Bayesian Decision Theory CS 550: Machine Learning

- It is the fundamental statistical approach in classification
- Here it is assumed that
 - 1. The decision problem is posed in probabilistic terms and
 - 2. All relevant probability values are known

In this course, we very briefly talk about the Bayesian decision theory and how to estimate the probabilities from the given data

- CS 551 (Pattern Recognition) course covers these topics thoroughly
- You can also refer to the following books
 - Pattern Classification (by Duda, Hart, and Stork): Chapter 2 for Bayesian decision theory and Chapter 3 for parameter estimation
 - Introduction to Machine Learning (by Alpaydin): Chapter 3 for Bayesian decision theory and Chapter 4 for parametric methods

- Consider a simple decision problem
 Fish classification
- Let's assume that a fish emerges nature in one of the following states

- State of nature
$$C = \begin{cases} C_1 & \text{for } hamsi \\ C_2 & \text{for } barbun \end{cases}$$

- To predict what type will emerge next, we consider C as a random variable, which is described probabilistically
 - **Prior probabilities (a priori probabilities)** $P(C_1)$ and $P(C_2)$ reflect our previous knowledge before the fish appears $P(C_1) + P(C_2) = 1$ (if no other species exist)

- Let's decide a fish is hamsi or barbun when
 - 1. We are not allowed to see the fish
 - 2. We know the prior probabilities
 - 3. The cost is the same for all incorrect decisions

Decision rule:

Select $\begin{cases} hamsi & \text{if } P(C_1) > P(C_2) \\ barbun & \text{otherwise} \end{cases}$

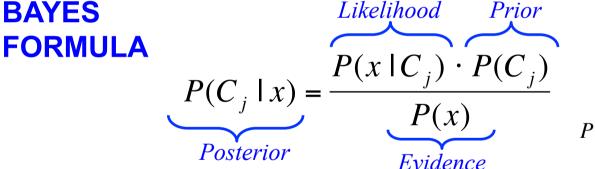
In this case, we always make the same decision

- We usually have more information for making our decisions
 - For example, we can see the fish and measure its color intensity
- We make this measurement relying on the fact that hamsi and barbun emerge nature in different colors

- We express this difference in probabilistic terms, considering the color intensity *x* as a continuous random variable, whose distribution depends on the state of nature
- **Class-conditional probability density functions (likelihoods)** $P(x|C_1)$ and $P(x|C_2)$ give the probability of observing color intensity *x* when the state of nature is C_1 and C_2 , respectively

 Now let's combine this measurement with our previous knowledge

Joint probability $P(C_j, x) = P(C_j | x) \cdot P(x) = P(x | C_j) \cdot P(C_j)$



$$P(x) = \sum_{j=1}^{N} P(x \mid C_j) \cdot P(C_j)$$

Posterior probabilities (a posteriori probabilities)

 $P(C_1|x)$ and $P(C_2|x)$ reflect our beliefs of having a particular fish species when the color intensity of the fish is measured as x

$$\sum_{j=1}^{N} P(C_j \mid x) = 1$$

- Let's decide a fish is hamsi or barbun when
 - 1. We can see the fish and measure its color x
 - 2. We know the prior probabilities and likelihoods
 - 3. The cost is the same for all incorrect decisions

Decision rule:

Select $\begin{cases} hamsi & \text{if } P(C_1 \mid x) > P(C_2 \mid x) \\ barbun & \text{otherwise} \end{cases}$ Select $\begin{cases} hamsi & \text{if } P(x \mid C_1) \cdot P(C_1) > P(x \mid C_2) \cdot P(C_2) \\ barbun & \text{otherwise} \end{cases}$

- Evidence is unimportant since it is the same for all states of nature
- Equal priors → Observing each state of nature is equally likely
- Equal likelihoods \rightarrow Measurement x gives no information

 We use the Bayes' decision rule as to minimize the probability of error

Decision rule:

Select
$$\begin{cases} hamsi & \text{if } P(C_1 \mid x) > P(C_2 \mid x) \\ barbun & \text{otherwise} \end{cases}$$

$$P(error) = \int_{-\infty}^{\infty} P(error, x) \, dx = \int_{-\infty}^{\infty} P(error \mid x) \, P(x) \, dx$$

For every x, select P(error|x) as small as possible, which corresponds to selecting the state of nature (class) with the highest posterior probability

Now let's generalize the decision problem

States of nature $\{C_1, C_2, \dots, C_c\}$ Possible actions $\{\alpha_1, \alpha_2, \dots, \alpha_a\}$ Loss function $\lambda(\alpha_i | C_i)$

Let $x \in \mathbb{R}^d$ be a feature vector in a d - dimensional space For this x, we would take the action α_i that minimizes the loss $\lambda(\alpha_i | C_i)$ if we knew C_i is its true state of nature

However, we do not know the true state of nature **Thus, we should take the action based on expectations**

- The expected loss associated with taking action α_i

$$\underbrace{R(\alpha_i \mid x)}_{Conditional} = \sum_{j=1}^{C} P(C_j \mid x) \cdot \lambda(\alpha_i \mid C_j)$$
Conditional risk

$$P(C_j \mid x) = \frac{P(x \mid C_j) \cdot P(C_j)}{P(x)}$$

• We take the action that minimizes the conditional risk

$$\alpha^* = \underset{i}{\operatorname{argmin}} R(\alpha_i \mid x)$$
Optimal action

The resulting minimum risk R* is called *Bayes risk*

Minimum error-rate classification

- In multi-class classification
 - Each state of nature is usually associated with a class
 - Each action is usually interpreted as deciding on a class
- 1. Consider the zero-one loss function

 $\lambda(\alpha_i | C_j) = \begin{cases} 0 & \text{if } i = j \quad \text{(correct classification)} \\ 1 & \text{if } i \neq j \quad \text{(all incorrect classifications)} \end{cases}$

The optimal action is $\alpha^* = \underset{i}{\operatorname{argmax}} P(C_i | x)$ Selecting the action that minimizes the conditional risk is equivalent to selecting the action that maximizes the posterior probability

WHY???

Minimum error-rate classification

2. Consider the following loss function

$$\lambda(\alpha_i \mid C_j) = \begin{cases} 0 & \text{if } i = j \\ \lambda_s & \text{if } i \neq j \text{, } i = 1 \text{ to } C \\ \lambda_r & \text{if } i = C+1 \end{cases} \text{ (correct classification)}$$

The reject action may be desirable when the misclassification cost is too high

Show that an instance is classified as C_i if only if

1. $P(C_i \mid x) \ge P(C_j \mid x)$

for all $i \neq j$ and $i \neq C+1$

2.
$$P(C_i \mid x) \ge 1 - \frac{\lambda_r}{\lambda_s}$$

What happens when $\lambda_r = 0$ What happens when $\lambda_r > \lambda_s$

Classifiers and discriminant functions

- We may represent a classifier with a set of discriminant functions g_i(x) for i = 1, 2, ... C
- We then classify a given instance x with the class C_i for which the discriminant function g_i(x) is the largest
- Bayes classifier
 - Defines a discriminant function using the conditional risk $g_i(x) = -R(\alpha_i \mid x)$ $g_i(x) = P(C_i \mid x)$, when 0-1 loss function is used
 - Uses the Bayes formula to compute the posteriors

$$P(C_j \mid x) = \frac{P(x \mid C_j) \cdot P(C_j)}{P(x)}$$

Classifiers and discriminant functions

- We may also define other discriminant functions
 - Linear, quadratic functions
 - Multiplying/shifting the existing ones with positive constants
 - Replacing the existing ones with a monotonically increasing function

$$g_i(x) = P(C_i \mid x)$$

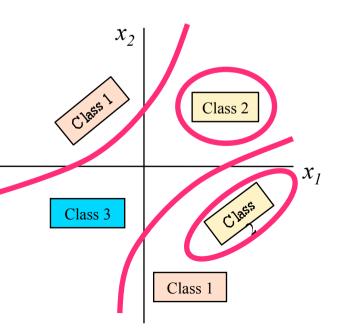
$$= P(x \mid C_i) \cdot P(C_i)$$

 $= \log(P(x \mid C_i) \cdot P(C_i))$

$$= \log P(x | C_i) + \log P(C_i)$$

Significant simplifications if you use normal distribution

 Discriminant functions divide the feature space into regions



Classifiers and discriminant functions

- Discriminant-based approaches learn discriminant functions directly on the training samples, without estimating class probabilities
- Likelihood-based approaches estimate class probabilities on the training samples and then use them to define the discriminant functions

Likelihood-Based Approaches

Parametric approach

- Assumes a parametric form on the probability distributions and estimate their parameters on the training samples
- For a given instance x, it estimates the class probabilities of this instance using these distributions
- Maximum likelihood estimation and Bayesian estimation

Nonparametric approach

- Does not have such assumption
- It estimates the class probabilities of the instance x using the nearby points of this instance
- Parzen windows, k-nearest neighbors

Maximum Likelihood Estimation

- It assumes that the parametric form is known and the parameters are fixed
- It selects the parameters that maximize the likelihood of the training samples

$$P(D \mid \theta) = \prod_{t=1}^{N} P(x^{t} \mid \theta)$$

$$in$$

$$in$$

$$P(D \mid \theta) = \sum_{t=1}^{N} P(x^{t} \mid \theta)$$

$$in$$

$$P(D \mid \theta) = \sum_{t=1}^{N} \log P(x^{t} \mid \theta)$$

$$Iog \ likelihood$$

$$in$$

$$P(D \mid \theta) = \sum_{t=1}^{N} \log P(x^{t} \mid \theta)$$

$$Iog \ likelihood$$

$$P(D \mid \theta) = \sum_{t=1}^{N} \log P(x^{t} \mid \theta)$$

$$P(x^{t} \mid \theta)$$

$$P(x^{t} \mid \theta)$$

Assumes that the training samples are independent and identically distributed

$$\nabla_{\log P(D|\theta)} = 0$$
Gradient

How to estimate the parameters of a univariate normal distribution

$$P(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Naïve Bayes classifier assumes the independency between every pair of features