
Functions
CS 201

This slide set covers the basics of
C++ functions. Please read
Chapter 6 (6.1 - 6.17) from your
Deitel & Deitel book.

Introduction
● Divide and conquer technique

○ Construct a large program from small, simple pieces (e.g., components)

● Functions
○ Facilitate the design, implementation, operation, and maintenance of large programs

● C++ supports two types of functions
○ Member functions
○ Global functions

2

Global functions
● Do not belong to a particular class

● In C++, main is a global function

● Many functions in C++ Standard Library header files are global
○ For example, sqrt in the <cmath> header file

■ Call it as sqrt(900.0)

● You can also write your own global functions
(although it is not an object-oriented programming)

3

Functions

4

int myFunction(int a, double b);

prototype

signature

You can overload functions
by using the same function
name with different
signatures.

int myClass::myFunction(int a, double b);

prototype

signature

5

#include <iostream>
using namespace std;

int findMax(int, int);

int main() {
 int larger = findMax(42, 16);
 cout << "The larger of 42 and 16 is " << larger << endl;
 return 0;
}

int findMax(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

Example:
Write a global function which takes two int parameters and returns their largest

Function call stack
● Also called the program execution stack or run-time stack

● Call stack supports the function call / return mechanism
○ Functions use allocated storage called

frame on the call stack
○ Function parameters and its non-static

(automatic) local variables are stored within
the function’s frame

○ Storage size of a parameter or a variable is
determined by its data type

Return address

Parameters

Local variables

Frame
(activation
record)

Call Stack Heap
(free-store)

static local
variables

global
variables

dynamic
allocations
(by new)

LATER
After
you learn
pointers

6

Function call stack
● Each time a function makes a call to another function

○ A new stack frame (also known as an activation record) for the new
function call is created and pushed onto the top of the stack

○ Default argument passing initializes the function parameters by copying the
value of the function call arguments (known as pass-by-value)

○ Return address that the called function needs to return to in its caller is also
maintained

● Each time a function returns
○ Stack frame for this function call is popped out from the stack
○ Control is transferred to the return address in the popped stack frame

Return address

Parameters

Local variables

Frame
(activation
record)

Call Stack

● Stack overflow
○ Error that occurs when there are too many function calls such

that the necessary space for their frames exceeds the size of the
call stack (due to memory limitations)

7

#include <iostream>
using namespace std;

int square(int); //prototype

int main() {
 int a = 10;
 cout << a << " squared: "
 << square(a) << endl;
 return 0;
}

// returns the square of an integer
int square(int x) {
 return x * x;
}

10 squared: 100

How is this program executed? (Example for call stack & frames)

Output Function call stack after the operating system
invokes main to execute the application

© 2006 Pearson Education, Inc. All rights reserved.

8

10 squared: 100

How is this program executed? (Example for call stack & frames)

Output Function call stack after main invokes the
function square to perform the calculation

© 2006 Pearson Education, Inc. All rights reserved.

9

#include <iostream>
using namespace std;

int square(int); //prototype

int main() {
 int a = 10;
 cout << a << " squared: "
 << square(a) << endl;
 return 0;
}

// returns the square of an integer
int square(int x) {
 return x * x;
}

#include <iostream>
using namespace std;

int square(int); //prototype

int main() {
 int a = 10;
 cout << a << " squared: "
 << square(a) << endl;
 return 0;
}

// returns the square of an integer
int square(int x) {
 return x * x;
}

10 squared: 100

How is this program executed? (Example for call stack & frames)

Output Function call stack after the function square
returns to main

© 2006 Pearson Education, Inc. All rights reserved.

10

Parameter passing in C++
● Two ways to pass arguments to functions

● Pass-by-value
○ Copy of the argument’s value is passed to the called function

○ Changes to the copy do not affect the original argument’s value in the caller

■ Prevents accidental side effects of functions

○ Default parameter passing

● Pass-by-reference
○ Gives called function the ability to access and modify the caller’s argument data directly

11

Pass-by-reference
● Reference variable

○ An alias, which is another name for an already existing variable
○ & is placed after the variable type
○ A reference should be initialized with a variable. Then, this variable

may be referenced by either the variable name or the reference
name

● Reference parameter
○ An alias for its corresponding argument in a function call
○ & is placed after the parameter type in the function prototype and

the function header
○ Data types of the argument and the reference parameter SHOULD

be the same
○ Parameter name in the body of the called function actually refers to

the original variable in the calling function

int count;
int& no = count;
count = 4;
cout << no << endl;

void bar(int& id) {
 id = 10;
}
void foo () {
 int a = 5;
 bar(a);
 cout << a << endl;
}

Written as “id is a reference to an
int” (from right to left)

Pass-by-value and pass-by-reference for primitive types

13

#include <iostream>
using namespace std;

void nextIntByValue(int);

int main() {
 int x = 10;
 nextIntByValue(x);
 cout << x << endl;
 return 0;
}
void nextIntByValue(int y) {
 y++;
}

#include <iostream>
using namespace std;

void nextIntByReference(int&);

int main() {
 int x = 20;
 nextIntByReference(x);
 cout << x << endl;
 return 0;
}
void nextIntByReference(int& y) {
 y++;
}

nextIntByValue uses
pass-by-value

What is the output of this program?

nextIntByReference uses
pass-by-reference

What is the output of this program?

Pass-by-value and pass-by-reference for objects
#include <iostream>
using namespace std;

class Student {
public:
 Student(int i = 0);
 void setId(int i);
 int getId();
private:
 int id;
};
Student::Student(int i) {
 setId(i);
}
void Student::setId(int i) {
 id = i;
}
int Student::getId() {
 return id;
}

void nextStudentIdByValue(Student s) {
 int x = s.getId();
 x++;
 s.setId(x);
}
int main() {
 Student s1(20);
 nextStudentIdByValue(s1);
 cout << s1.getId() << endl;
 return 0;
}

nextStudentIdByValue uses
pass-by-value

What is the output of this program?

BE CAREFUL: That is different than Java!!!

Pass-by-value and pass-by-reference for objects

15

nextStudentIdByReference uses
pass-by-reference

What is the output of this program?

#include <iostream>
using namespace std;

class Student {
public:
 Student(int i = 0);
 void setId(int i);
 int getId();
private:
 int id;
};
Student::Student(int i) {
 setId(i);
}
void Student::setId(int i) {
 id = i;
}
int Student::getId() {
 return id;
}

void nextStudentIdByReference(Student& s) {
 int x = s.getId();
 x++;
 s.setId(x);
}
int main() {
 Student s2(40);
 nextStudentIdByReference(s2);
 cout << s2.getId() << endl;
 return 0;
}

Remarks on parameter passing in C++
● Disadvantage of pass-by-value

○ If a large data item is passed, copying that data can take a considerable amount of execution
time and memory space

● Advantages of pass-by-reference
○ When used for objects, it is good for performance reasons, because it eliminates the

pass-by-value overhead of copying large amounts of data
○ A useful way to be able to return more than one value

● Disadvantages of pass-by-reference
○ Pass-by-reference can weaken security since the called function can corrupt the caller’s data
○ Hard to tell from the function call if it is pass-by-reference (so cannot tell if it will be modified)
○ Cannot pass a literal value (or an expression or a variable of a different but compatible type) to

a reference type parameter (e.g., nextIntByRef(4) is an invalid call)

16

Principle of least privilege
● Functions should not be given the capability to modify its parameters unless

it is absolutely necessary

● const qualifier is used to enforce this principle when defining parameters
○ void example(const int x, const GradeBook& G);

■ const int x // parameter x cannot be modified in the function
■ const GradeBook& G // parameter G is a constant reference to an object, so it

cannot be modified in the function and it cannot call a non-const member function

● Using the principle of least privilege to properly design software
○ can greatly reduce debugging time
○ can greatly reduce improper side effects
○ can make a program easier to modify and maintain

17

Principle of least privilege
#include <iostream>
using namespace std;
class Book{
public:
 void setNo(int i);
 int getNo() const;
 void displayNo();
 int publicNo;
private:
 int no;
};
void Book::setNo(int n){
 no = n;
}
int Book::getNo() const{
 return no;
}
void Book::displayNo(){
 cout << no << endl;
}

void foo(const Book& B){
 // B is a constant reference, thus it CANNOT change
 // a data member or call a non-const member function

 // THREE STATEMENTS BELOW LEAD TO COMPILE-TIME ERRORS
 // B.publicNo = 10;
 // B.setNo(20);
 // B.displayNo();
 cout << B.getNo() << endl;
}
int main() {
 Book A;
 foo(A);
 return 0;
}

For passing large objects, use a constant reference parameter
to simulate the appearance and security of pass-by-value and
avoid the overhead of passing a copy of the large object

Exercise (returning more than one value):
Write a global function which takes two int parameters and computes and returns the sum of the
inputs and the product of the inputs. The input parameters should not be modified. Use the principle
of least privilege.

void computeSumProduct(? x, ? y, ? sum, ? product){
 sum = x + y;
 product = x * y;
}
int main(){
 int s, p, c = 10;
 double r, t = 3.2;
 computeSumProduct(?, ?, ?, ?);

 return 0;
}

Exercise (returning more than one value):
Write a global function which takes two int parameters and computes and returns the sum of the
inputs and the product of the inputs. The input parameters should not be modified. Use the principle
of least privilege.

void computeSumProduct(const int x, const int y, int& sum, int& product){
 sum = x + y;
 product = x * y;
}
int main(){
 int s, p, c = 10;
 double r, t = 3.2;
 computeSumProduct(c, t, s, p);

 // cannot pass a literal value, or an expression, or a variable of a different type to
 // a reference parameter (although it is ok to pass them to a pass-by-value parameter)
 // computeSumProduct(c + 4, 15, s + 5, r); // COMPILE-TIME ERROR

 // order of evaluation of a function’s arguments is not specified by the C++ standard
 // thus, different compilers can evaluate function arguments in different orders
 computeSumProduct(c++, c++, s, p); // MAY YIELD A WARNING

 return 0;
}

Make objects printable with a global function
Overload the << operator in order to print an object with cout easily

ostream& operator<<(ostream& out, const MyClass& myObject) {
 // statements such as:
 // out << "[MyClass] property:" << myObject.getProperty();
 return out;
}

21

● The prototype of this function is included in the header file of the MyClass
class but after (outside) the MyClass definition

● The implementation of this function is included in the source code file of the
MyClass class but should be defined as a global function

● This function returns a reference to facilitate cascaded printing

Storage class, scope, and linkage
● Each identifier has several attributes

○ Name, type, size, and value
○ Also storage class, scope, and linkage

■ Identifier’s storage class determines the period during which that identifier exists in
memory (automatic and static variables)

■ Identifier’s scope determines where the identifier can be referenced in a program

■ Identifier’s linkage determines whether an identifier is known only in the source file
where it is declared or across multiple files that are compiled, then linked together (use
of the extern specifier)

22

Storage class (automatic variables)
● Only a local variable and a function

parameter can be of the automatic storage
class

○ Created when the program execution enters the
block in which it is defined

○ Exists while the block is active

○ Destroyed when the execution exits the block

● Default declaration (can also be declared
with keyword auto)

23

void foo() {
 int k = 10;
 cout << k << endl;
 k++;
 if (k > 5) {
 int a = 50;
 cout << a << endl;
 k++;
 }
 cout << k << endl;
}
int main() {
 int k = 20;
 cout << k << endl;
 k++;
 foo();
 cout << k << endl;
 return 0;
}

What is the output?

Automatic variables are stored in the call stack

Storage class (static local variables)
● A local variable declared with static

○ Exists from the point at which the program begins
execution

○ Initialized only once when its declaration is first
encountered

○ Retains its value when the function (in which this
local variable is declared) returns to its caller

■ Next time this function is called, it contains
the value it had at the end of this function’s
last call

■ However, known only in this function (that is,
its scope is only this function)

24

void g1() {
 int a = 4;
 cout << a << endl;
 a++;
}
void g2() {
 static int b = 4;
 cout << b << endl;
 b++;
}
int main() {
 g1();
 g1();
 g2();
 g2();
 // cout << a; compile-time error
 // cout << b; compile-time error
 return 0;
}

What is the output?

Static local variables are stored in the heap space

Storage class (static global variables)
● A global variable is static by its definition

(keyword static is not used)
○ Defined by placing variable declaration outside any

class or function definition

○ Created at the beginning of the program

○ Retains its value throughout the program execution

○ Can be referenced by any function that follows its
declaration

Do not use them as an alternative to parameter passing
(do not use them if it is not that necessary!!!)

25

int k = 4;
void h1() {
 cout << k << endl;
 k = 7;
}
void h2() {
 cout << k << endl;
 k++;
}
void h3() {
 int k = 1;
 cout << k << endl;
 k = 20;
}
int main() {
 cout << k << endl;
 h1(); cout << k << endl;
 h2(); cout << k << endl;
 h3(); cout << k << endl;
 return 0;
}

What is the output?

Global variables are also stored in the heap space

Scope (file scope)
● Scope of an identifier: a portion of the program where it can be referenced

● Identifiers (global variables, global function definitions/prototypes) declared
outside a function or a class all have the file scope

○ These identifiers can be referenced in all functions from the point at which they are declared
until the end of the file

26

prog.cppdouble a1 = 3.14;
void f1(){ // can reference a1 (but not a2)

 // can call f1 (but not f2 or f3)
}
void f2(){ // can reference a1 (but not a2)

 // can call f1 and f2 (but not f3)
}
int a2 = 4;
void f3(){ // can reference a1 and a2

 // can call f1, f2 and f3
}

// now every function
// can reference every global variable
// can call every global function
double a1 = 3.14;
int a2 = 4;
void f1();
void f2();
void f3();

void f1(){ ... }
void f2(){ ... }
void f3(){ ... }

prog.cpp

Scope (block scope)
● Scope of an identifier: a portion of the program where it can be referenced

● Local variables and function parameters have the block scope
○ Block scope begins at the identifier’s declaration
○ Block scope ends at the terminating } of the block in which the identifier is declared
○ Storage duration of the identifier does not affect its scope

27

void foo(int a, double b) {
 int c;
 static double d = 3.14;
 Student S1;

 if (d > 1) {
 int e;
 Student S2;
 }
}

e and S2
have this
block scope

a, b, c, d, and S1
have this block scope
(their scopes begin
at their declaration

int main() {
 int a = 5, b = 4;
 if (b > 0){
 int a = 2;
 cout << a << endl;
 }
 cout << a << endl;
 return 0;
}

An identifier in an outer
block is “hidden” when
a nested block has an
identifier with the same
name

What is the output?

Linkage
● Linkage of an identifier determines whether

an identifier is known only in the source file
where it is declared or across multiple files
that are compiled and then linked together

● Identifier declared with the keyword extern
will be linked with an identifier declared in
another file with the same name

28

int c = 3;

void foo() {
 c = 5;
}

#include <iostream>
using namespace std;
void bar() {
 extern int c;
 extern void foo();

 cout << c << endl;
 foo();
 cout << c << endl;
}
int main(){
 // cout << c; compile time error
 // foo(); compile time error
 bar();
}

What is the output when a.cpp and
b.cpp compiled and linked together?

a.cpp

b.cpp

Functions with default arguments
● A default value may be defined for a

function parameter
○ This default value will be used when the

function call does not specify an
argument for that parameter

○ Default values should be given to the
rightmost argument(s) in a function’s
parameter list

○ Should be specified with the first
occurrence of the function name
(typically the function prototype)

29

#include <iostream>
using namespace std;

int boxVolume(int , int = 1, int = 1);

int main(){
 cout << boxVolume(10, 5, 2) << endl;
 cout << boxVolume(10, 5) << endl;
 cout << boxVolume(10) << endl;

 // compile-time error since there is
 // no matching function for this call
 // cout << boxVolume() << endl;
 return 0;
}
int boxVolume(int W, int L, int H){
 return W * L * H;
}

What is the output?

Overloaded functions
● These are the functions with the same name but a different signature

(different parameter lists)
● The compiler selects a proper function to execute based on the number,

types, and order of the arguments in a function call
● Commonly used to create several functions of the same name that

perform similar tasks, but on different data types

30

Function templates
● More compact and convenient form of overloading

○ Identical program logic and operations for each data type

● Function template definition
○ Written by the programmer only once
○ Essentially defines a whole family of overloaded functions
○ Defined by template < typename tname > or template < class tname >

● Function template specializations will automatically be generated by the
compiler to handle each type of call to the function template

31

Write a generic maximum function using a function template

32

#include <iostream>
#include <string>
using namespace std;

#include "max.h"

int main() {
 cout << "The maximum of 5 and 3: ";
 cout << maximum(5, 3) << endl;

 double a = 4.5;
 cout << "The maximum of a and 5.6: ";
 cout << maximum(a, 5.6) << endl;

 string s1 = "Hello", s2 = "World";
 cout << "The maximum of s1 and s2: ";
 cout << maximum(s1, s2) << endl;

 // compile time error
 // cout << maximum(a, 5) << endl;
 return 0;
}

main.cpp #ifndef __MAX_H
#define __MAX_H

template < typename T >
T maximum(T num1, T num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
}
#endif

max.h

The maximum of 5 and 3:5
The maximum of a and 5.6: 5.6
The maximum of s1 and s2: World

Output

The compiler generates a separate function
definition for each call with arguments of a
different type

C++ Standard Library header files
● The C++ Standard Library is divided into many portions, each with its

own header file
○ Each header “instructs” the compiler on how to interface with its corresponding portion

of the library

● Each header file contains
○ Prototypes for the related functions belonging to the portion of the library that the

header file corresponds to
○ Definitions of various class types and constants necessary for its functions and for the

client code

33

34©1992-2014 by Pearson Education, Inc. All Rights Reserved.

35

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

36
©1992-2014 by Pearson Education, Inc. All Rights Reserved.

Math functions
● The <cmath> header file provides a

collection of functions that enable you to
perform common mathematical calculations

● All functions in the <cmath> header file are
global functions—therefore, each is called
simply by specifying the name of the
function followed by parentheses containing
the function’s arguments

37
©1992-2014 by Pearson Education, Inc. All Rights Reserved.

