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Bayesian Decision Theory 
  It is the fundamental statistical approach in classification 

  Here it is assumed that 

1.  The decision problem is posed in probabilistic terms and 

2.  All relevant probability values are known 

 In this course, we very briefly talk about the Bayesian decision 
theory and how to estimate the probabilities from the given data 

  CS 551 (Pattern Recognition) course covers these topics thoroughly 

  You can also refer to the following books 
–  Pattern Classification (by Duda, Hart, and Stork): Chapter 2 for Bayesian decision theory and 

Chapter 3 for parameter estimation 

–  Introduction to Machine Learning (by Alpaydin): Chapter 3 for Bayesian decision theory and 
Chapter 4 for parametric methods 



Bayesian Decision Theory 
  Consider a simple decision problem  
 Fish classification 

  Let’s assume that a fish emerges nature                           
in one of the following states 

–  State of nature  

  To predict what type will emerge next, we consider C as 
a random variable, which is described probabilistically 

–  Prior probabilities (a priori probabilities) P(C1) and P(C2) 
reflect our previous knowledge before the fish appears 

	
  	
  

€ 

C =
C1 for	
  hamsi
C2 for	
  barbun
⎧ 
⎨ 
⎩ 

	
  	
  

€ 

P(C1) + P(C2) =1	
  	
  	
  (if	
  no	
  other	
  species	
  exist)



Bayesian Decision Theory 
  Let’s decide a fish is hamsi or barbun when 

1.  We are not allowed to see the fish 
2.  We know the prior probabilities 
3.  The cost is the same for all incorrect decisions 

Decision rule: 

  	
  	
  

€ 

Select	
  	
  	
  	
  
hamsi if	
  	
  	
  	
  	
  P(C1) > P(C2)
barbun otherwise

⎧ 
⎨ 
⎩ 

In this case, we always make the same decision 

  



Bayesian Decision Theory 
  We usually have more information for 
 making our decisions  

–  For example, we can see the fish and measure 
 its color intensity 

  We make this measurement relying on the  
 fact that hamsi and barbun emerge nature  
 in different colors 

–  We express this difference in probabilistic terms, considering the 
color intensity x as a continuous random variable, whose 
distribution depends on the state of nature 

–  Class-conditional probability density functions (likelihoods) 
P(x|C1) and P(x|C2) give the probability of observing color intensity 
x when the state of nature is C1 and C2, respectively 



Bayesian Decision Theory 
  Now let’s combine this measurement with 
 our previous knowledge 

	
  	
  

€ 

P(C j 	
  , 	
  x) = P(C j | x)	
  ⋅ P(x) = P(x |C j )	
  ⋅ P(C j )
Joint probability 

Posterior probabilities (a posteriori probabilities)  
P(C1|x) and P(C2|x) reflect our beliefs of having  
a particular fish species when the color intensity  
of the fish is measured as x 

BAYES  
FORMULA 

	
  	
  

€ 

P(C j | x) =
P(x |C j )	
  ⋅ P(C j )

P(x)
Posterior Evidence 

Prior Likelihood 

€ 

P(C j | x)
j=1

N

∑ =1

	
  	
  

€ 

P(x) = P(x |C j )	
  ⋅ P(C j )
j=1

N

∑



Bayesian Decision Theory 
  Let’s decide a fish is hamsi or barbun when 

1.  We can see the fish and measure its color x 
2.  We know the prior probabilities and likelihoods 
3.  The cost is the same for all incorrect decisions 

Decision rule: 

  	
  	
  

€ 

Select	
  	
  	
  	
  
hamsi if	
  	
  	
  	
  	
  P(C1 | x) > P(C2 | x)
barbun otherwise

⎧ 
⎨ 
⎩ 

•  Evidence is unimportant since it is the same for all states of nature 
•  Equal priors  Observing each state of nature is equally likely 
•  Equal likelihoods  Measurement x gives no information 

	
  	
  

€ 

Select	
  	
  	
  	
  
hamsi if	
  	
  	
  	
  	
  P(x |C1)	
  ⋅ 	
  P(C1) > P(x |C2)	
  ⋅ 	
  P(C2)
barbun otherwise

⎧ 
⎨ 
⎩ 



Bayesian Decision Theory 
  We use the Bayes’ decision rule as to  
 minimize the probability of error 

 Decision rule: 

  

 For every x, select P(error|x) as small as possible, which corresponds to 
selecting the state of nature (class) with the highest posterior probability 

  

	
  	
  

€ 

Select	
  	
  	
  	
  
hamsi if	
  	
  	
  	
  	
  P(C1 | x) > P(C2 | x)
barbun otherwise

⎧ 
⎨ 
⎩ 

	
  	
  

€ 

P(error) = P(error,x)	
  dx =
−∞

∞

∫ P(error | x)	
  P(x)	
  dx
−∞

∞

∫



Bayesian Decision Theory 
  Now let’s generalize the decision problem 

  	
  	
  

€ 

States	
  of	
  nature {C1	
  , 	
  C2	
  , 	
  … 	
  Cc}
Possible	
  actions {α1	
  , 	
  α2	
  , 	
  … 	
  αa}
Loss	
  function λ(α i |C j )

	
  	
  

€ 

Let	
  x ∈Rd 	
  be	
  a	
  feature	
  vector	
  in	
  a	
  d -­‐ dimensional	
  space

For	
  this	
  x, 	
  we	
  would	
  take	
  the	
  action	
  α i	
  that	
  minimizes	
  

the	
  loss	
  λ(α i |C j )	
  if	
  we	
  knew	
  C j 	
  is	
  its	
  true	
  state	
  of	
  nature	
  

 However, we do not know the true state of nature  
 Thus, we should take the action based on expectations 



Bayesian Decision Theory 
  The expected loss associated with taking action αi 

  We take the action that minimizes the conditional risk 

	
  	
  

€ 

R(α i | x) = P(C j | x)
j=1

C

∑ 	
  ⋅ λ(α i |C j )

	
  	
  

€ 

P(C j | x) =
P(x |C j )	
  ⋅ P(C j )

P(x)

Conditional 
risk 

	
  	
  

€ 

α* = argmin
i

	
  R(α i | x)
Optimal 
action 

The resulting minimum risk R* is called Bayes risk 



Minimum error-rate classification 
  In multi-class classification 

–  Each state of nature is usually associated with a class 
–  Each action is usually interpreted as deciding on a class 

1.  Consider the zero-one loss function 

    The optimal action is 

	
  	
  

€ 

λ(α i |C j ) =
0 if	
  	
  	
  i = j	
  	
  	
  	
  	
  (correct	
  classification)
1 if	
  	
  	
  i ≠ j	
  	
  	
  	
  	
  (all	
  incorrect	
  classifications)
⎧ 
⎨ 
⎩ 

	
  	
  

€ 

α* = argmax
i

	
  P(Ci | x)

Selecting the action that minimizes the 
conditional risk is equivalent to selecting 
the action that maximizes the posterior 
probability 

WHY??? 



Minimum error-rate classification 
2.  Consider the following loss function 
  

   The reject action may be desirable when the misclassification cost is too high 

	
  	
  

€ 

λ(α i |C j ) =

0 if	
  	
  	
  i = j (correct	
  classification)

λs if	
  	
  	
  i ≠ j	
  , 	
  i =1	
  to	
  C	
   (all	
  incorrect	
  classifications)

λr if	
  	
  	
  i = C +1 (reject	
  action)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

	
  	
  

€ 

1.	
  	
  	
  	
  P(Ci | x) ≥ P(C j | x)	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  for	
  all	
  i ≠ j	
  and	
  i ≠ C +1

2.	
  	
  	
  	
  P(Ci | x) ≥1−
λr
λs

Show that an instance is 
classified as Ci if only if 

	
  	
  

€ 

What	
  happens	
  when	
  λr = 0
What	
  happens	
  when	
  λr > 	
  λs



Classifiers and discriminant functions 

  We may represent a classifier with a set of discriminant 
functions gi(x) for i = 1, 2, … C    

  We then classify a given instance x with the class Ci for 
which the discriminant function gi(x) is the largest   

  Bayes classifier 
–  Defines a discriminant function using the conditional risk 

–  Uses the Bayes formula to compute the posteriors 

	
  	
  

€ 

gi(x) = −R(α i | x)
gi(x) = P(Ci | x)	
  , 	
  when	
  0 -­‐ 1	
  loss	
  function	
  is	
  used

	
  	
  

€ 

P(C j | x) =
P(x |C j )	
  ⋅ P(C j )

P(x)



Classifiers and discriminant functions 

  We may also define other discriminant functions 
–  Linear, quadratic functions 
–  Multiplying/shifting the existing ones with positive constants 
–  Replacing the existing ones with a monotonically increasing function 

	
  	
  

€ 

gi(x) = P(Ci | x)
= P(x |Ci)	
  ⋅ P(Ci)
= log(P(x |Ci)	
  ⋅ P(Ci))
= logP(x |Ci)	
   + 	
   logP(Ci)

Significant simplifications if you 
use normal distribution 

  Discriminant functions divide the 
feature space into regions 

x1 

x2 

Class 1 

Class 2 

Class 3 



Classifiers and discriminant functions 

  Discriminant-based approaches learn discriminant 
functions directly on the training samples, without 
estimating class probabilities 

  Likelihood-based approaches estimate class 
probabilities on the training samples and then use them 
to define the discriminant functions 



Likelihood-Based Approaches 
  Parametric approach  

–  Assumes a parametric form on the probability distributions and 
estimate their parameters on the training samples 

–  For a given instance x, it estimates the class probabilities of this 
instance using these distributions  

–  Maximum likelihood estimation and Bayesian estimation 

  Nonparametric approach  

–  Does not have such assumption 

–  It estimates the class probabilities of the instance x using the 
nearby points of this instance 

–  Parzen windows, k-nearest neighbors 



Maximum Likelihood Estimation 
  It assumes that the parametric form is known and the 

parameters are fixed 

  It selects the parameters that maximize the likelihood of the 
training samples 

	
  	
  

€ 

log 	
  P(D |θ) = log 	
  P(x t |θ )
t=1

N

∑

€ 

P(x) =
1
2πσ

exp − (x − µ)2

2σ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Likelihood 
of data 

€ 

P(D |θ) = P(x t |θ )
t=1

N

∏ Assumes that the training samples are  
independent and identically distributed 

Log likelihood 
of data 

How to estimate the parameters of a univariate normal distribution 

	
  	
  

€ 

∇log 	
  P(D |θ ) = 0
Gradient 

Naïve Bayes classifier assumes 
the independency between every 
pair of features 


