
Medical Image Analysis 63 (2020) 101720 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

DeepDistance : A multi-task deep regression model for cell detection in 

inverted microscopy images 

Can Fahrettin Koyuncu 

a , Gozde Nur Gunesli a , Rengul Cetin-Atalay 

b , 
Cigdem Gunduz-Demir a , c , ∗

a Department of Computer Engineering, Bilkent University, Ankara TR-06800, Turkey 
b CanSyL,Graduate School of Informatics, Middle East Technical University, Ankara TR-06800, Turkey 
c Neuroscience Graduate Program, Bilkent University, Ankara TR-06800, Turkey 

a r t i c l e i n f o 

Article history: 

Received 13 November 2018 

Revised 28 February 2020 

Accepted 4 May 2020 

Available online 11 May 2020 

Keywords: 

Multi-task learning 

Feature learning 

Fully convolutional network 

Cell detection 

Cell segmentation 

Inverted microscopy image analysis 

a b s t r a c t 

This paper presents a new deep regression model, which we call DeepDistance , for cell detection in im- 

ages acquired with inverted microscopy. This model considers cell detection as a task of finding most 

probable locations that suggest cell centers in an image. It represents this main task with a regression 

task of learning an inner distance metric. However, different than the previously reported regression based 

methods, the DeepDistance model proposes to approach its learning as a multi-task regression problem 

where multiple tasks are learned by using shared feature representations. To this end, it defines a sec- 

ondary metric, normalized outer distance , to represent a different aspect of the problem and proposes to 

define its learning as complementary to the main cell detection task. In order to learn these two com- 

plementary tasks more effectively, the DeepDistance model designs a fully convolutional network (FCN) 

with a shared encoder path and end-to-end trains this FCN to concurrently learn the tasks in parallel. 

For further performance improvement on the main task, this paper also presents an extended version of 

the DeepDistance model that includes an auxiliary classification task and learns it in parallel to the two 

regression tasks by also sharing feature representations with them. DeepDistance uses the inner distances 

estimated by these FCNs in a detection algorithm to locate individual cells in a given image. In addition 

to this detection algorithm, this paper also suggests a cell segmentation algorithm that employs the es- 

timated maps to find cell boundaries. Our experiments on three different human cell lines reveal that 

the proposed multi-task learning models, the DeepDistance model and its extended version, successfully 

identify the locations of cell as well as delineate their boundaries, even for the cell line that was not used 

in training, and improve the results of its counterparts. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Automating the analysis of live cell morphology is critical for

igh throughput screening as this facilitates fast and reproducible

easurements under inverted microscopy. The crucial step of this

utomation is to correctly identify cell morphology and distribu-

ion on culture plates. This requires detecting the cell locations

hose difficulty lies along a wide range, from easy to very chal-

enging, depending on visual characteristics of the cells. This step

ecomes difficult when cells appear in varying colors, brightness,

nd irregular shapes. The difficulty further increases when they

row in overlayers, and as a result, appear as cell clumps. 
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Before the advances in deep learning, the traditional approach

or cell detection/segmentation is to employ low-level handcrafted

eatures, reflecting color, edge, and shape characteristics of cells.

his approach has given promising results when the features are

efined properly, as a good representation of the visual cell charac-

eristics. On the other hand, these characteristics may change from

ne cell type to another (see Fig. 1 ) and new features need to be

efined to meet the cell characteristics of a new type. Addition-

lly, when there exists heterogeneity in the visual characteristics

f the same cell type, using a single model may not be sufficient

o detect all cells of this type, particularly for cancer cells which

re exploited more in high throughput screening. 

Methods based on deep learning have responded to these is-

ues by having the ability of learning high-level features from im-

ge data automatically and reducing the required effort to obtain

 generalizable model as a consequence. The majority of the previ-

usly reported methods consider cell detection/segmentation as a

https://doi.org/10.1016/j.media.2020.101720
http://www.ScienceDirect.com
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Fig. 1. Example subimages from the cell lines used in our experiments: (a) CAMA-1, 

(b) MDA-MB-453, and (c) MDA-MB-468 breast cancer cell lines. As seen in these ex- 

amples, visual characteristics show differences from one cell type to another. More- 

over, cells of the same type may appear in different looks. For instance, in (b), there 

are mostly near-circular cells, which sometimes contain mostly bright pixels but 

sometimes contain dark pixels inside and bright ones outside. However, in (a) and 

(c), there are near-circular as well as non-circular cells. For such images, it would 

not be easy to use a single model to detect cells of all these different looks. 
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classification problem, in which a deep classifier is trained to dif-

ferentiate cell pixels from those of the background. Since their fo-

cus is the classification of cell pixels, these methods treat the pix-

els taken from the annotated cells in the same way, regardless of

their relative positions within the cell, while training their classi-

fier ( Xie et al., 2015a; Song et al., 2017 ). On the other hand, the po-

sition of a pixel relative to a cell center (or to a cell boundary) may

bring about additional information. There exist only a few studies

that take this information into account by constructing a regres-

sion model ( Xie et al., 2015b; Sirinukunwattana et al., 2016; Chen

et al., 2016; Xie et al., 2018a, 2018b ). They approach cell detec-

tion/segmentation as a single-task regression problem where they

learn a single distance output for each pixel. On the other hand,

it may be difficult to define a single distance metric that compre-

hends different aspects of the problem and to learn this single dis-

tance by a single model. 

In response to these issues, this paper introduces a new multi-

task learning framework, which we call DeepDistance , for the de-

tection of live cells in inverted microscopy images. This DeepDis-

tance framework proposes to concurrently learn two distance met-

rics for each pixel, where the primary one is learned in regard

to the main cell detection task and the secondary distance is de-

fined to stress the variability in morphological cell characteristics

and learned for the purpose of increasing the generalization ability

of the main task. To this end, this paper constructs a fully con-

volutional network and end-to-end learns two distance maps at

the same time, sharing high-level feature representations at the

various layers of this network (layers of its shared encoder path),

in the context of multi-task learning. Then, for a given image, it

achieves cell detection by generating the primary distance map

with the trained network and finding its regional maxima. Fur-

thermore, this paper also suggests a cell segmentation algorithm

that makes use of the maps estimated by the trained network. Our

experiments on three different cell lines reveal that this proposed

multi-task learning framework successfully identifies the locations

of cells as well as delineates their boundaries, even for the cell line

that was not used in training, and improves the results of its coun-

terparts. 

The contributions of this paper are summarized below: 

• It takes advantage of the multi-task learning approach, in which

shared feature representations are used to learn multiple tasks

at the same time. This is different than the previously reported

regression-based cell detection studies, which do not use such

shared representations for learning a regression task. The multi-

task approach used by our study is known to be successful for

many domains, leveraging the contribution of different tasks

to the feature representation learning process ( Caruana, 1997 ).
Concurrent learning of two related tasks with shared represen-

tations increases the performance of our model, by better help-

ing it avoid local optimal solutions. 
• It defines a distance metric, normalized outer distance , that cal-

culates the normalized distance from each cell pixel to the

closest cell boundary. As opposed to the inner distance , which

is calculated with respect to the cell centers and as a result

imposes a one-sized circular shape on the cells, this defini-

tion does not have shape and size impositions since it uses

the boundary annotations. The normalized outer distance bet-

ter preserves the shape characteristics of the cells whereas the

inner distance better suggests the cell centers. Thus, the pro-

posed model defines inner distance estimation as the main task

and considers normalized outer distance estimation as comple-

mentary to this main task. It learns these two complementary

tasks in parallel by forcing them to share feature representa-

tions. This improves the performance of each task, and thus,

leads to more successful results. 
• It shows that one can also include an additional classification

task to the proposed multi-task regression network to further

increase the performance of the main task. To this end, this

study implements another version of the proposed framework

where the task of cell pixel classification is added as a parallel

task to the regression network. This additional task, which is to

be concurrently learned with the two distance maps, aims to

construct a classification map from the shared features while

learning the regression output maps with a minimum error.

This additional task is effective to better learn the regression

tasks. 

. Related work 

Traditional cell detection/segmentation studies employ low-

evel handcrafted features, which are extracted either pixel- or

ubregion-wise. A large group of pixel-wise studies use intensities

o obtain a binary mask by thresholding or clustering ( Dima et al.,

011 ). They then use this mask either directly to locate isolated

ells or as an input to shape-based methods to split cell clumps.

hese methods include the use of distance transforms ( Jung and

im, 2010 ), concavity detection algorithms ( Chang et al., 2013 ), and

orphological erosion operators ( Yang et al., 2006 ). Although it

s very common to calculate distance transforms on the obtained

inary mask, it is also possible to learn them directly from the

andcrafted features ( Gao et al., 2014 ). Another group of pixel-

ise studies employ pixel gradients to obtain a feature map, on

hich regional maxima/minima are identified as cell locations.

hese studies directly use the gradients to define their feature

aps ( Koyuncu et al., 2016 ) or alternatively get pixels voted along

heir gradient directions and use the votes the pixels take to define

heir maps ( Xing et al., 2014 ). The subregion-wise studies first par-

ition an image into over-segmented subregions (e.g., superpixels),

xtract handcrafted color, gradient, and shape features from these

ubregions, and merge them based on their extracted features to

btain cell locations ( Genctav et al., 2012; Su et al., 2013; Koyuncu

t al., 2018 ). 

To reduce the required effort s f or manual feature definition,

eep learning based methods learn high-level features from im-

ge data. These methods, especially convolutional neural networks,

ave shown significant success in many tasks related to medi-

al image analysis ( Litjens et al., 2017 ) also including cell detec-

ion/segmentation. Earlier studies train their deep models on small

atches cropped around individual pixels to generate an output

or each pixel separately. More recently, with the implementations

f fully convolutional networks ( Long et al., 2015 ) and the U-net

odel ( Ronneberger et al., 2015 ), studies have started end-to-end

raining their models to learn the outputs of all pixels at once.
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ost of these studies consider cell detection/segmentation as a

lassification problem and train a classifier to differentiate cell and

ackground pixels. Then, for an image, they may obtain a binary

ask by estimating the class labels of its pixels with the trained

lassifier and use this mask as an input to the shape-based meth-

ds ( Song et al., 2015; 2017 ). Alternatively, they may use the class

osteriors of the pixels and identify cell locations on this posterior

ap by either thresholding ( Xu et al., 2016 ) or clustering ( Su et al.,

015 ) but mostly finding regional maxima ( Ciresan et al., 2013;

ong et al., 2015; Xie et al., 2015a; Sadanandan et al., 2017 ). 

There exist relatively few studies that consider cell detec-

ion/segmentation as a regression problem ( Kainz et al., 2015; Xie

t al., 2015b; Sirinukunwattana et al., 2016; Chen et al., 2016; Xie

t al., 2018a; 2018b ). These studies define their outputs with regard

o the Euclidean distance between a pixel and its closest annotated

ell center. Most of them calculate this inner distance using only

he dot annotations on cell centers without using any boundary

segmentation) information. Thus, they use a threshold to decide

ixels for which the distance will be zero (i.e., determine pixels

elonging to the background). This thresholding together with the

nner distance definition itself impose a one-sized circular shape

n the cells, which may not be true for all cell types. These stud-

es approach the learning of this inner distance as a single-task

egression problem . Different than all these studies, our proposed

eepDistance model defines a secondary distance metric that bet-

er preserves the morphological characteristics of cells and consid-

rs its learning as a complementary task to the main task of cell

etection. Additionally, it proposes a multi-task regression frame-

ork that uses shared feature representations to concurrently learn

hese two tasks. 

There are only a few studies that use a cascaded network archi-

ecture for cell detection/segmentation. Ram et al. (2018) propose

 network that sequentially learns a classification mask on an im-

ge and then regresses a density map on this classification mask

or cell detection in 3D microscopy images. Kechyn (2018) uses the

rchitecture proposed by Bai and Urtasun (2017) for cell segmenta-

ion. This architecture is mainly designed to learn an energy func-

ion to be used in a watershed algorithm for the purpose of split-

ing a map of under-segmented components into their correspond-

ng objects. Thus, it requires obtaining the segmentation map of an

mage beforehand and takes it as an input together with the image.

t first learns a gradient map of a distance transform from these in-

uts and then learns a map of energy levels from the gradients. As

pposed to our proposed multi-task framework, both of these net-

orks cascade their tasks in serial and learns them without shar-

ng any representations. On the other hand, our model proposes

o learn two regression maps in parallel, in the context of multi-

ask learning, which forces these tasks to use shared feature rep-

esentations. The latter approach is known to be more effective to

void local optima, and as a result, to obtain a more generalizable

odel ( Caruana, 1997 ). 

There exists another study that also uses a multi-task frame-

ork to detect glands and nuclei in histopathological images. This

ramework concurrently learns two classification maps, where the

rst one is the map of gland/nucleus pixels and the other is that

f their boundaries. It then combines the two classification maps

ith a simple fusion function ( Chen et al., 2017 ). However, dif-

erent than our proposed multi-task regression model, this exist-

ng study neither considers detection as a regression problem nor

earns regression and classification tasks in a single multi-task net-

ork. Additionally, its goal is to locate glands/nuclei in fixed and

tained histopathological images whereas our aim is to detect cells

n inverted microscopy images which is used for high throughput

nd real-time cell screening. 
. Methodology 

The proposed DeepDistance model relies on formulating cell de-

ection as a regression problem, in which a metric map is esti-

ated to express the degree of pixels suggesting a cell center, and

dentifying regional maxima on this map as cell locations. This

odel uses inner distance as the primary metric and estimates it

y a fully convolutional network (FCN), considering the learning

f this metric as the main task in regard to the cell detection

roblem. On the other hand, as opposed to the previous studies,

he DeepDistance model proposes to approach this learning as a

ulti-task regression problem, in which multiple regression tasks

re learned using shared feature representations. To this end, this

odel defines a secondary metric, normalized outer distance , and

onsiders its learning as a complementary task that represents a

ifferent aspect of the problem. The proposed DeepDistance model

earns this new task in parallel to the main task by constructing

nd end-to-end training an FCN with a shared encoder path, which

orces these multiple tasks to learn shared feature representations

t various abstraction levels. 

The following subsections give the details of the proposed Deep-

istance model. Section 3.1 mathematically formulates the distance

etrics used to define the tasks. It then gives the architecture

f the FCN used for learning these tasks and provides the de-

ails of its training. Section 3.2 discusses how to extend the pro-

osed multi-task regression network to cover an additional task(s),

y giving the details of another version of the proposed model

here cell pixel classification is considered as the additional task.

ection 3.3 presents the detection algorithm that uses inner dis-

ances estimated by the FCN to locate individual cells in a given

mage. Finally, Section 3.4 suggests a segmentation algorithm that

akes use of all of the estimated maps to delineate the cell bound-

ries. 

.1. Multi-task FCN for distance learning 

The proposed DeepDistance model uses two distance metrics for

ach pixel q . The first one is inner distance d inner ( q ) that is calcu-

ated similar to the previous studies. Its learning is considered as

he main task; cell locations are detected on the estimated inner

istance map of the pixels (see Section 3.3 ). The second metric is

ormalized outer distance d outer ( q ) that is defined by this current

tudy in order to better quantify morphological cell characteris-

ics. Learning this outer distance is considered as a complementary

ask, which is used to improve the performance of the main task. 

These distances are defined in Eqs. (1) and (2) , respectively,

hen annotations are provided. The annotations are, of course, not

vailable for images whose cells are supposed to be automatically

etected. Thus, our DeepDistance model proposes to estimate the

istances by an FCN that will be trained on the pixels of annotated

mages. 

Let A = { a i } be the set of annotated cells in an image, P(a i ) =
 p ik } be the set of pixels belonging to an annotated cell a i , B(a i ) =
 b ik } be the set of its boundary pixels, and C(a i ) be its centroid

ixel. For pixel q , 

 inner (q ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

1 + α min 

a i ∈A 
‖ q − C(a i ) ‖ 

2 
if q ∈ P(a i ) 

0 if q ∈ background 

(1) 
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Fig. 2. (a) Original subimage, (b) inner distance map that uses distances from pixels 

to their closest cell centers, (c) normalized outer distance map that uses distances 

from cell pixels to their closest boundary annotations, and (d) cell pixel annotations. 
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d outer (q ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

min 

b ik ∈B(a i ) 
‖ q − b ik ‖ 

2 

max 
r∈P(a i ) 

min 

b ik ∈B(a i ) 
‖ r − b ik ‖ 

2 
if q ∈ P(a i ) 

0 if q ∈ background 

(2)

where α in Eq. (1) is the decay ratio that is empirically selected as

0.1, similar to the previous studies. The denominator in Eq. (2) cor-

responds to the maximum distance in annotated cell a i , which is

used as a normalization factor. This normalization is effective to

obtain similar distances for cells of different sizes, which will drive

the FCN to make better generalizations regardless of the cell size. 

For an example subimage given in Fig. 2 a, these distance defini-

tions are illustrated in Figs. 2 b and 2 c, respectively. The inner dis-

tance definition well indicates the cell centers since it uses the Eu-

clidean distances from pixels to their closest cell centers. However,

as it uses the centers as the reference point, the distance decrease

from a center to its boundaries is the same for all directions and

for all cells. Thus, when it is used alone, this definition imposes a

circular and one-sized shape on the cells, as also seen in Fig. 2 b.

On the contrary, since the normalized outer distance is calculated

with a reference to a cell boundary, this decrease may differ from

one direction to another as well as from one cell to another, de-
Fig. 3. Architecture of the FCN used for multi-task regression of two distance maps, alo

and (c) normalized outer distance map as the outputs. Note that the tile used in this figu

multi-channel feature map with its dimensions and number of channels being indicated 

is distinguishable by its color. 
ending on the shape and size of the cell. Thus, it better preserves

he morphological characteristics of cells, as seen in Fig. 2 c. 

.1.1. Network architecture 

For multi-task learning of these two distance maps, our Deep-

istance model constructs an FCN architecture consisting of a

hared encoder path and two decoder paths (see Fig. 3 ). The en-

oder path is shared by the two tasks to extract shared feature

epresentations from an RGB image, whose pixels are normalized

cross the image, at various abstraction layers. The two decoder

aths, with symmetric connections to the features in the encoder

ath (shown with concatenation operators in the figure), are used

o separately construct the distance maps from these extracted

hared features. This architecture has the convolution layers with

 × 3 filters and uses the rectified linear unit (ReLU) activation

unction. Its pooling/upsampling layers use 2 × 2 filters. The num-

er of the layers and the number of the feature maps used in each

onvolution layer are depicted in Fig. 3 . Note that these numbers

re selected by inspiring with the U-net model ( Ronneberger et al.,

015 ). The original U-net model has a single decoder path designed

or single-task learning. On the contrary, the DeepDistance model

as two decoder paths, with symmetric connections to the shared

eatures, for multi-task learning of the two distance maps. 

This FCN is end-to-end trained on 512 × 512 tiles cropped out

f the training images. This tile size makes maximum memory use

n the GPU that we used (GeForce GTX 1080 Ti) when the batch

ize is selected as 1. The tiles are cropped by a sliding window

pproach with an increment of 256 pixels. The selection of this

ncrement size ensures that regions stay on the borders of one tile

ill be close to the central area of another tile. 

.1.2. Network training 

The FCN is implemented in Python using the Keras deep learn-

ng library. It is trained from scratch with the backpropagation al-

orithm that uses the mean squared error as its loss function. It

ollows an early stopping approach based on the loss calculated

or the tiles cropped out of the validation images. The contribu-

ions of both tasks to the loss function are the unit weight. The

atch size is 1 and the drop-out factor is 0.2. The learning rate and

he momentum value are adaptively adjusted using the AdaDelta

ptimizer ( Zeiler, 2012 ). The source codes of this implementation

re available at http://www.cs.bilkent.edu.tr/ ∼gunduz/downloads/

eepDistance . 
ng with an example tile (a) as the input and the estimated (b) inner distance map 

re is not a part of the training set used in our experiments. Each box represents a 

in order on the left side of the box. Each arrow corresponds to an operation which 

http://www.cs.bilkent.edu.tr/~gunduz/downloads/DeepDistance


C.F. Koyuncu, G.N. Gunesli and R. Cetin-Atalay et al. / Medical Image Analysis 63 (2020) 101720 5 

3

 

m  

f  

t  

m  

i  

t  

b  

w  

t  

D  

c  

m  

p  

l  

t  

a

 

t  

d  

d  

d  

v  

t  

u  

c  

t  

p  

t  

a  

a  

fi  

i  

E  

d  

w  

t  

t  

e  

s  

t  

t

3

 

i  

i  

t  

h  

g  

s  

t  

w

 

e  

d  

c  

s  

C  

b

m

s  

o  

i  

c  

i

3

 

d  

b  

f  

p  

u  

t  

d

 

p  

e  

i

b  

t  

T  

t  

e  

r  

b  

w

 

m  

t  

m  

f  

i  

fi  

n  

T  

b  

m  

t  

w  

t  

f  

s

4

4

 

w  

a  

c  

2  

p  

fi  

c

 

1  

a  

s  

o  
.2. Extending the FCN for additional tasks 

The proposed DeepDistance model considers cell detection as a

ulti-task regression problem that estimates two distance maps

rom the RGB image, one for formulating the main task of cell de-

ection and the other as an auxiliary task with the motivation of

ore effectively learning the main task. The FCN architecture given

n the previous section is designed to learn these two regression

asks at the same time. This section discusses how this model can

e extended to cover more auxiliary tasks, concurrent learning of

hich may further increase the performance of the main task. For

his purpose, this section implements an extended version of the

eepDistance model that comprises an additional task of cell pixel

lassification. This additional task aims to construct a classification

ap (as shown in Fig. 2 d) from the shared features of the encoder

ath 

1 Note that here, instead of defining another regression prob-

em as the additional task, we use a classification problem in order

o demonstrate that the model can easily be extended to cover the

uxiliary tasks related with regression as well as classification. 

The extended version of the DeepDistance model uses the FCN

hat has still one shared encoder path but one extra decoder path,

efined for the new classification task. The architecture of this new

ecoder path is the same with those of the two decoder paths,

efined for regressing the distance maps, except that its last con-

olution layer uses the sigmoid function instead of ReLU. Other

han this, it has the same convolution and upsampling layers and

ses the same symmetric connections to the features in the en-

oder path (uses the same concatenation operators). Training of

his extended FCN follows the same procedure explained in the

revious section, with only a difference of loss calculation. This ex-

ended FCN still uses the mean squared error as its loss function

nd the regression tasks still equally contribute to this loss with

 unit weight, but the loss contribution weight of the new classi-

cation task is 0.1. The rationality behind using a reduced weight

s as follows. Both of the distance outputs, calculated as defined in

qs. (1) and (2) , are in the range between 0 and 1. However, these

istances reach the maximum value of 1 for only a few cell pixels

hereas they yield much smaller values for the rest of them. On

he other hand, the output of the classification task is always 1 for

he cell pixels, which results in calculating a larger mean squared

rror for this task. Since all tasks are learned at the same time by

haring the same features, to avoid creating an unfair bias towards

he learning of the classification task, we reduce its loss contribu-

ion weight to 0.1. 

.3. Cell detection 

This step is to detect cells in an unannotated image. For that,

t feeds the tiles cropped out of the image to the trained FCN and

dentifies cell locations on the inner distance maps estimated by

his FCN. Since pixels belonging to a cell center are expected to

ave higher estimated values, the DeepDistance model identifies re-

ional maxima on the inner distance maps as the cell centers. To

uppress possible noise in the estimated maps, the model applies

he h-maxima transform beforehand and suppresses the maxima

hose height is less than the value of h . 

This step may result in poor estimations for regions close to tile

dges. As a solution to this problem, our model estimates the inner

istance maps for overlapping tiles and then averages all distances

alculated for the same pixel. The overlapping tiles are obtained by

liding a window over the image with an increment of 64 pixels.

onsidering the 512 × 512 tile size used by the FCN, this increment
1 To take overlapping cells apart, and hence to obtain an improved map, cell 

oundaries are widened and subtracted from the classification map. This improved 

ap is also used in the comparison methods to make fair comparisons. 

F  

f  

t  

c  
ize is small enough to ensure that the regions close to the edges

f one tile will be close to the central region of some others. It

s also large enough to cause only negligible speed-down in the

omputational time. Note that the same sliding-window approach

s used for all comparison algorithms. 

.4. Cell segmentation 

The DeepDistance models are primarily designed to identify in-

ividual cells by locating their centers without delineating their

oundaries. This goal is to address the problem of identifying cells

or the purpose of counting (or tracking), which is a very common

ractice for cell culture research. For instance, cell counting can be

sed to determine the number of cells in a tissue culture in-real-

ime within predefined intervals for examining the cell growth un-

er the effects of a cytotoxic treatment. 

Nevertheless, it is also possible to design an algorithm that ex-

loits the outputs of DeepDistance for cell segmentation. To this

nd, this section presents a simple marker-controlled region grow-

ng algorithm that works on the estimated maps. Let M I and M O 

e the estimated maps of the inner and normalized outer dis-

ances, respectively, and M C be the estimated classification map.

he algorithm first considers the cell locations identified on M I by

he cell detection algorithm ( Section 3.3 ) as markers. It then it-

ratively grows these markers onto foreground pixels in M C with

espect to the distances in M O . That is, it grows the markers pixel

y pixel starting from the pixel with the highest M O to the one

ith the smallest M O . 

At the end, it applies three-step postprocessing on the grown

arkers. First, it eliminates the holes in the grown markers and

hose smaller than an area threshold a thr . Then, it dilates the re-

aining grown markers using a structuring element with a size of

 dilate . Here it is important to note that, in training, cell boundaries

n the annotated maps are widened and subtracted from the classi-

cation maps to take overlapping cells apart, and thus, to train the

etworks to better learn the boundaries between overlapping cells.

hus, the grown markers are dilated to add these boundary pixels

ack to the segmented cells since the growing process grows the

arkers on the estimated classification maps. Finally, it smoothes

he boundaries of the dilated markers by applying a majority filter

ith a size of f majority . Note that this postprocessing is also used for

he comparison algorithms. Its parameters (namely, a thr , f dilate , and

 majority ) are selected for each algorithm separately using the grid

earch on the training and validation images (see Section 4.3 ). 

. Experiments 

.1. Datasets 

We test our DeepDistance model on three datasets, each of

hich consists of live cell images of a different cell line. They

re the CAMA-1, MDA-MB-453, and MDA-MB-468 human breast

ancer cell lines. The images in all datasets were acquired at

0 × magnification and 3096 × 4140 pixel resolution. An exam-

le image from each dataset is shown in Fig. 1 . As seen in this

gure, cells might be visually different within and across different

ell lines. 

Three images are randomly selected from each of the CAMA-

 and MDA-MB-453 cell lines and are used for training the FCN

s well as for selecting the parameters of the cell detection and

egmentation steps. While training the FCN, the tiles cropped out

f four of these six images are used to learn the weights of the

CN and those of the remaining two are used as validation tiles

or early stopping. The cells in the rest of the images in these

wo cell lines are used for testing. In our experiments, these test

ells, which belong to CAMA-1 and MDA-MB-453, are considered
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Table 1 

For each cell line, the number of images and the number of cells in its 

training, validation, and test sets. 

Training Validation Test 

Image Cell Image Cell Image Cell 

CAMA-1 2 752 1 84 6 1254 

MDA-MB-453 2 522 1 137 4 765 

MDA-MB-468 - - - - 8 1679 

Total 4 1274 2 221 18 3698 
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as dependent test samples since other images/cells of the same

cell lines are used for training. To assess the success of our model

on an unseen cell line, none of the images of MDA-MB-468 are

used for training the FCN or for parameter selection. Thus, the cells

of this MDA-MB-468 cell line are considered as independent test

samples. For each cell line, the number of images and the number

of cells in the training, validation, and test sets are presented in

Table 1 . The cells in these sets are annotated by manually drawing

their boundaries. 

4.2. Evaluation 

The results are quantitatively evaluated on the test cells. For

cell detection, the cell-level F-score metric is calculated on the de-

tected cells (markers). In this calculation, a detected cell D is con-

sidered as true positive if the following three conditions are sat-

isfied: (i) at least 50 percent of the regional maxima rmax D corre-

sponding to D should be inside an annotated cell A , (ii) at most 10

percent of rmax D could be inside another annotated cell, and (iii)

the annotated cell A should not contain more than 50 percent of

the regional maxima corresponding to another detected cell. Note

that the second condition is used especially to exclude the under-

segmented cells from the true positives. Then, the precision and

recall metrics are obtained on the true positives, and the F-score is

calculated as their harmonic mean. 

For cell segmentation, the F-score metric is calculated based on

the intersection-over-union (IoU) scores. For that, for each pair of

overlapping segmented cell S and annotated cell A , the IoU score is

calculated as IoU (S, A ) = | S ∩ A |/| S ∪ A |. Then, for a given IoU thresh-

old τ , a segmented cell S is considered as true positive if IoU( S,

A ) > τ for an annotated cell A . Likewise, the precision, recall, and

F-score metrics are calculated on these true positives. In our ex-

periments, the F-scores are calculated for different IoU thresholds

τ = { 0 . 50 , 0 . 55 , . . . , 0 . 90 } and their average is used for quantitative

evaluation. 

4.3. Parameter selection 

The DeepDistance model uses one external parameter for cell

detection. This parameter is the h value used by the h-maxima

transform to suppress possible noise in the estimated inner dis-

tance map. The value of this parameter is selected on the six im-

ages belonging to the training and validation sets of the CAMA-

1 and MDA-MB-453 cell lines. For that, the following values of
Table 2 

For cell detection, the cell-level F-score metrics obtained

Dependent test sam

CAMA-1 M

DeepDistance 91.80 9

DeepDistance (extended) 92.07 9

SingleInner 87.67 8

SingleOuter 90.39 8

SingleClassification 81.73 8
 = { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } are considered and the one that yields

he highest cell-level F-score metric for the cells in these six im-

ges is selected. The selected value is h = 0 . 2 . 

The model uses four external parameters for cell segmentation.

hey are used by the marker-controlled region growing algorithm.

he first one is the h value of the h-maxima transform to de-

ect the markers. The other three are those of the postprocess-

ng step: the area threshold a thr to eliminate small grown markers,

he structuring element size f dilate to dilate the remaining grown

arkers, and the majority filter size f majority to smooth their bound-

ries. In the experiments, the grid search is used to select the val-

es of these parameters. For that, all combinations of the follow-

ng sets h = { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } , a thr = { 500 , 1000 , 1500 , 2000 } ,
f dilate = { 5 , 7 , 9 , 11 } , and f ma jority = { 11 , 15 , 21 , 25 } are considered.

hen, the one that gives the highest average IoU-based F-score on

he training and validation images is selected. Note that for each

ombination, this average is taken on the F-scores calculated us-

ng different IoU thresholds. The selected values are h = 0 . 2 , a thr =
0 0 0 , f dilate = 11 , and f ma jority = 15 . Also note that the parameter

alues are selected similarly for the comparison methods. 

. Cell detection results 

The quantitative results obtained by the proposed multi-task

eepDistance models are given in Table 2 . This table reveals that

ur models lead to accurate cell detection results on both depen-

ent and independent test samples. It also shows that extending

he model by including the additional task of cell pixel classifica-

ion further improves the results. Additionally, the visual results

btained on exemplary subimages are presented in Fig. 4 . Note that

his figure shows only the cells correctly identified by the models;

t does not show any incorrectly located cell, which does not match

ith any annotated cell satisfying the aforementioned three condi-

ions. 

In order to understand the effectiveness of the multi-task re-

ression framework used by the DeepDistance model, we compare

t with three deep learning based methods that use a single-task

ramework. These methods are designed to separately learn the

asks used by the proposed DeepDistance models. In particular,

hey learn only an inner distance map ( SingleInner ), only a normal-

zed outer distance map ( SingleOuter ), and only a classification map

f cell pixels ( SingleClassification ) from the RGB image, respectively.

or learning their single-tasks, all these methods use an FCN with

 single encoder path, similar to our models, but also only a sin-

le decoder path, as opposed to ours. The convolution and pool-

ng/upsampling layers of this single encoder and single decoder

ath are the same with those specified in Fig. 3 . They also end-

o-end train their FCNs and the training setups are the same with

urs. Obviously, since they have only one task to be learned, none

f these methods take advantage of learning the shared feature

epresentations. After learning their FCNs, these methods take the

ame cell detection steps of our model. These steps include esti-

ating a map by the FCN, suppressing its noise by the h-maxima

ransform, and finding regional maxima on the resulting map. Here

he SingleInner and SingleOuter methods use their estimated dis-
 on the test sets. 

ples Independent test samples 

DA-MB-453 MDA-MB-468 

0.87 84.48 

1.40 85.45 

9.17 82.02 

8.03 79.67 

0.41 57.71 
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Fig. 4. For cell detection, visual results obtained on illustrative subimages. The first 

two subimages are taken from the dependent test samples and the last two from 

the independent test samples, which belong to the cell line that was not used in 

any part of the training. First row: annotated cells. Second and third rows: cells 

correctly identified by the proposed DeepDistance model and its extended version. 

Fourth to sixth rows: cells correctly identified by the single-task networks; namely, 

the SingleInner, SingleOuter , and SingleClassification methods. Note that this figure 

does not show any cell incorrectly identified by the algorithms. 
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Fig. 5. For cell detection, test set cell-level F-scores as a function of the h parameter 

for (a) the DeepDistance model and (b) its extended version. 

Fig. 6. (a) Maps of calculated inner distances when the ground truths are provided. 

Inner distance maps estimated by (b) SingleInner , (c) DeepDistance , and (d) its ex- 

tended version. 
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ance maps and the SingleClassification method uses the estimated

osterior map of the cell pixel class. The quantitative results of

hese methods are given in Table 2 and their visual results on ex-

mplary subimages are presented in Fig. 4 . These results reveal

hat concurrent learning of multiple tasks improves the results of

ingle-task learning. It is worth to noting that this improvement is

ore evident for the independent test samples. 

.1. Parameter analysis 

When it is used for cell detection, DeepDistance has one exter-

al parameter: the h value used by the h-maxima transform to

uppress noise in the estimated inner distance map. Small h val-

es do not sufficiently suppress noise, resulting in false cell de-

ections and oversegmentations. On the other hand, unnecessarily

arge values suppress too many pixels as noise, causing not to iden-

ify many actual cells and leading to undersegmentations. Both of

hese cases decrease the performance. This is consistent with our

xperimental results shown in Figs. 5 a and 5 b, which depict the
est set cell-level F-scores as a function of the h value for the Deep-

istance model and its extended version, respectively. 

.2. Multi-task vs. single-task learning 

Since the main goal of this work is cell detection, our DeepDis-

ance models define the estimation of an inner distance map as

he main task and find regional maxima on this estimated map

o detect cells. The motivation behind these choices is the fact

hat the inner distance definition gives sharp increases at cell cen-

ers and the locations with these sharp increases can be detected

y finding regional maxima. Hence, to obtain accurate detections,

ne should estimate an inner distance map with distinct differ-

nces between the cell centers and their surrounding pixels such

hat these centers can be identified as regional maxima. That is,

ne should estimate a map consisting of sharp enough bright re-

ions close to the cell centers. To improve the performance of

he task of this inner distance estimation, our models take ad-

antage of multi-task learning approach. This approach helps the

odels become more robust to avoid overfitting a task, compared

o the approach of learning the same task alone with a single-

ask model ( Caruana, 1997 ). To get more insight in this multi-

ask learning approach, this section visually analyzes the estimated

aps of single-task and multi-task models. 

For the independent test samples given in Fig. 4, Fig. 6 a shows

he maps of calculated inner distances when the ground truths

re given. Figs. 6 b, 6 c, and 6 d illustrate the inner distance maps

stimated by the SingleInner method, the proposed DeepDistance

odel, and its extended version, respectively. SingleInner learns its

ap as a single-task whereas our models define auxiliary tasks

nd learn the inner distance map in parallel to these auxiliary

asks, forcing them to learn shared representations with a shared

ncoder path. The latter type of learning, which is an example of

ulti-task learning, is known to be effective for increasing the per-

ormance of individual tasks for many domains. We also observe
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Fig. 7. (a) Maps of calculated outer distances when the ground truths are provided. 

Outer distance maps estimated by (b) SingleOuter , (c) DeepDistance , and (d) its ex- 

tended version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. For cell segmentation, visual results obtained on illustrative subimages. The 

first two subimages are taken from the dependent test samples and the last two 

from the independent test samples. First and second rows: original subimages and 

their annotations. Third row: cells segmented by the proposed DeepDistance model. 

Fourth to seventh rows: cells segmented by the comparison methods; namely, the 

CascadedClassification, MultiTaskClassification, DLA , and Micro-Net-508 methods. 
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this performance increase in the estimated maps given in Fig. 6 .

SingleInner cannot successfully detect the three cells shown inside

red ellipses since it cannot produce sharp enough bright regions

(with distinct enough estimated distances) for these cells. Although

DeepDistance , which uses one auxiliary task, leads to brighter re-

gions for these cells, they are still not sharp enough for two of

them to be identified as regional maxima. The extended version

of DeepDistance , which uses one more auxiliary task, does better

job in inner distance estimations such that they have sharp enough

bright regions for all of these three cells. Here it is worth to noting

that all methods apply the h-maxima transform to suppress noise,

and hence, to prevent over-segmentations and false positives. If it

was not applied, SingleInner might give regional maxima for some

of the three cells even though the distances estimated for their

centers were not that distinct (bright). However, that case would

also give many over-segmented cells and false positives. 

Likewise, Fig. 7 a shows the maps of calculated outer distances

when the ground truths are given. Figs. 7 b, 7 c, and 7 d show the

outer distance maps estimated by SingleOuter, DeepDistance , and its

extended version, respectively. It is observed that a single-task Sin-

gleOuter method is less accurate in estimating outer distances es-

pecially for pixels close to cell boundaries. Due to this incorrect

estimation, it locates only a single cell for each of the cell pairs

shown inside green ellipses, resulting in under-segmentations for

these cell pairs. Our multi-task DeepDistance models yield better

estimations for these boundary pixels. However, it is important to

note that our models do not use the estimated outer distances

in the detection algorithm but define this estimation as an auxil-

iary task to represent a different aspect of the problem. Concurrent

learning of two related tasks with a multi-task model, which uses

shared feature representations, better helps avoid local optima. In

other words, when two related tasks share the same representa-

tions, it is more difficult to finetune these representations for only

one of these tasks. This is effective to obtain better learning per-

formances for individual tasks, as also shown in Figs. 6 and 7 . 

6. Cell segmentation results 

The quantitative results obtained by the DeepDistance model

for cell segmentation are given in Table 3 . Its visual results on

exemplary subimages are presented in Fig. 8 . These results show

that the proposed multi-task framework used by the DeepDistance

model is effective to obtain better results also for cell segmenta-

tion. Note that this section includes the results of the extended

version of the DeepDistance model since the segmentation algo-

rithm described in Section 3.4 employs an estimated classification

map in its region growing process. 
Next, we compare DeepDistance with four cell segmentation

ethods. The first two of them use more than one task in

esigning their models. The first one is CascadedClassification

hat uses a cascaded architecture similar to the one proposed

y Ram et al. (2018) . This cascaded architecture is designed to se-

uentially learn a classification map of cell pixels from the RGB im-

ge and then to regress an inner distance map from the classifica-

ion map. This method learns these maps in serial by using two se-

ially cascaded FCNs that do not share any feature representation.

ach of these serial FCNs has a single encoder and a single decoder

ath that contains the same convolution and pooling/upsampling

ayers specified in Fig. 3 . Although these two FCNs are learned at

he same time by backpropagating the error through the entire

etwork in an end-to-end training fashion, they do not learn any

hared feature representation. This method uses the same training
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Table 3 

For cell segmentation, the average IoU-based F-score metrics obtained on the test sets. Note that this av- 

erage is taken over the F-scores calculated using different IoU thresholds τ = { 0 . 50 , 0 . 55 , . . . , 0 . 90 } . 
Dependent test samples Independent test samples 

CAMA-1 MDA-MB-453 MDA-MB-468 

DeepDistance (extended) 75.35 71.42 63.71 

CascadedClassification 61.53 59.87 33.67 

MultiTaskClassification 72.62 62.04 55.54 

DLA ( Kang et al., 2019 ) 68.73 67.59 49.55 

Micro-Net-508 ( Raza et al., 2019 ) 65.22 67.60 43.84 
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Fig. 9. For cell segmentation, test set average IoU-based F-scores as a function of 

(a) the parameter h , (b) the dilation structuring element size f dilate , (c) the area 

threshold a thr , and (d) the majority filter size f majority . 
etup with our model and applies the same postprocessing steps

n its estimated classification maps to segment the cells. The re-

ults given in Table 3 demonstrate that DeepDistance , which learns

ultiple tasks in parallel with shared feature representations, gives

ore accurate results than CascadedClassification , which learns two

asks in serial without sharing any representation. This indicates

he effectiveness of learning shared feature representations from

ultiple tasks, which is indeed known to be effective for many

omains ( Caruana, 1997 ). As also seen in the visual results given

n Fig. 8 , CascadedClassification yields many undersegmentations,

hich is the reason of obtaining low IoU-based F-scores especially

or the independent test samples. 

The second comparison method is MultiTaskClassification that

pproaches cell segmentation as a multi-task classification prob-

em. Similar to the model proposed by Chen et al. (2017) , this

ethod defines two classification tasks, where one is the task of

ell pixel classification and the other is the task of cell boundary

lassification, and learns them in parallel by also using shared fea-

ure representations. For learning these tasks, this method uses an

CN whose architecture is the same with the one given in Fig. 3 .

his FCN is end-to-end trained also using the same training setup.

o segment the cells in a given image, MultiTaskClassification com-

ines the two classification maps estimated by the FCN with a

imple fusion technique that is also used by Chen et al. (2017) .

or that, the pixels estimated as boundary are subtracted from the

stimated cell pixel classification map and the connected compo-

ents on the resulting map are identified as cells. These identi-

ed cells are also postprocessed using the same steps described in

ection 3.4 . The results of this method are also given in Table 3 and

ig. 8 . They show that this method, which approaches cell seg-

entation as a multi-task classification problem, yields lower ac-

uracies than the proposed DeepDistance model. This might be at-

ributed to the regression tasks learned by our model conveying

ore complementary information, concurrent learning of which

ay better help the model less overfit on the training samples. As

 result, this may give a more generalizable model. 

The other two comparison algorithms, namely the DLA and

icro-Net-508 methods, are from the recent studies of cell seg-

entation. The DLA method ( Kang et al., 2019 ) proposes to design

 two-stage network by stacking two U-nets. The first stage is to

earn a three-class segmentation map, where classes are defined

s nucleus, boundary, and background. The second one is to refine

he output of the first stage and to obtain the final fine-grained

egmentation map. In our experiments, we observe that directly

sing this final map leads to many undersegmented cells, and thus,

reatly lowers the IoU scores. Thus, we subtract the boundary map

stimated by the first stage from the final map and postprocess

he result applying the same steps used by our model. The results

f this method are given in Table 3 and Fig. 8 . They reveal that

ven though the estimated boundaries are subtracted from the fi-

al map, it still yields undersegmentations. Here it is worth to not-

ng that the DLA method gives relatively better results for the de-

endent test samples but it yields lower performance for the in-

ependent ones. This indicates the better generalizability of our
roposed model, which poses cell segmentation as a multi-task re-

ression problem. 

The Micro-Net-508 method ( Raza et al., 2019 ) designs an archi-

ecture that trains its network at multiple resolutions of the in-

ut image. It also defines connections between the intermediate

ayers of the networks of different resolutions. Then, it proposes

o generate the output using multi-resolution deconvolutional fil-

ers. Likewise, in our experiments, we observe that this method

enerates outputs containing many undersegmentations. Therefore,

e add one more step to the postprocessing algorithm. This addi-

ional step erodes the generated segmentation map with a struc-

uring element, finds the connected components on this eroded

ap, and then separately dilates each component using the same

tructuring element. Note that we use such kind of additional step

ince this method does not generate an additional boundary map.

he quantitative and visual results obtained by the Micro-Net-508

ethod are given in Table 3 and Fig. 8 . Similar to the DLA method,

icro-Net-508 also leads to many undersegmented cells, especially

or the independent test samples, and as a result, gives lower IoU

cores. 

.1. Parameter analysis 

For segmentation, this study suggests a marker-controlled re-

ion growing algorithm that uses four external parameters. We

lso analyze the effects of these parameters on the segmentation

erformance. To this end, for each parameter, the selected values of

he other three parameters are fixed and the test set performance
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is measured as a function of the parameter of interest. These anal-

yses are depicted in Fig. 9 . 

The first parameter is the h value of the h-maxima trans-

form, which is used to determine the markers. As mentioned in

Section 5.1 , this parameter should be selected large enough to sup-

press noise but also small enough not to suppress pixels belong-

ing to cells. Unnecessarily suppressing these pixels results in many

false negatives and undersegmentations, leading to huge decreases

in the average IoU-based F-scores ( Fig. 9 a). The other three pa-

rameters are used to postprocess the grown markers. Among these

three, the size f dilate of the structuring element used to dilate the

grown markers affects the performance the most. Remember that,

in training, cell boundaries in the annotated maps are widened

and the corresponding pixels are subtracted from the classification

maps to take overlapping cells apart. Since the network is trained

to estimate these boundary pixels as background, the f dilate param-

eter should be selected large enough to add these pixels back to

the segmented cells ( Fig. 9 b). The other two parameters are the

area threshold a thr to eliminate small grown markers and the size

f majority of the majority filter to smooth their boundaries. As seen

in Figs. 9 c and 9 d, these parameters slightly affect the average IoU-

based F-scores. 

7. Conclusion 

This paper presents the DeepDistance model, which designs a

multi-task regression framework for detecting individual cells in

microscopy images, and experimentally demonstrates the success-

ful use of this model on cells of three different cell lines. For the

cell detection problem, this is the first proposal of a multi-task re-

gression model that learns multiple regression tasks in parallel by

using shared feature representations. 

The DeepDistance model designs this regression framework to

concurrently learn two distance metrics for image pixels in the

context of multi-task learning. To this end, it defines the normal-

ized outer distance metric to represent a different aspect of the

problem and proposes to learn it in parallel to the primary inner

distance metric, which is defined in regard to the main cell de-

tection task, for the purpose of increasing its generalization ability.

For this concurrent learning, the DeepDistance model constructs an

FCN with a shared encoder path, which forces the two tasks to

learn shared feature representations. Such shared representation

learning on multiple tasks is indeed known to be more effective

to avoid each task to overfit, and as a result, to obtain more gen-

eralized models. Our experiments on three different cell lines also

reveal that this multi-task learning together with formulating cell

detection as a regression problem lead to accurate results, improv-

ing the results of the single-task frameworks. 

This work mainly focuses on the cell detection problem. Nev-

ertheless, it also suggests a simple region growing algorithm that

employs the estimated maps to delineate cell boundaries. The ex-

periments show that this cell segmentation algorithm yields more

accurate results than the previous approaches. However, one may

design a network that includes additional tasks specifically focused

on learning the cell boundaries (e.g., defining cell boundary esti-

mation as the main task) and use the estimated boundaries in the

region growing process too. Designing such multi-task networks

and developing more sophisticated cell segmentation algorithms

are considered as one future research direction. We believe that

the cell detection method proposed by this study is not limited to

static cell images, but it can easily be adapted and used for real-

time live images throughout a time dependent experiment under

inverted microscopy. The investigation of the latter use is consid-

ered as another future research direction of this study. 
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