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� Abstract
Automated microscopy imaging systems facilitate high-throughput screening in molec-
ular cellular biology research. The first step of these systems is cell nucleus segmenta-
tion, which has a great impact on the success of the overall system. The marker-
controlled watershed is a technique commonly used by the previous studies for nucleus
segmentation. These studies define their markers finding regional minima on the inten-
sity/gradient and/or distance transform maps. They typically use the h-minima trans-
form beforehand to suppress noise on these maps. The selection of the h value is
critical; unnecessarily small values do not sufficiently suppress the noise, resulting in
false and oversegmented markers, and unnecessarily large ones suppress too many pix-
els, causing missing and undersegmented markers. Because cell nuclei show different
characteristics within an image, the same h value may not work to define correct
markers for all the nuclei. To address this issue, in this work, we propose a new water-
shed algorithm that iteratively identifies its markers, considering a set of different h val-
ues. In each iteration, the proposed algorithm defines a set of candidates using a
particular h value and selects the markers from those candidates provided that they ful-
fill the size requirement. Working with widefield fluorescence microscopy images, our
experiments reveal that the use of multiple h values in our iterative algorithm leads to
better segmentation results, compared to its counterparts. VC 2016 International Society for

Advancement of Cytometry

� Key terms
nucleus segmentation; h-minima transform; watershed; fluorescence microscopy
imaging

MOLECULAR cellular biology research has extensively used high-throughput screen-

ing for therapeutic drug discovery as it facilitates systematically conducting a series

of experiments to evaluate the effectiveness of a drug. Although there are analysis

tools from drug treated samples during therapeutic drug discovery, there is a need

for improvement, particularly for the cases including overlayered cells for which

these tools fail and users prefer manual analyses. For the development of an auto-

mated imaging tool, the first step is typically cell nucleus segmentation, which is crit-

ical for the success of the overall system.

In the literature, there exist several algorithms developed for cell nucleus seg-

mentation. The first group of these algorithms focus on cells that are grown in

monolayer in the plate and nuclei of which appear as isolated in the image. The other

group consider cells grown in overlayers, on top of each other, in the plate. These

overlayered cells could be less-confluent, where some overlaps appear along the

boundaries of their nuclei, or more-confluent, where the nuclei appear as clusters in

the image (Fig. 1). The segmentation algorithms usually start with separating fore-

ground nucleus pixels from background, using techniques such as thresholding (1,2)

and clustering (3–5). Although it is sufficient to find connected components on the
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foreground pixels for isolated nucleus segmentation, more

advanced techniques are necessary to segment confluent cell

nuclei. These include model-based segmentation algorithms

and marker-controlled watersheds.

Model-based segmentation algorithms decompose clus-

tered nuclei into individual ones by constructing their models

to reflect the morphological properties of nuclei. For example,

they may employ the information that nuclei are round and

convex and their boundaries are radially symmetrical. A group

of these algorithms have used ellipse fitting (2), Gaussian mix-

tures (6), and physical deformable models (7) to decompose

clustered cell nuclei based on their roundness. Another group

have proposed to find concave points on cluster boundaries

and split the cluster from these points (8,9). As they mainly

model morphological properties of nuclei, these algorithms

are susceptible to undersegmentations when cells form big

clusters. Voting-based algorithms have got pixels iteratively

voted along the radial and tangential directions, specified by

voting kernels, and considered those with larger votes as

nucleus centers (10–12). Because the voting kernels are initial-

ized using the gradient information, these algorithms lead to

oversegmentations when there exist intensity variations within

cell nuclei.

The marker-controlled watershed is another technique

that previous algorithms have commonly used to segment

clustered cell nuclei. It defines a set of markers on an image

and obtains cell nucleus regions growing them only from these

predefined markers. In this technique, it is crucial to correctly

identify the markers since a nucleus cannot be segmented if a

marker is not defined for it. The majority of the previous algo-

rithms take regional minima found on the intensity/gradient

(1) and/or the distance transform (13) maps as the markers.

However, this is very sensitive to noise, and hence, may lead

to defining spurious markers. To alleviate this problem, these

algorithms typically apply the h-minima transform, which

suppresses all minima under a value of h, before finding the

regional minima (14–16). The selection of the h value directly

affects the defined markers. Smaller h values do not suffi-

ciently suppress the noise, which might result in defining false

and oversegmented markers. On the other hand, larger h val-

ues suppress too many pixels such that minima become con-

nected to each other or to the background; this might yield

missing and undersegmented markers.

The previous algorithms typically use the same h value for

an entire image or for each connected component of the binary

mask of the image, which corresponds to a nucleus cluster.

They select this h value experimentally (14,17) or by optimizing

a criterion function (16). Once it is selected, this value is used

for the entire image or the corresponding connected compo-

nent. On the other hand, the same image/component may

require using different h values for more accurately identifying

the markers. For instance, Figure 2 shows the markers found

on an example image using three different h values. The cell

nuclei illustrated as red markers in Figure 2b can only be identi-

fied using a smaller h value. However, the same h value yields

many oversegmented cell nuclei, markers of which are shown

in magenta in Figures 2b and 2c. Increasing the h value may

overcome the oversegmentation problem, but this time, it may

cause undersegmentations, as illustared with a yellow marker in

Figure 2d, and missing nuclei.

In this article, we propose a new marker-controlled

watershed algorithm to address this issue. To this end, the

proposed algorithm iteratively identifies its markers, consider-

ing a set of different h values. In each iteration, it defines a set

of candidates using a particular h value and selects the

markers from those candidates provided that they fulfill the

size requirement. In the literature, there also exist h-minima

based methods that make use of iterative approaches to iden-

tify their markers (15,16). After identifying the initial markers

using a selected h value, Cheng and Rajapakse refine the shape

of these markers by increasing the selected h value iteratively,

until the point just before the initial markers start to merge

with each other (15). Jung and Kim determine the h value that

optimizes an evaluation function in an iterative algorithm

(16). However, once they fix the h values, these algorithms use

them for the entire image/component. Our proposed algo-

rithm differs from these algorithms in the sense that it identi-

fies its markers using multiple h values for the same image/

component. By doing so, it alleviates the over and underseg-

mentation problems due to the use of the same h value for the

entire image/component. Our experiments on widefield fluo-

rescence microscopy images demonstrate that this use of mul-

tiple h values improves the segmentation performance for

nuclei of both isolated and confluent cells.

In our previous studies (18,19), we also developed

marker-controlled watershed algorithms. However, as opposed

Figure 1. Example images of cells. (a) Monolayer cells whose nuclei appear as isolated, (b) less-confluent cells for which some overlaps

appear along the boundaries of their nuclei, and (c) more-confluent cells whose nuclei appear as clusters.
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to this current work, in (18), we determined the markers using

the h-minima transform with a fixed h value. In (19), we

defined the markers using intensity and gradient properties of

the live cells specific to the KATO-3 cell line; we did not use the

h-minima transform at all. Different than these watersheds, in

(20), we developed a model-based segmentation algorithm that

Figure 2. Markers found on an example subimage: (a) original subimage, (b) markers when h 5 1, (c) markers when h 5 2, and (d) markers

when h 5 3. Here, magenta and yellow markers indicate oversegmentations and undersegmentations, respectively. The markers that can-

not be identified with larger h values are shown with red in (b). The markers identified by our proposed algorithm are shown in (e). [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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identifies the initial nucleus locations using a graphical model

constructed on nucleus boundaries and grows them also using

these boundaries. In this current work, we point to the problem

of using a single fixed h value to identify the markers of all

nuclei within the same image/component and propose a new

iterative h-minima-based watershed algorithm that uses multi-

ple h values for more accurate cell nucleus segmentation.

METHODOLOGY

Our proposed algorithm relies on using multiple h values

to identify the markers of a connected component, which cor-

responds to a nucleus clump in an image. The motivation

behind this use is the fact that there exists no best h value that

can be used to identify all markers of the same connected

component, due to the possible variations in the nuclei’s sizes,

shapes, and intensities within the same nucleus clump. Our

algorithm has three main steps: map construction, marker

identification, and region growing.1 The schematic overview

of the algorithm is given in Figure 3. The details of its steps

are given in the following subsections.

Map Construction

In this step, we construct two maps on which initial

markers are identified and grown. These are the gradient map

Gmap, which we use to model the intensity deviations along

the nucleus boundaries, and the distance transform map

Dmap, which we use to model the size and shape of nuclei.

For an image I, we obtain the gradient map Gmap by

applying the Sobel operators on its grayscale. Here we smooth

both the grayscale image and the Sobel responses to reduce

intensity variations and noise within nuclei. In particular,

before applying the Sobel operators, we smooth the grayscale

image by morphological opening that uses a disk structuring

element with a radius of dsize. Then, after obtaining them, we

smooth the Sobel responses using the average filter also with a

half size of dsize. Note that we select the diameter (radius) of

the disk structuring element and the filter size (its half size)

the same to reduce the number of free model parameters in

our algorithm.

We calculate Dmap by taking the distance transform for

the pixels of a binary mask B, which is obtained by threshold-

ing the grayscale of the image I. In our algorithm, we use a

global threshold value calculated by the Otsu’s method (21).

However, we use its half to ensure that the mask covers most

of the nuclear regions.

Iterative Marker Identification

Watershed-based nucleus segmentation algorithms com-

monly define their markers on nucleus centroids. For that,

they typically find regional maxima on a distance transform

map, to reflect a fact that nucleus centroids are the locations

farthest from boundaries, and/or regional minima on a gradi-

ent map, to reflect a fact that the centroids typically show

smallest intensity deviations. In this work, we use the gradient

map Gmap to iteratively identify the markers. In each iteration

of this process, we first suppress noise on Gmap using the h-

minima transform, with a different h value, and then find the

regional minima on the noise-suppressed map. The motiva-

tion behind using different h values in different iterations is

that the selection of the h value is not straightforward since a

single fixed h value would not be enough to suppress all noise

at a desired level, and thus, different h values work with differ-

ent levels of success to identify the markers corresponding to

different types of nuclei. Smaller h values work better to iden-

tify the correct markers for nuclei containing a fair amount of

noise inside, but may yield oversegmented markers for those

with a high amount of noise. On the other hand, larger h val-

ues address the oversegmentation problem, but this time, they

may lead to undersegmented or missing markers for the for-

mer type of nuclei. Thus, in order to address this problem, we

proposed to use multiple h values in an iterative algorithm

(see Fig. 2).

In this algorithm, we start iterations from h 5 1 and

increment its value by one until no new markers are defined.

In each iteration, we suppress noise on Gmap using the h-

minima transform and identify the regional minima on the

noise-suppressed map as marker candidates. Then, in order to

reduce the number of oversegmented markers, whose areas

are typically small especially when a small h value is used, we

eliminate the candidates that are smaller than an area thresh-

old tarea. We eliminate such small candidates to prevent defin-

ing a noisy region as a marker. Note that if such a region

corresponds to a true marker, next iterations are expected to

locate it since larger h values typically yield larger candidates

(regional minima).

At the end, we add the candidates to the marker set pro-

vided that they do not overlap with the markers defined in the

previous iterations. Here instead of considering the previous

markers as they are, we dilate them with a disk structuring ele-

ment, whose radius is also dsize, and determine the overlaps

accordingly. The rationality of this dilation is that consecutive

Figure 3. Schematic overview of our proposed algorithm.

1We implement the map construction and marker identification steps in Mat-

lab, using its built-in function for h-minima transform. We implement the

region growing step in C. The source codes of our implementation are avail-

able at http://www.cs.bilkent.edu.tr/~gunduz/downloads/IterativeHMin.
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h values may yield overlapping markers or those that are not

overlapping but very close to each other and the dilation pre-

vents oversegmentation arising from such close markers (see

Fig. 4).

We provide the pseudocode of this iterative marker identi-

fication in Algorithm 1. This algorithm takes three inputs. The

first one is the gradient map Gmap, on which markers are identi-

fied. The next one is the area threshold tarea, which is used to

eliminate small marker candidates. The last input is the radius

dsize of a disk structuring element, which is used to dilate the

previous markers for determining the overlaps. The iterative

marker identification algorithm outputs the marker set M. Fig-

ure 5 illustrates an example output of this algorithm, each itera-

tion of which uses a different h value. Each image shown in this

figure corresponds to a different iteration and illustrates the

markers added to the marker set in the current iteration in red

and those found in the previous iterations in green.

Region Growing

After identifying the markers, we grow the dilated

markers on the foreground pixels of the binary mask B by a

marker-controlled watershed algorithm and delineate the

nucleus boundaries. We use the distance transform map Dmap

as the marking function in the flooding process of the water-

shed. For each foreground pixel, Dmap keeps the closest

distance from this pixel to its closest marker. In a standard

watershed algorithm, the flooding process grows the identified

markers on all foreground nucleus pixels until the grown

markers meet. However, this may cause a problem when

markers are not correctly identified for all adjacent nuclei. Fig-

ure 6 illustrates this problem on two subimages, each of which

contains three nuclei. In each subimage, the markers are cor-

rectly identified for the two nuclei but no marker is found for

the other nucleus (Fig. 6a). The standard flooding process

grows these markers on the nucleus pixels, whose boundaries

are given in Figure 6b. Thus, it yields incorrect nucleus boun-

daries, as shown in Figure 6c, since some of these pixels

belong to the nucleus with an unidentified marker.

To prevent flooding into pixels that belong to a nucleus

with an unidentified marker, we modify the flooding process

such that it grows a marker on a foreground pixel unless it

meets the stopping condition for this pixel, which is defined

considering other pixels found in its symmetric location. Par-

ticularly, to grow a marker M on a foreground pixel P, we

check all pixels found on a circular arc, whose midpoint is

symmetric to P with respect to the M’s centroid. The start and

end angles of the arc are –a and 1a degrees with respect to

the line passing through this midpoint and the M’s centroid

(see Fig. 7). We allow growing only if none of the pixels on

this arc belong to the background or have previously been

assigned to another marker. At the end, when none of the

markers can be grown further, we allow them to grow on the

foreground at most p more pixels without considering the

stopping condition. For the subimages given in Figure 6a, the

boundaries obtained by our modified flooding process are

shown in Figure 6d. Note that since this flooding process con-

siders pixels on an arc, instead of an entire circle, it locates

non-circular nuclei better, as illustrated in Figure 8.

EXPERIMENTS

Dataset

In our experiments, we use fluorescence microscopy

images of human hepatocellular carcinoma (Huh7 and

HepG2) cell lines that were cultured in the Molecular Biology

and Genetics Department at Bilkent University. The cells were

stained with Hoechst 33258 nuclear staining and their images

were taken under a Zeiss Axioscope fluorescent microscope

with an AxioCam MRm monochrome camera. The objective

lens is 203 and the image size is 768 3 1,024. The cell nuclei

in these images were annotated by our biologist collaborators.

First, we conduct experiments on the dataset that we

used in our previous work (20). In this dataset, 785 nuclei are

used as training instances, on which the parameters of the

algorithms are selected. These nuclei are taken from 10 ran-

domly selected images; five of them are selected from the

Huh7 cell line and the other five from the HepG2 cell line.

The rest of the images are used as test instances. Since cells are

grown in more overlayers in the HepG2 cell line and since we

want to explore the effectiveness of the algorithms on different

confluency levels, there are two test sets. The first one contains

Figure 4. (a) Previously identified markers before dilation, (b)

previously identified markers after dilation, and (c) currently iden-

tified markers. There is no overlap between the top marker of (a)

and the top marker of (c) before dilation. However, after dilation,

these two become overlapping and the top marker of (c) will not

be included into the marker set, which prevents oversegmenta-

tion for the top nucleus. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Algorithm 1. ITERATIVE MARKER IDENTIFICATION

Input: gradient map Gmap, area threshold tarea, disk size dsize

Output: markers M

M 51
h 5 1

repeat

hmap H-MINIMA (Gmap, h)

Mcurr REGIONAL MINIMA (hmap)

Mcurr ELIMINATE SMALL (Mcurr, tarea)

Mcurr ELIMINATE OVERLAPPING (M, Mcurr, dsize)

M 5 M [Mcurr

h 5 h 1 1

until Mcurr 51
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891 nuclei taken from 11 images of the Huh7 cell line. The

second one contains 985 nuclei taken from 16 images of the

HepG2 cell line. In addition to these test sets, which were

taken from our previous work (20), we form another one that

contains more confluent cells. This test set contains 1,065

nuclei taken from 4 images of the HepG2 cell line. We will

refer them as the Huh7 test set, the HepG2 test set, and the

dense HepG2 test set, respectively.

Evaluation

We evaluate our proposed algorithm and the comparison

methods, both visually and quantitatively. For quantitative

Figure 5. Outputs of four different iterations, each of which uses a different h value, in the marker identification step. In each image, the

red markers are the ones that are added to the marker set in the current iteration and the green markers are those that were found in the

previous iterations. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Flooding process of the watershed algorithm for two example subimages. (a) Markers from which flooding starts, (b) bounda-

ries of nucleus pixels, (c) nucleus boundaries obtained using the standard flooding process, (d) nucleus boundaries obtained using our

flooding process. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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evaluation, we use the precision, recall, and F-score metrics.

First, we calculate these metrics on nuclei to quantify how

successful an algorithm is in the correct identification of

nuclei. Then, we calculate them on pixels by considering the

correctly segmented pixels of only the correctly identified

nuclei as correct segmentation.

We determine the correctly identified nuclei as follows.

We match each nucleus N that an algorithm segments with an

annotated nucleus A in the gold standard if at least half of N’s

segmented pixels overlap with those of A. Likewise, we match

each annotated nucleus with a segmented nucleus. Then, N is

considered as correctly identified if there is a one-to-one

match between N and an annotated nucleus. Otherwise; (1) N

is a false detection if it does not match with any annotated

nuclei, (2) A is a miss if it does not match with any segmented

nuclei, (3) A is oversegmented if more than one segmented

nucleus match with A, and (4) annotated nuclei that match

with the same segmented nucleus are undersegmented.

Parameter Selection

The proposed algorithm has four external parameters.

The first one is the area threshold tarea, which is used to elimi-

nate smaller markers in the marker identification step. The

second parameter dsize is used in two different steps: map con-

struction and marker identification. In the map construction

step, it determines the size of the disk structuring element and

the average filter, both of which are used for smoothing opera-

tion. In the marker identification step, this parameter also

determines the size of the disk structuring element, which is

used to dilate the previous markers for eliminating the over-

lapping markers. Note that although it is possible to use dif-

ferent values, we set the radius of the disk structuring

elements and the half size of the average filter to the same dsize

value to reduce the number of the external parameters of our

algorithm. The last two parameters are used in the region

growing step. The angle a is used to define the start and end

points of an arc, whose pixels are used to define the stopping

condition of the flooding process. The offset p is the maxi-

mum number of pixels that a marker grows at the end without

considering the stopping condition. In our experiments, we

consider any combination of the following values tarea 5 {5,

10, 20, 30}, dsize 5 {5, 7, 10, 13}, a 5 {0, 15, 30, 45}, and

p 5 {0, 2, 4}, and select the one that maximizes the F-score

metric on the training set. The selected parameter values are

tarea 5 20, dsize 5 10, a 5 15, and p 5 2. In this selection, none

of the test set images are used.

In addition to these external parameters, we have an

internal choice, which is the decrease ratio of the Otsu thresh-

old to obtain the binary mask B in the map construction step.

In this step, we decrease the Otsu threshold to its half (i.e., use

the 0.5 ratio) to ensure that B covers most of the nucleus pix-

els. We will analyze the effects of this selection to the segmen-

tation performance in Analyses section.

Comparisons

We compare our proposed algorithm with four nucleus

segmentation methods: adaptive h-minima (15), conditional

erosion (22), iterative voting (10), and ARGraphs (20). The

first two are marker-controlled watersheds. The adaptive h-

minima method (15) identifies markers by finding regional

minima on the inverse distance map. It also uses the h-minima

transform to suppress noise on the distance map. After select-

ing a h value and identifying the markers, it adaptively changes

this h value to obtain better shaped markers. Different than the

one used by our proposed algorithm, this adaptive method

affects only the shape of the markers, all of which are found

using the same h value. The conditional erosion method (22)

finds its markers by iteratively eroding the binary mask of an

image using two different structuring elements.

The other two are model-based segmentation algorithms.

The iterative voting method (10) gets image pixels iteratively

voted along the radial and tangential directions to determine

nucleus centers. The ARGraphs (20) method, which we previ-

ously implemented in our research group, models nucleus

boundaries by an attributed relational graph and identifies

nucleus centers by searching patterns on this graph. Once they

identify the nucleus centers, both of these methods delineate

nuclei, growing the centers by a watershed algorithm. Note

that we select the parameters of these four comparison meth-

ods also on the training set images.

RESULTS

We provide the quantitative results of our algorithm and

the comparison methods in Figure 9 and report their nucleus-

based F score metrics in Table 1; the detailed results are given

in the supplementary material (23). The figure and the table

Figure 7. Illustration of defining the stopping condition in region

growing. To grow a marker M on a pixel P, this condition checks

all pixels (red pixels in this figure) on a circular arc, whose mid-

point is symmetric to P with respect to the M’s centroid. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8. Effects of defining the stopping condition by consider-

ing the pixels of an arc instead of an entire circle. (a) An example

image of nucleus, (b) boundaries obtained when the pixels of an

arc are considered, and (c) boundaries obtained when the pixels

of an entire circle are considered. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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show that the proposed algorithm improves the segmentation

performance of the other methods. This improvement is more

evident in more confluent cells, as seen in the results obtained

on the dense HepG2 test set (Fig. 9c and the fourth column of

Table 1). These quantitative results are also consistent with the

visual ones given in Figure 10. The first two rows of this figure

contain subimages taken from the Huh7 test set, which typi-

cally have nuclei of isolated and less confluent cells. All algo-

rithms give good segmentation results for almost all of such

nuclei. The next two rows contain subimages from the HepG2

test set and the last two contain subimages from the dense

HepG2 test set. These visual results show that as the conflu-

ency degree increases, the performance of the comparison

methods decreases more compared to our proposed

algorithm.

The comparison between our proposed algorithm and

the adaptive h-minima method also reveals that using multi-

ple h values to identify the markers for the same connected

component leads to better segmentation results. To investigate

whether this is indeed a result of using multiple values or

improper selection of the fixed h value, we conduct another

experiment. For that, we have modified our algorithm such

that it uses a single fix h value; the other parts of the algorithm

remain exactly the same. For the Huh7, HepG2, and dense

HepG2 test sets, Figure 11 shows the nucleus based F score

metric as a function of h values. For each test set, it also plots

the nucleus based F-score metric obtained by our proposed

algorithm, which iteratively uses multiple h values. This figure

shows that it is possible to obtain a similar F score metric

when the optimal h value is used for the Huh7 test set, in

which cell nuclei are isolated or less confluent (Fig. 11a). On

the other hand, the gap between the F scores obtained by the

proposed algorithm and the optimal h value increases for the

HepG2 and dense HepG2 test sets, in which cell nuclei are

more confluent. This indicates the effectiveness of using mul-

tiple h values, especially when cell nuclei form denser clusters.

Analyses

Our proposed algorithm has four external parameters:

the area threshold tarea, the size dsize of the disk structuring ele-

ments and the average filter, the angle a, and the offset p. As

explained in Parameter Selection section, we select the values

Figure 9. Comparison of the algorithms in terms of segmented-annotated nucleus matches on the (a) Huh7, (b) HepG2, and (c) dense

HepG2 test sets. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 1. Comparison of the algorithms in terms of nucleus-based

F score measures on the Huh7, HepG2, and dense HepG2 test

sets

HUH7 HEPG2 DENSE HEPG2

Iterative h-minima 89.29 83.22 76.59

Adaptive h-minima (15) 85.87 74.50 57.05

Conditional erosion (22) 84.01 67.80 51.64

Iterative voting (10) 81.10 74.52 53.63

ARGraphs (20) 88.29 80.28 68.75
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of these parameters on the training set, without using any test

set images at all. Besides, the algorithm has an internal choice,

which is the Otsu threshold ratio. Although this ratio could

also be considered as an external parameter and its value

could also be selected on the training set, we fix it to 0.5 for

reducing the number of free model parameters in our algo-

rithm. In this section, we will first analyze the effect of this

choice to the segmentation results.

To identify the foreground pixels, we obtain a binary mask

B by thresholding the grayscale image. Here we calculate the

threshold value by the Otsu’s method (21) and decrease this value

to its half to ensure that the mask covers most of the nucleus pix-

els. However, instead of decreasing the value to its half (i.e., using

the 0.5 ratio), it is also possible to use other decrease ratios. In

Figure 12, we analyze the effects of using different Otsu threshold

ratios to the F score metrics for the three test sets used in our

experiments. This figure indicates that ratios in the range of 0.4

and 0.8 give similar results and the segmentation performance

does not very much depend on a specific value of this ratio.

Next, we analyze the effects of image quality degradation

to segmentation results. To this end, we degrade the quality of

images by blurring them with a Gaussian filter and added

Poisson noise to the blurred image. Figure 13 shows the F

score metric as a function of the standard deviation r of the

Gaussian filter, which controls the degradation degree. This

figure shows that our proposed algorithm is robust to image

quality degradation to a certain extent. However, as expected,

when the image quality drops below a certain point (when the

standard deviation r too much increases), there is a substan-

tial decrease in the segmentation performance.

Experiments on Tissue Section Images

In our experiments, we test our proposed algorithm on

the images of cultured human hepatocellular carcinoma (Huh7

and HepG2) cell lines. To understand its applicability on differ-

ent image types, we extend the application of our algorithm on

images of tissue sections from mouse liver, which were stained

with 4’,6-diamidino-2-phenylindole (DAPI) nuclear stain. The

images of these tissue sections were taken under a fluorescent

Figure 10. Visual results for various subimages: (a) annotated nuclei in the gold standard, (b) results by the proposed iterative h-minima

algorithm, (c) results by the adaptive h-minima method (15), (d) results by the conditional erosion method (22), (e) results by the iterative vot-

ing method (10), and (f) results by the ARGraphs method (20). The first two rows contain subimages from the Huh7 test set, the next two

contain subimages from the HepG2 test set, and the last two contain the subimages from the dense HepG2 test set. Note that the subimage

sizes have been scaled for better visualization. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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microscope with a 203 objective lens. The image size is 480 3

640. Our biologist collaborators annotated these images by

marking the cell nuclei without drawing their boundaries.

Because these annotations do not include the nucleus bounda-

ries but a marker for each nucleus, we consider a segmented

nucleus as a one-to-one match if this nucleus contains only a

single marker, which indicates a gold standard nucleus, inside.

For quantitative evaluation, we compute the precision, recall,

and F score metrics on these one-to-one matches.

In this tissue section dataset, there are a total of 13 images

containing 2,660 cell nuclei. Because these images may show

characteristics different than those of cultured human hepato-

cellular carcinoma cell lines, we randomly separate them into

the training set (766 nuclei from four images) and the test set

(1,894 nuclei from the remaining nine images) and select the

model parameters again on the training nuclei. In this selection,

we consider any combination of the following parameter values

tarea 5 {5, 10, 15, 20, 30}, dsize 5 {3, 5, 7, 10, 13}, a 5 {0, 15, 30,

45}, and p 5 {0, 2, 4}, and select the one that maximizes the F-

score metric on the training nuclei. The selected parameter val-

ues are tarea 5 15, dsize 5 5, a 5 30, and p 5 2. Likewise, we

select the parameters of the comparison methods again, consid-

ering the training set of these tissue sections.

On the test set nuclei, our proposed algorithm gives

86.34% F score metric, leading to the highest F score com-

pared to the other methods. The test set F scores are 78.65%

for the adaptive h-minima method (15), 80.75% for the con-

ditional erosion method (22), 78.49% for the iterative voting

method (10), and 81.49% for the ARGraphs method (20);

similarly, the detailed results are given in the supplementary

material (23). We also present the visual results obtained on

three example subimages in Figure 14. These preliminary

results indicate that the proposed algorithm has a potential to

be applied on other image types as well. One could consider

the detailed investigation of this application as a future

research direction of the proposed segmentation algorithm.

Tight Nucleus Cluster Detection

Some images may contain tight clusters of nuclei, which

cannot accurately be analyzed even manually. To identify such

kind of clusters, we develop a simple detection algorithm,

which determines markers whose likelihood of corresponding

to nuclei in a tight cluster is high and eliminates these markers

before region growing takes place. To this end, for each identi-

fied marker M, we calculate the minimum distance from its

centroid to the background and the distance to the closest

marker’s centroid. We eliminate the marker M if both of these

distances are greater than the distance threshold. The motiva-

tion behind using this method is the following. For a tight

cluster that contains indiscernible nucleus boundaries, the

Figure 11. Nucleus based F score metrics obtained when a fixed h value is used (solid lines) and when multiple h values are iteratively used

by our proposed algorithm (dashed lines). The F score metrics are obtained for the (a) Huh7, (b) HepG2, and (c) dense HepG2 test sets. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. For the Huh7, HepG2, and dense HepG2 test sets, the

nucleus-based F score metrics as a function of the Otsu threshold

ratio used to obtain the binary mask.

Figure 13. Effects of image quality degradation to segmentation

results. For the Huh7, HepG2 and dense HepG2 test sets, the

nucleus-based F score metrics as a function of the standard devia-

tion r of a Gaussian filter, with which images are blurred. Note

that Poisson noise is also added to each blurred image.
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gradient map is not too much informative. As a result, only a

few correct markers can be found within this tight cluster.

Additionally, since such a cluster is typically large in size, these

markers are usually far from the background.

In our experiments, we select the distance threshold as 30

considering the average radii of cell nuclei in the training

images. As expected, the proposed tight nucleus cluster detec-

tion method does not eliminate any markers from the Huh7

test set since this set contains relatively less confluent cells. On

the other hand, it eliminates one marker from the HepG2 and

six markers from the dense HepG2 test sets, which contain

more cells grown in overlayers. For an example subimage,

taken from the dense HepG2 test set, the segmentation results

obtained with and without using this detection method are

given in Figure 15. As seen in this figure, no nuclei are found

within the tight cluster of this subimage since the correspond-

ing markers have been eliminated by the proposed detection

method. Please note that the use of this method slightly

changes the F-score metrics for the HepG2 sets; it changes the

F scores from 83.22 to 83.16% for the HepG2 test set, and

from 76.59 to 76.31% for the dense HepG2 test set.

CONCLUSION AND DISCUSSION

This article presents a new marker-controlled watershed

algorithm for cell nucleus segmentation in fluorescence

microscopy images. In this algorithm, we propose to define

the markers iteratively, using a different h value in each itera-

tion. The use of different h values suppresses noise at different

levels, allowing us to define better markers for nuclei showing

different characteristics. Our experiments on widefield fluo-

rescence microscopy images demonstrate that this algorithm

gives better markers for nuclei of both isolated and confluent

cells, leading to better segmentation results.

Figure 14. Visual results for various tissue section subimages: (a) annotated nuclei in the gold standard, (b) results by the proposed itera-

tive h-minima algorithm, (c) results by the adaptive h-minima method (15), (d) results by the conditional erosion method (22), (e) results

by the iterative voting method (10), and (f) results by the ARGraphs method (20). Note that the subimage sizes have been scaled for better

visualization. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 15. Visual segmentation results obtained when the tight nucleus cluster detection method is used. (a) Original subimage from the

dense HepG2 test set, (b) nucleus boundaries obtained when the detection method is not used, and (c) nucleus boundaries obtained

when the detection method is used. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In this work, we develop an algorithm for segmenting

nuclei of both isolated and confluent cell taken from conven-

tional widefield fluorescent microscopes, which are highly

available and affordable for various laboratories. They are

found in every molecular biology laboratory as well as they

are routinely used for morphological analysis of cells in

pathology diagnostics laboratories. However, we do not

focus on confocal microscopy, which produces cell images

with higher magnification and resolution for detailed visual-

ization of subcellular distribution of fluorescent-labeled pro-

teins. Although our algorithm can also be used for confocal

microscopy images, simpler segmentation techniques would

also be adequate for their segmentation since these images

have only a few cells that are of higher magnification and

resolution and that are mostly isolated (nonconfluent).

However, the confocal microscopes may not be affordable

for every research laboratory. Moreover, the interest may be

the confluent cells if a researcher aims to see the aggregation

of cells (e.g., cancer stem cell mammosphere formation). In

such cases, our proposed algorithm can be used for cell

nuclei segmentation.

We conduct our experiments on the images of cultured

human hepatocellular carcinoma (Huh7 and HepG2) cell

lines. To understand the applicability of our proposed algo-

rithm on different image types, we also extend the application

of our algorithm on images of tissue sections from mouse liver

and obtain the preliminary results. The application of our

algorithm on other image types could be considered as a

future work.

In this work, we mainly focus on finding better markers.

We use a relatively simple region growing algorithm to delin-

eate nucleus boundaries. As another future work, we plan to

work on designing better techniques for marker growing. Here

one could consider designing iterative methods also in the

region growing process. Another possibility is to explore the

use of other types of maps, on which the growing takes place.
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