
Algorithm Independent Issues 
CS 550: Machine Learning 



Does the “best” algorithm exist? 

  No Free Lunch Theorem 

–  There exists no learning algorithm that is superior to the other 
algorithms for all situations 

–  If one algorithm seems to outperform another in a particular 
situation, it is a consequence of its fit to this situation, not the 
general superiority of the algorithm  

–  Thus, there are no context-independent or usage-independent 
reasons to favor one learning algorithm over another  

  So, how can we understand that a learning algorithm is 

a good fit to a particular situation? 



Estimating the classification accuracy 

  Bias in the estimate: Accuracy on the training samples is 
often a poor estimator of the accuracy over future samples 
–  Likelihood of a model to overfit the training samples is high 

especially when the model is complex and the training set is small 

–  To obtain an unbiased estimate of the future accuracy, the model 
should be tested on samples that are chosen independently of the 
training samples and the model  

  Variance in the estimate: The measured accuracy can vary 
from the true accuracy depending on the test samples 
–  The expected variance is high especially when the test set is small 



Estimating the classification accuracy 

  Given a model M and a dataset S containing n samples 
drawn at random according to a distribution D  
1.  What is the best estimate of the accuracy of M over future 

samples drawn from the same distribution? 

2.  What is the probable error in this accuracy estimate? 

 The true error of model M with respect to target function f and 
distribution D is the probability that M will misclassify a sample 
drawn at random according to D 

 The sample error of model M with respect to f and the dataset S 
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errorD (M) ≡ Prx∈D
f (x) ≠ M(x)[ ]
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1
n

δ( f (x),M(x))
x∈S
∑

	
  	
  

€ 

δ( f (x),M(x)) =
1 if	
  	
  	
  f (x) ≠ M(x)
0 otherwise
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⎨ 
⎩ 

How good an estimate of errorD(M) is provided by errorS(M)? 



Estimating the classification accuracy 

  Given no other information, the most probable value of errorD (M) is 
errorS (M) = r / n, where r is the number of misclassified samples, and 

  With N percent confidence, errorD (M) lies in the interval of 

–  If dataset S contains n samples drawn independent of one another, and 
independent of model M, according to the distribution D, and 

–  If n ≥ 30 [more accurately, n errorS (M) (1 – errorS (M)) ≥ 5 ] 
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errorS (M)	
    	
  zN 	
  
	
  errorS (M)	
   1− errorS (M)( )	
  

n

zN should be chosen 
depending on the desired 
confidence level  

Confidence level N% 50 % 68 % 80 % 90 % 95 % 98 % 99 % 

Constant zN 0.67 1.00 1.28 1.64 1.96 2.33 2.58 



What does it mean? 
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0.1	
    	
  1.96	
   	
  0.1	
  	
  0.9	
  
100

	
  	
  ⇒ 	
  	
  0.041≤ errorD (M) ≤ 0.159

~ 0.059 

10 miscorrect classifications in 100 samples  errorS (M) = 0.1 
With 95% confidence, the true error lies in the interval of 
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0.1	
    	
  1.96	
   	
  0.1	
  	
  0.9	
  
1000

	
  	
  ⇒ 	
  	
  0.081≤ errorD (M) ≤ 0.119

~ 0.019 

100 miscorrect classifications in 1000 samples  errorS (M) = 0.1 
With 95% confidence, the true error lies in the interval of 
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0.1	
    	
  1.96	
   	
  0.1	
  	
  0.9	
  
100	
  000

	
  	
  ⇒ 	
  	
  0.098 ≤ errorD (M) ≤ 0.102

~ 0.002 

10 000 miscorrect classifications in 100 000 samples  errorS (M) = 0.1 
With 95% confidence, the true error lies in the interval of 

zN =1.96 for two-sided 
95% confidence interval 



Binomial Distribution 
  Let’s consider a coin-tossing experiment to find the probability of 

obtaining head (let’s call this probability p) 

  This experiment involves n trials, in each of which we obtain either 
head (1) or tail (0) 
–  Each trial is Bernoulli 

–  Thus, the entire experiment  
 follows the Binomial distribution 
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P(X = r) =
n!

r!	
  (n − r)!
	
  pr	
  (1− p)n−r

E[X] = n	
  p
Var(X) = n	
  p	
  (1− p)
σX = n	
  p	
  (1− p)
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For	
  sufficiently	
  large	
  values	
  of	
  n, 	
  the	
  Binomial	
  distribution	
  is	
  
closely	
  approximated	
  by	
  a	
  normal	
  distribution	
  with	
  the	
  same	
  
mean	
  and	
  variance.	
  Most	
  statisticians	
  recommend	
  using	
  the	
  
normal	
  approximation	
  only	
  when	
  n	
  p	
   (1 − p ) ≥ 5

  Design an experiment to find the 
probability p of misclassification 

  This experiment involves classifying 
the samples of a randomly drawn set 
with a size of n 

  For each sample, we obtain either 
misclassification (1) or correct 
classification (0) 



Estimating the classification accuracy 

1.  errorS (M) = r / n is an unbiased estimator of errorD (M) = p 

2.  Derive a confidence interval for errorD (M) 
–  The derivation is quite tedious for the Binominal distribution 

–  If p follows a normal distribution, the measured p will fall the following 
interval N% of the time 

Thus, errorD (M) will fall the following interval with N% confidence 
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since	
  E[ ˆ p ] − p = 0

What is the likely difference between the true and the sample error? 

This gives two-sided bounds with 
N% confidence (α significance 
level where α = 1 – N%) 

For one-sided bound with the 
same confidence, use  z(1 – 2 α) 
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µp 	
    	
  zN 	
  σ p

N% confidence interval for p is 
an interval that is expected to 
contain p with N% probability 
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errorS (M)	
    	
  zN 	
  
	
  errorS (M)	
   1− errorS (M)( )	
  

n

Multiplying a random variable by 
constant n multiplies the variance by n2 



Classification error/accuracy 
  Sometimes, we may want to consider class-based 

accuracies in addition to the overall accuracy 
–  Especially when the class distributions are unbalanced 

  Confusion matrix 

Predicted class 
C1 C2 … CC 

Tr
ue
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la

ss
 C1 
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… 

CC 



Classification error/accuracy 
  For two-class classifications (e.g., for diagnostic systems) 

Predicted 
+ – 

Tr
ue

 

+ TP FN 

–  FP TN 
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Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

Accuracy =
TP +TN

TP +TN + FP + FN

F -­‐ score = 2	
   Precision	
  Recall
Precision +Recall

Dice	
  index =
2	
  TP

2	
  TP + FP + FN

Recall  
Hit rate 
True pos rate 

True neg rate 

ROC (receiver operating 
characteristics) curves 

AUC: Area 
under curve 



Some practical issues 
How to form a test set(s)? 
  One separate test set  

–  If one is available (e.g., if you use a public dataset), use it as it is 
–  If not, randomly split the data into two 

  Consider class distributions  
  Consider dependency between the samples (if any) 

–  No dependency should exist in the ideal case 
–  However,  dependency may exist in practice 
 (consider the handwritten characters collected from the same subject) 

  Multiple test sets  partition the data many times 
–  Bootstrapping: Draw samples from the dataset with replacement 
–  K-fold cross validation: Form k partitions of the dataset 
–  Leave-one-out: Form partitions, each containing a single sample  

  Leave-one-subject-out may be necessary if there exists dependency 
between the samples 



Some practical issues 
How to select model parameters? 
  Grid search 

–  Determine a set of values for each parameter 
–  Consider every combination of the selected values in these sets 
–  Select the combination that gives the best accuracy 

  Consider this selection as a part of training, but do not use the training set 
accuracy as the selection criterion to prevent overfitting 

  For example, you may use k-fold cross-validation on the training set and select 
the parameter combination that leads to the highest cross-validation accuracy 

  Do not use the test set accuracies in any step of this selection 

  After setting the parameters, use the entire training set to 
train your model 

  Then, test your model on an independent test set 
which was not used in training or parameter selection 



Some practical issues 
When the training set is unbalanced 

  Some classifiers (e.g., neural networks) may have 
difficulties in learning the minority class 
–  They may favor the majority class 

  A common practice to deal with this is to rebalance such 
a training set artificially 
–  Oversampling: replicate training samples from the minority 

class(es) 

–  Undersampling: ignore some training samples from the 
majority class(es) 



Some practical issues 
When the training set is too small 

  Training with noise 
–  Virtual training samples can be generated 

–  In the absence of problem-specific information 

  Virtual samples can be generated by adding d-dimensional Gaussian 
noise to true training samples 

  In classification, noise is added to inputs and class labels should be 
left unchanged 

  In regression, noise could be added to both inputs and outputs 

–  This method generally does not improve accuracy 

  For highly local techniques such as the nearest neighbor method 



Some practical issues 
When the training set is too small 

  Manufacturing data 

–  We can “manufacture” training samples that convey more 
information than uncorrelated noise 
  If we have knowledge about the sources of variation among samples 

–  E.g., in optical character recognition, we manufacture data by 

  Rotating the images of training samples 

  Performing simple image processing on the images to simulate a bold 
face character 

–  Disadvantage 
  Memory requirements may be large 

  Overall training may be slow 



Some practical issues 
Scaling/normalizing features 

  A classifier may prefer some features over the others 
–  When the orders of magnitudes of features are different 

–  For example, a neural network adjusts weights in favor of features 
with smaller magnitudes 
  In fish classification, if mass is measured in grams and length is measured in 

meters, mass has larger effect than length and the opposite if mass is 
measured in kilograms and length is measured in millimeters 

  We normalize training samples to prevent this problem 
–  Samples are shifted so that the average of each feature is 0.0 

–  Dataset is normalized so that the variance of each feature is 1.0 

–  Test samples must be standardized with the same transformation 



How to compare two classifiers? 

If you have their results on a single test set 

  Use the Mc Nemar’s test 
–  Form a contingency table 

–  Accept the hypothesis that the two  
 algorithms have the same error rate 
 at a significance level α if 
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Contingency table 
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e01 + e10
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Significance level α 0.20 0.10 0.05 0.02 

χ2
α, 1 

1.64 2.71 3.84 5.41 

Chi-square statistics with dof = 1 	
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Example : 	
  Are	
  the	
  following	
  two	
  algorithms	
  same	
  with	
  a	
  significance	
  level	
  of	
  0.05?

	
  

A B
100 + +

12 + −

25 − +

30 − −
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  25 −12	
   −1( )2

25 +12
= 3.8919



How to compare two classifiers? 

If you have their results on k test sets? 

  Paired t-test (parametric test) 
–  Assumes that the test set errors for both of the classifiers are 

normally distributed so their differences are 

–  Uses the t-test to check whether or not the mean of these 
differences is equal to zero (statistically significantly) 

  Wilcoxon signed-rank test (nonparametric test) 
–  Ranks the differences in errors (ignoring the signs) and sums the 

ranks for the positive and negative differences (corresponding to 
the 1st and 2nd classifiers) 

–  Claims that the difference between the classifiers is statistically 
significant if the smaller of the sums is smaller than the critical 
value defined for the Wilcoxon test 



How to compare multiple classifiers? 

  ANOVA -- analysis of variance (parametric test) 

  Friedman test (nonparametric test) 

–  One should be careful about selecting the critical values for the 
given significance levels 

–  When multiple classifiers are to be compared, significance levels 
should be lowered for example using Bonferroni correction  


