by segmenting the individual cells as nodes and
probabilistically assigning edges between these nodes depending on the Euclidean distance be-
tween the cells.

In cell segmentation, we use a semi-automated method that consists of automated segmentation
followed by manual segmentation. In the automated part, the first step is to distinguish the pixels
of cell nuclei from those of the background. For that, we threshold the pixels of an image; we use
the Otsu method [19] to determine an optimal threshold value. After thresholding, we eliminate
small objects and break narrow strips making use of morphological operators [20]. At the end
of this step, each pixel is identified as a ‘‘cell’’ or ‘‘background’’ pixel. For an exemplary tissue
image (Fig. 1a), Fig. 1b illustrates ‘‘cell’’ and ‘‘background’’ pixels with black and white, respec-
tively. In the second step of the automated part, we segment the individual cells by applying the
watershed algorithm [21]. This algorithm may result in representing an individual cell with multi-
ple points or representing multiple cells with a single point. If such a case occurs, we manually
merge or split such points to obtain the final locations of individual cells. At the end of the manual
segmentation, the centroids of the final locations of cells are considered to be the coordinates of
nodes. Fig. 1c shows the centroids with green1 dots.

After identifying the coordinates of nodes, the next step is to establish edges between these
nodes in order to generate a cell-graph. The cell-graph approach relies on extracting information
about the pairwise cell distances. However, instead of representing all of these distances, it repre-
sents only a group of them by probabilistically deciding the existence of each edge based on the
Euclidean distance between its end points. Using only such representative distances would be
especially important when large number of nodes is used.2 In this work, the probability of assign-
ing an edge between nodes u and v is defined as
1 Fo
2 Ou

than t
P ðu; vÞ ¼ dðu; vÞa ð1Þ

where d(u,v) is the Euclidean distance between the nodes u and v and the edge exponent a is a
model parameter that should be selected smaller than zero. In this work, we prefer this prob-
r interpretation of the references to color in this figure, the reader is referred to the web version of this article.
r experiments show that promising results are obtained by representing <200 of such distances. This is much less
he number of all pairwise distances which is O(N2); in our experiments this number is >11000.



Fig. 1. Steps for the semi-automated cell segmentation: (a) start with the original tissue image, (b) threshold the pixels
of the image and apply morphological operators, and (c) apply the watershed algorithm and if necessary, manually
segment the cells.
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ability function, which is also used in one of our earlier work [15], since it has a single control
parameter so that we could control the graph connectivity by only this single parameter. In this
function, the probability of being an edge between two nodes decays with the increasing Euclid-
ean distance between these two nodes. In our earliest work [14], we also use another probability
function (the Waxman model) that also assigns edges depending on the Euclidean distances be-
tween the nodes. However, the Waxman model has two control parameters. Moreover, it nor-
malizes each Euclidean distance with the largest possible Euclidean distance between any two
nodes. In diagnosis, this normalization yields equally accurate results since the cell distributions
of malignant (regardless of the malignancy grade) and benign tissues are completely different. In
the grading, such normalization may yield similar results for some of the cancerous tissues with
different malignancy grades.

2.2. Connectivity analysis

Our technique relies on the use of graph evolution process to model the malignancy of cancer.
For a tissue, we generate cell-graphs by gradually increasing the graph connectivity and quantify
the characteristics of their evolution by the use of graph phases. In cell-graphs, the connectivity is
determined by two factors: the spatial distribution of nodes (cells) and the edge exponent. As the
cell distribution, which is specific to the tissue, cannot be controlled externally, we use the edge
exponent to control the graph connectivity.



Table 1
Quantitative measures used in the phase analysis of a cell-graph

1. Number of edges
2. Number of connected components
3. Number of isolated nodes
4. Number of trees
5. Number of nodes belonging to trees
6. Number of components with equal number of nodes and edges
7. Number of nodes belonging to components with equal number of nodes and edges
8. Number of components with complex structures
9. Number of nodes belonging to components with complex structures
10. Size of the giant connected component
11. Structural type of the giant connected component
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As the edge exponent increases, the generated cell-graphs evolve and pass through different
phases. These phases correspond to different ranges of connectivity (i.e., number of edges) and
they exhibit different characteristics. For cell-graphs, we define the following phases with different
connectivity levels and characteristics, with N and E being the number of nodes and edges,
respectively:

Phase 1: This phase corresponds to E < N
2
. The components of the generated cell-graphs are

almost surely either isolated nodes or trees or those consisting of equal number of nodes
and edges (containing a cycle).
Phase 2: This phase corresponds to N

2
6 E 6 N log N

2
. When the number of edges exceeds the N/2

threshold, the structure of cell-graphs changes abruptly such that the giant connected
components of these graphs have rather complex structures. The other graph components
are relatively small and tend to melt into the giant component as the edge exponent (i.e.,
number of edges) increases. In this phase, the size of the giant connected component jumps
from �N2/3(when E � N/2) to N/2 (when the threshold is exceeded).
Phase 3: This phase corresponds to E > N log N

2
. In this phase, the cell-graphs almost surely

become connected.

In the definition of these phases, we make use of the edge thresholds for which the graphs start
holding certain properties. As studied by Erdos and Renyi, the structure of random graphs
changes as the number of edges increases [22–24]. Erdos and Renyi show that there exist some
thresholds for graphs to hold certain properties. Among these properties are those that the struc-
ture of the graph suddenly changes and that the graph becomes connected. They prove that these
two properties are hold when the number of edges is equal to N/2 and (N logN)/2, respectively.
Moreover, they show that the size of the giant connected component becomes �N2/3 when the first
property is hold. In this work, we make use of these thresholds to define the phases of cell-graphs
for the purpose of modeling the cancer malignancy. These phases are similar for both random
graphs and cell-graphs. However, as opposed to cell-graphs, the spatial distribution of nodes does
not affect the connectivity of random graphs; with the same number of nodes, the edge probability
is the only factor that determines the graph connectivity. Thus, random graphs generated using



Fig. 2. Average number of edges for different tissue types. y-axis is plotted at log-scale to show the difference among
different tissue types better.
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the same number of nodes and the same edge probability are found in the same phase and, hence,
random graphs with equal number of nodes pass through the same phases during their evolutions.
On the other hand, with the same number of nodes and the same edge exponent, cell-graphs may
lead to different phases depending on the spatial distribution of cells, which is specific to the tissue
type. Therefore, cell-graphs of different tissue types evolve differently. We will thoroughly analyze
the phases of cell-graphs generated for different tissue types (normal, low-grade cancerous, and
high-grade cancerous) in Section 3.
3. Experiments

The experiments are conducted on photomicrographs of human brain tissue samples. Each
sample consists of a 5–6 micron-thick tissue section stained with the hematoxylin–eosin technique
and mounted on a glass slide. Images of these samples are taken in the RGB color space using a
Nikon Coolscope Digital Microscope. Images are taken using a 20· microscope objective lens. In
this experiment, we use 24 tissue samples taken from 12 different patients. These samples include
both normal and cancerous (gliomatous) tissues. Cancerous tissues are differentiated as low-grade
and high-grade. This sample set consists of 8 normal tissues from 4 patients, 8 low-grade cancer-
ous tissues from 4 patients and 8 high-grade cancerous tissues from the remaining 4 patients.

For every tissue, we use an image containing the same number of cells in order to analyze the
evolutions of their cell-graphs with the same number of nodes and the same edge exponent.3 In
our experiments, images consist of �150 cells, since the minimum number of cells in an image
3 With the same number of nodes, random graphs pass through the same evolution process. On the other hand,
depending on the spatial distributions of their nodes, cell-graphs evolve differently even with the same number of nodes.
In order to examine this dependency, we fix the number of nodes for all tissue types.



Fig. 3. Number of edges as a function of the edge exponent, for (a) normal tissues, (b) low-grade gliomatous tissues,
and (c) high-grade gliomatous tissues. y-axes are plotted at log-scale to show the difference among different tissue types
better.
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is 152. On these images, we construct cell-graphs by identifying cells as nodes and assigning edges
between these nodes depending on the probability distribution given in Eq. (1). In our experi-
ments, we analyze the phase of cell-graphs by gradually increasing the connectivity. For that,
we use an edge exponent, ranging from �2 to 0 (a = {�2.00, �1.95,�1.90, . . . ,�0.10,
�0.05,0.00}). Using each edge exponent, we generate 10 different cell-graphs for each tissue
image.

The phase of a cell-graph depends on the number of its edges E, the number of its connected
components, and the properties of these connected components. In addition to using the distri-
bution of the properties of all components, we separately use the properties of the giant con-



Fig. 4. Average number of connected components for different tissue types.
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nected component. Among these properties are the number of nodes a connected component
contains and its structural type. Depending on its structure, a connected component can be
(i) an isolated node, (ii) a tree, (iii) a component with equal number of nodes and edges (con-
taining a cycle), and (iv) a component with a complex structure. Note that a component has a
complex structure if it is neither an isolated node, nor a tree, nor a component with equal num-
ber of nodes and edges. Table 1 summarizes these quantitative measures, which we use in the
phase analysis of a cell-graph.

In Fig. 2, we report the average number of edges as a function of the edge exponent, for each
tissue type4; to show the difference better among different tissue types, y-axis is plotted at log-
scale. This figure shows that cell-graphs generated for different tissue types have different number
of edges (and thus, different connectivity), although they are generated using the same number of
nodes and the same edge exponent. This reveals that the connectivity of a cell-graph is determined
by both the edge exponent and the spatial distribution of its nodes. Note that the connectivity of
random graphs is only determined by the edge probability, i.e., almost the same amount of edges
is generated with the same number of nodes and the same edge probability. In order to investigate
whether or not the difference shown in Fig. 2 is significant, we use a t-test with a significance level
of 0.05 for each of the given edge exponents. The t-test demonstrates that there is a statistically
significant difference among the number of edges of the cell-graphs for different tissue types.
The only exception occurs when the edge exponent is selected as 0.00; in this case, the number
of edges for all tissues is the same since the probability of assigning an edge between any pair
of nodes is equal to 1 and the number of nodes in all graphs is the same.
4 In this work, for each tissue type, we compute the average over 80 different graph instances; there are eight images
for each tissue type and we generate 10 different graphs for each tissue.



F

522 C. Gunduz-Demir / Mathematical Biosciences 209 (2007) 514–527
The phase of a graph is determined by the number of its edges together with the characteristics
of its connected components. With approximately 150 cells (nodes) in a tissue (cell-graph), the
edge thresholds are approximately 75 (N/2) and 375 (N logN/2) for the phases that we explain
in Section 2.2. In Fig. 3, we indicate the boundaries for which the phase transitions occur (i.e.,
the edge thresholds are exceeded); to determine these boundaries, we use the aforementioned
phases (edge thresholds). This figure demonstrates that each tissue type has its own phase ranges,
and thus, its own characteristic evolution process. As a result, it is possible to distinguish tissues of
different types by making use of the phase information (evolution) of their cell-graphs.

Next, we analyze the connected components of cell-graphs. For each tissue type, Fig. 4 shows
the average number of connected components as a function of the edge exponent. In this figure,
the curve characteristics for all tissue types are consistent with the phase definitions. For edge
exponents that correspond to Phase 1, the number of connected components is higher. In this
range, first, the nodes are mostly disconnected since the edge exponent is too small to establish
an edge between any pair of nodes. Therefore, the number of connected components is almost
equal to the number of nodes. Then, with the increasing edge exponent, nodes are being con-
nected, first forming trees of sizes 2–3 and then forming trees of higher sizes. In this range, the
giant connected components consist of 15.19 nodes (normal), 20.71 nodes (low-grade glioma),
and 21.26 nodes (high-grade glioma), on the average.

As the edge exponent increases (Phase 2), the probability of establishing an edge between a pair
of nodes increases, leading to more number of edges established between both close and distant
nodes. This results in larger number of nodes being connected in a single component. In this
phase, for the edge exponent that leads to approximately 75 (�N/2) edges, the giant connected
components consist of approximately 29 (�N2/3) nodes. When this edge exponent is exceeded,
the giant component size first goes to approximately 75 (�N/2) and then exceeds 100. Towards
ig. 5. For normal tissues, the distribution of nodes depending on the structure of the components that they belong to
.
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the end of this phase, the giant component size approaches to 150 (�N). This phase leads to giant
connected components with more complex structures compared to trees. Besides these complex-
structured components, others are mostly isolated nodes or trees with smaller sizes. These small
components (isolated nodes and trees) tend to melt into the complex-structured giant component
towards the end of this phase.

As the edge exponent further increases (Phase 3), the number of small components becomes
smaller and smaller. In our experiments, it remains at most four isolated nodes at the beginning
of this phase. As the edge exponent approaches to zero, all nodes are being connected to each
other, and thus, the number of connected components becomes 1. In this range of the edge expo-
nent, all giant connected components have more complex structures compared to trees. These
observations are also illustrated in Figs. 5–7 for normal, low-grade cancerous (gliomatous) and
high-grade cancerous (gliomatous) tissues, respectively. These figures show the phase ranges as
well as the distribution of nodes depending on the structure of the components that they belong
to.

For the results given in Figs. 4–7, we use a t-test with a significance level of 0.05 to investigate
whether or not the difference is statistically significant. The t-test shows that for edge exponents
smaller than �0.50, the difference among the number of connected components of different tissue
types is statistically significant. For each exponent, we also compare the distribution of connected
components in terms of their structural types. For that, among different tissue types, we compare
the percentages of nodes that belong to each structural type. After performing t-tests for each
structural type, we combine their results such that the difference in distributions is not statistically
significant if there is not any difference in any of these t-tests. Likewise, our experiments show that
Fig. 6. For low-grade glioma, the distribution of nodes depending on the structure of the components that they belong
to.



Fig. 7. For high-grade glioma, the distribution of nodes depending on the structure of the components that they belong
to.
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there exists significant difference between these distributions for the edge exponents smaller than
�0.50. Regardless of the tissue type, edge exponents greater than �0.50 lead to connected graphs
that have a single component with a complex structure.
4. Discussion

Our experiments on normal, low-grade cancerous (gliomatous), and high-grade cancerous (gli-
omatous) tissues have demonstrated that cell-graphs of different tissue types evolve differently
although they are generated using the same number of nodes (cells) and the same edge exponent.
Next, we explore the use of this difference in modeling the malignancy of cancer. For that, we
gradually increase the edge exponent so long as it yields cell-graphs of Phase 1 for normal tissues
(until a 6 �0.90). When a = �0.90, the cell-graph of a normal tissue has 60.00 edges (<N/2) and
its giant connected component has 15.19 nodes, on the average. However, the same edge exponent
yields cell-graphs of Phase 2 for cancerous tissues, regardless of their malignancy grades. For both
the low-grade and high-grade glioma, the number of edges exceeds the N/2 threshold and the size
of giant components exceeds the N2/3 threshold. Moreover, this edge exponent leads to structural
changes in the cell-graphs of both of these tissue types. On the other hand, the number of edges
for the low-grade glioma (83.38 on the average) is much closer to the N/2 threshold compared to
that of the high-grade glioma (136.45 on the average). Similarly, the giant connected component
size for the low-grade glioma (39.95 on the average) is much closer to the N2/3 threshold com-
pared to that of the high-grade glioma (110.44 on the average). Additionally, there are more struc-
tural changes in the cell-graphs of the high-grade glioma compared to the case of the low-grade
glioma.
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These results demonstrate that the existence of cancer in a tissue transforms its cell-graph from
Phase 1 to Phase 2 even though cell-graphs of normal tissues remain in Phase 1 with the same edge
exponent. Therefore, this implies that cancer causes changes in the cell distribution of tissues,
which is consistent with the common medical knowledge [25]. Furthermore, it is also known that
these structural changes are aggravated with the increasing malignancy grade. Our results are also
consistent with this such that cell-graphs of low-grade cancerous (gliomatous) tissues are at the
boundary between Phase 1 and Phase 2 (just at the beginning of Phase 2) whereas cell-graphs
of high-grade cancerous (gliomatous) tissues are more derived from those of normal tissues com-
pared to those of low-grade ones.

We also test our algorithm on 24 different tissue images (8 images for each tissue type). These
images are taken from 12 different patients where six of them are those that we have previously
used (dependent patient group) and the remaining six are completely different patients (indepen-
dent patient group). For each tissue image, we construct ten series of cell-graphs each of which is
generated using the same edge exponents. For each tissue, we determine the phase using these ten
instances of cell-graphs when a = �0.90. To do so, we compare the number of edges and the giant
connected component size of these ten cell-graphs against the specified thresholds (N/2 and N2/3,
respectively). A t-test with a significance level of 0.05 demonstrates that the corresponding values
of normal tissues are statistically less than the specified thresholds. The t-test also shows that there
are only two false negatives; there are two low-grade cancerous tissues with the corresponding val-
ues less than the specified thresholds. Note that one of these false negatives belongs to the depen-
dent patient group whereas the other one belongs to the independent patient group. In the
differentiation of cancerous tissues, we employ the mean values that we find for the low-grade
and high-grade glioma. For each cancerous tissue, we compare the distance between the computed
values and the means for the low-grade and high-grade glioma. A t-test with a significance level of
0.05 shows that for low-grade cancerous tissues, the computed values are statistically closer to the
mean for the low-grade glioma than that for the high-grade glioma. Similarly, it shows that for
high-grade cancerous tissues, the computed values are statistically closer to the mean for the
high-grade glioma than that for the low-grade glioma.

Additionally, we compare our results against those obtained by the textural approach. In litera-
ture, a number of studies have proposed to use textural features, which provide information about
the variation of an image surface, to represent a tissue image [26–29]. One of the most common meth-
ods to describe textural features is to use the co-occurrence matrix [30]. The co-occurrence matrix C
is defined by a distance and an angle where C(i, j) indicates how many times the intensity value i co-
occurs with the intensity value j in a particular spatial relationship defined by the distance and the
angle. Esgiar et al. derive six textural features including the angular second moment, contrast, cor-
relation, inverse difference moment, dissimilarity, and entropy from multiple normalized gray-level
co-occurrence matrices and use the average value of each feature to represent a tissue image [28].

Similarly, in our experiments, we derive the same textural features from normalized gray-level
co-occurrence matrices, at four different angles (0�, 45�, 90�, and 135�) and three different dis-
tances (1, 5, and 9). The nearest neighbor algorithm that uses these textural features misclassifies
four test samples two of which are from the independent patient group.5 Here we observe that our
5 In the nearest neighbor algorithm, we normalize the data for the distance computation.
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approach leads to better results in this particular application. Additionally, one of the important
features of our approach is the ability of demonstrating that the evolution process of cell-graphs is
different for normal and cancerous (both low- and high-grade) tissues. The difference in the graph
evolution process opens up new possibilities for dynamic modeling of cancer, which is one of the
future research directions of our work. To the best of our knowledge, such ability of the textural
approach has not been demonstrated for dynamic cancer modeling.

This work proposes a new method that uses graph evolution process to model the malignancy
(grade) of cancer, for the first time. In this work, we present how to quantify graph evolution pro-
cess through graph phases and how to use this phase information for the purpose of cancer grad-
ing. Our experiments on the brain tissue samples demonstrate that (1) cell-graphs of different
tissue types evolve differently and (2) this difference can be used to model the malignancy grades
of cancer, i.e., to identify the cell-graphs of normal, low-grade cancerous (gliomatous) and high-
grade cancerous (gliomatous) tissues. One of the future research directions is to generate synthetic
cell-graphs and to simulate cancer formation and progression through the use of graph phases.
Another research opportunity is to investigate the use of this method in modeling the malignancy
of different types of cancer.
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