
Introduction
CS 201

This slide set covers the basics of C++. You should know most
of these basic concepts from your Java classes. To refresh your
knowledge, you may read Chapters 2, 3, 4, and 5 from your
Deitel & Deitel book.

Let’s convert the following simple Java program to C++

import java.util.*;

public class GradeBook {

 public void displayMessage(int courseNo) {
 System.out.println("Welcome to " + courseNo);
 }

 public static void main(String [] args) {
 int cno;
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter course no: ");
 cno = scan.nextInt();
 displayMessage(cno);
 }
}

C++ Basics
● Each program should have one main function (which is a global, non-member

function) and may have one or more classes

● A class is a user-defined type to create objects
○ Class definition tells the compiler the class’ data members and member functions
○ (Default) Access-specifier private makes a data member or a member function accessible

only to the member functions of the same class
○ Access specifier public indicates that a data member or a member function is accessible to

other functions and the member functions of other classes (through the dot operator)

● #include instructs the C++ preprocessor to replace directive with a copy of
the contents of the specified file

#include <iostream>
using namespace std;

class GradeBook {
public:
 void displayMessage(int courseNo) {
 cout << "Welcome to " << courseNo << endl;
 }
};
int main() {
 int cno;
 GradeBook G1; // Do not use the new operator; it is

// an invalid use (different than Java)
 cout << "Enter course no: ";
 cin >> cno;
 G1.displayMessage(cno);
 return 0;
}

Declarations
● Variables are declared to store values in the computer’s memory

● Data members (variables in a class definition)
○ They exist throughout the life of a object
○ Each object maintains its own copy of the

non-static data members

● Local variables (those declared in a function)
○ They cannot be used outside that function body
○ The automatic (non-static) local variables are lost

when the function terminates

● Global variables (we will see them later)

class GradeBook {
public:
 void dummy() {

 int a, b;
 char c;
 double d, e;
 }
private:

 int courseNo, a;
 double avgGPA;
};
int main() {

 int x, y;
 GradeBook G1, G2;

 return 0;
}

Local
variables

Local
variables

Data
members

Data types

long double
double
float
unsigned long int (or unsigned long)
long int (or long)
unsigned int (or unsigned)
int
unsigned short int (or unsigned short)
short int (or short)
unsigned char
char
bool

Promotion hierarchy for fundamental data types

For instance, short, long, int, and
char are integer data types that differ
with respect to the number of bytes that
they use to represent a value

Minimum standards:
● short: 2 bytes

(minimum range -32,768 to 32,767)

● long: 4 bytes
(minimum range -2,147,483,648 to
2,147,483,647)

● int: either short or long

● char: 1 byte
(minimum range -128 to 127)

Let’s extend our GradeBook class by adding

● Data member and its get/set functions
○ Public member functions that allow clients of a class to access its private data member
○ They allow the creator of the class to control how clients access the class’ private data
○ As a rule of thumb, the data members should be declared as private where most of the

member functions are declared as public (it is appropriate to declare certain member functions
as private provided that they are accessed only by the other member functions of the same
class)

● Constructors (functions called when an object is created)

● Overloaded functions (those with the same name but different signatures)

Constructors
● They are the functions that are called when an object is created

○ The function name should be the same with the class name
○ It cannot return any value (not even void)

● If no constructor is explicitly coded, the default constructor provided by the
compiler will be called when an object is created

○ This constructor, which is provided by the compiler, just constructs the object’s data members
without any initialization

○ This corresponds to just allocating memory (with a garbage value) for the data members of
primitive types and calling the default constructors for those that are objects of other classes

○ It does not have any parameters
○ Although data members can be initialized later after the object is created, it is a good software

engineering practice to ensure that an object is fully initialized before the client code invokes
the object’s member functions. In general, you should not rely on the client code to ensure that
an object gets initialized properly.

Constructors
● If at least one constructor is explicitly coded, the matching one will be called

upon an object’s declaration
○ The default constructor provided by the compiler cannot be called anymore
○ You should also code the default constructor (with no argument) if you need to call it

class GradeBook{
public:
 GradeBook(int no){
 setCourseNo(no);
 }
 GradeBook(){
 courseNo = 0;
 }
 ...
private:

int courseNo;
};

OR

class GradeBook{
public:
 GradeBook(int no = 0){
 setCourseNo(no);
 }
 ...
private:

int courseNo;
};

int main(){
 GradeBook G1, G2(201);
 GradeBook G3(101);

 // invalid declaration in C++
 // the new operator can be
 // used when G4 is an object
 // pointer
 // GradeBook G4 = new GradeBook;

 return 0;
}

#include <iostream>
#include <string>
using namespace std;

class GradeBook {

public:
 GradeBook(int no) {
 setCourseNo(no);
 }
 GradeBook() {
 courseNo = 0;
 }

 void setCourseNo(int no) {
 if ((no >= 100) && (no <= 999))
 courseNo = no;
 else{
 cout << "invalid grade" << endl;
 courseNo = 0;
 }
 }
 int getCourseNo() {
 return courseNo;
 }

 // file continues
 void displayMessage(string msg) {
 cout << msg << " ";
 cout << getCourseNo() << "!" << endl;
 }
 void displayMessage() {
 cout << "Welcome to CS ";
 cout << getCourseNo() << "!" << endl;
 }

private:
int courseNo;

}; // end of class

int main(){
 GradeBook gb1(101), gb2;

 gb2.displayMessage();
 gb2.setCourseNo(201);
 gb2.displayMessage("Hello CS");

 return 0;
}

allProgram.cpp

Let’s place a class in a separate file for reusability
● .cpp file is known as a source-code file

● Header files (generally with .h filename extensions)
○ Separate files containing class definitions
○ Allow the compiler to recognize the classes when used elsewhere (of course, provided that the

header file is included)

● Driver files (with the main function)
○ To run your program
○ And also to test the software

Separating interface from implementation
● Interface of a class describes what services class’ clients can use without

revealing how these services are implemented

● It is a good programming practice to separate interface from implementation
○ Client code does not need to know implementation (implementation details are hidden)
○ Client code should not break if implementation changes, as long as interface stays the same

● Header file includes the class’ interface that gives the class definition
○ Prototypes of public member functions for the client
○ Prototypes of public and private member functions and also data members for the compiler

● Source file includes the implementation of class’ member functions
○ Implementations are placed outside the class definition
○ Binary scope resolution operator (::) is used to tie each member function to the class definition

#include preprocessor directive
● It instructs the C++ preprocessor to replace directive with a copy of the

contents of the specified file

● Angle brackets are used to include a file in the C++ Standard Library
○ Preprocessor looks for the specified file only in the C++ Standard Library directory

● Quotes are used to include a user-defined header file
○ Preprocessor looks for the specified file first in the current directory
○ If it does not find the file, it searches the file in the C++ Standard Library directory

#ifndef __GRADEBOOK_H
#define __GRADEBOOK_H

#include <string>
using namespace std;

class GradeBook {
public:
 GradeBook(int no);
 GradeBook();
 void setCourseNo(int no);
 int getCourseNo();
 void displayMessage(string msg);
 void displayMessage();

private:
 int courseNo;
}; // end of class

#endif

#include <iostream>
using namespace std;
#include "GradeBook.h"

GradeBook::GradeBook(int no) {
 setCourseNo(no);
}
GradeBook::GradeBook() {
 courseNo = 0;
}
void GradeBook::setCourseNo(int no) {
 if ((no >= 100) && (no <= 999))
 courseNo = no;
 else {
 cout << "invalid grade" << endl;
 courseNo = 0;
 }
}
int GradeBook::getCourseNo() {
 return courseNo;
}
void GradeBook::displayMessage(string msg) {
 cout << msg << " ";
 cout << getCourseNo() << "!" << endl;
}
void GradeBook::displayMessage() {
 cout << "Welcome to CS ";
 cout << getCourseNo() << "!" << endl;
}

#include "GradeBook.h"

int main() {
 GradeBook gb1(101), gb2;

 gb2.displayMessage();
 gb2.setCourseNo(201);
 gb2.displayMessage("Hello CS");

 return 0;
}

GradeBook.h GradeBook.cpp

program.cpp

Compilation and linking
● Source-code file is compiled to create

its object code (class’ object code)
○ Class implementer only needs to provide the

header file and the object code to the client

● Client must compile his/her own code
by including the provided header file
○ By including it, the compiler knows how to

create and manipulate objects of the class

● Executable is created by linking
○ Object code of the client code,
○ Object code of the class, and
○ Object code of any C++ Standard Library

code used in the application

Compilation and linking processes that produce an executable

© 2006 Pearson Education, Inc. All rights reserved.

Control structures
● There are three types of control statements

○ Sequence statements, which are executed sequentially
○ Selection statements: if, if...else, switch
○ Repetition statements: for, while, do...while

● These statements are combined by either sequencing or nesting

double GradeBook::computeAvg() {
 int grade, sum, count;

 cout << "Enter grades (negative value to stop): ";
 cin >> grade;

 while (grade >= 0) {
 sum += grade;
 count++;
 cout << "Enter grades (negative value to stop): ";
 cin >> grade;
 }
 return sum / count;
}

Example:
Write a class function that takes grades from the user and returns
their average to the caller

First draft (may have some bugs)

double GradeBook::computeAvg() {
 int grade, sum = 0, count = 0;

 cout << "Enter grades (negative value to stop): ";
 cin >> grade;

 while (grade >= 0) {
 sum += grade;
 count++;
 cout << "Enter grades (negative value to stop): ";
 cin >> grade;
 }
 if (count)
 return static_cast<double>(sum) / count;
 else
 return 0;
}

Example:
Write a class function that takes grades from the user and returns
their average to the caller

Final version (bugs are fixed)

Remarks related with this example and more
● If it is not done explicitly, local variables (and also data members) are

uninitialized, containing “garbage” values

● When two operands of the division operator are integers, the result is
truncated (integer division)

○ Fractional part of the resulting quotient is lost

● Unary cast operator performs an explicit conversion, which creates a
temporary copy of its operand with the specified data type

○ Example: static_cast<double>(total)

● An implicit conversion will occur when the arguments are of different types
○ When the operands of a binary operator or an assignment operator have different data types
○ When the data types of a function parameter and its argument are different

Remarks related with this example and more
● Integer values can be used to represent a boolean value

○ For compatibility with C, which does not have a boolean data type
○ Any nonzero value (compilers typically use 1) represents true and 0 represents false

● It is the programmer’s responsibility not to confuse the equality (==) and
assignment (=) operators

○ This will NOT produce a compile-time error

● Counting loops should not be controlled with floating-point values
○ This may result in imprecise counter values and inaccurate tests for termination, since some

floating-point values approximately represent their real counterparts
○ e.g., fl(0.1) approximate, fl(0.5) exact

● Increment and decrement operators
○ Pre- and post-increment (decrement) operators will have different effects when they are used in

other statements

int N, product;

cin >> N;
product = 1;
for (int i = 1; i <= N; i++)
 product *= i;

cout << "Factorial of " << N << " is " << product << endl;

Example:
Write a code fragment that calculates and displays the
factorial of a given positive number N

char ans;
int N;

do {
 cout << "Enter a non-negative integer: ";
 cin >> N;
 factorial(N);

 do {
 cout << "Do you want to stop (Y or N)? ";
 cin >> ans;
 } while (ans != 'Y' && ans != 'y' &&
 ans != 'N' && ans != 'n');

} while (ans == 'N' || ans == 'n');

Example:
Write a code fragment that calls a function (for example, factorial
function) until the user wants to stop

Loop body
always executes
at least once

int grade;
char letter;

cin >> grade;
if (grade < 0 || grade > 100)
 cout << "Invalid grade\n";
else {
 switch (grade / 10) {
 case 10:
 case 9: letter = 'A'; break;
 case 8: letter = 'B'; break;
 case 7: letter = 'C'; break;
 case 6: letter = 'D'; break;
 default: letter = 'F'; break;
 }
 cout << "Your letter grade is " << letter << endl;
}

Example:
Write a code fragment that takes an integer grade and displays its letter equivalent,
calculated by the following rules: A: 90-100, B: 80-89, C: 70-79, D: 60-69, F: 0-59

This expression should be of an integer
(long, int, short, char) data type

Default is optional and executes if no
matching case label is found

break and continue statements
● They alter the flow of control

● break statement
○ Can be used for while, do...while, for, and switch statements
○ Causes an immediate exit from a control structure
○ For the switch statement without break, execution will fall to the next case label

● continue statement
○ Can be used for while, do...while, and for statements (just for loops)
○ Skips remaining statements in the loop body

for (int i = 1; i <= 5; i++) {
 if (i == 3)
 break;
 cout << i << endl;
}
cout << "done" << endl;

for (int i = 1; i <= 5; i++) {
 if (i == 3)
 continue;
 cout << i << endl;
}
cout << "done" << endl;

What are the outputs of the following two code fragments?

