Clustering CS 550: Machine Learning

This slide set mainly uses the slides given in the following links: <u>http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf</u> <u>http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf</u>

Clustering / Unsupervised Learning

In SUPERVISED learning

- There is a teacher providing labels (outputs) for training samples
- The task is to map an input space to an output space

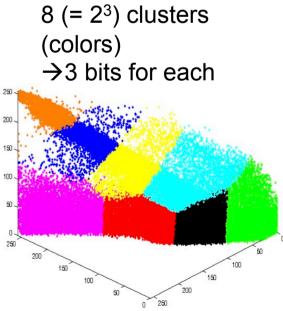
In UNSUPERVISED learning

- There is not an explicit teacher providing outputs
- Task is to find regularities (clusters) in the input space
 - e.g., cluster customers based on their demographic information and past transactions for developing marketing strategies
 - e.g., cluster pixels based on their colors for image compression
- Unsupervised learning can be used in
 - Understanding the data (e.g., group related documents for browsing; group genes and proteins with similar functionality)
 - Summarizing the data

Example: Image Compression

Image compression to reduce the no of bits to be transferred

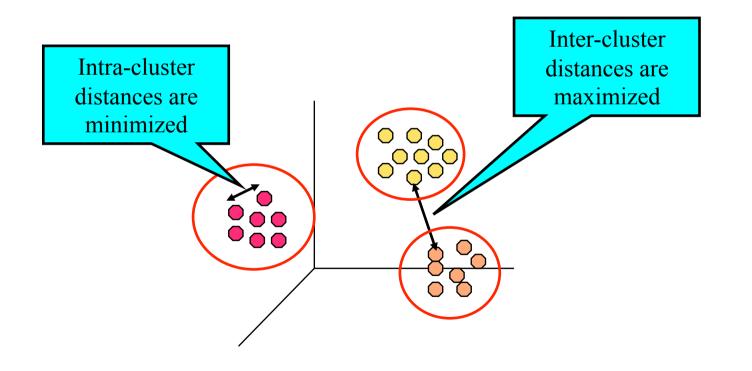
Originally in RGB space \rightarrow 24 bits for each pixel



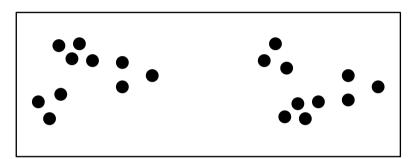
32 (= 2^5) clusters (colors) \rightarrow 5 bits for each pixel

What is Cluster Analysis?

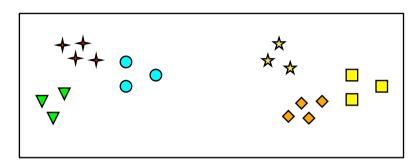
 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



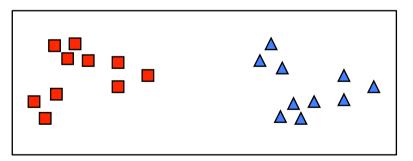
Notion of a Cluster can be Ambiguous



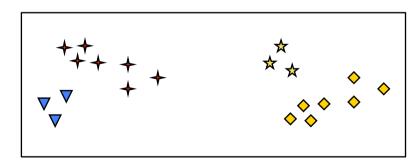
How many clusters?



Six clusters



Two clusters



Four clusters

Types of Clusterings

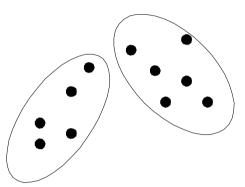
A clustering is a set of clusters

1. Partitional clustering

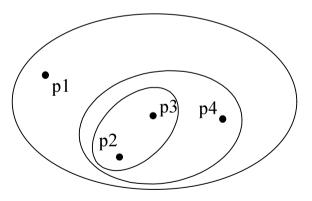
 A division of objects into nonoverlapping subsets (clusters) such that each object is in exactly one subset

2. Hierarchical clustering

A set of nested clusters



Partitional clustering



Hierarchical clustering

Characteristics of Clusters

- Exclusive versus non-exclusive: a point may belong to multiple clusters in non exclusive clustering
- Fuzzy versus non-fuzzy: a point belongs to every cluster with some weight between 0 and 1 (weights must sum up to 1)
- Partial versus complete: in some cases, we may want to cluster only some of the data
- Heterogeneous vs homogeneous: clusters may have different sizes, shapes, and/or characteristics

Types of Clusters

Well-separated clusters

 A cluster is a set of points such that any point in a cluster is closer (more similar) to every other point in the cluster than to any point not in the cluster

Center-based clusters

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster than to the center of any other cluster
 - Centroid (center of a cluster) is the average of all points in the cluster
 - Medoid is the most "representative" point of a cluster

Types of Clusters

Contiguity-based clusters

 A cluster is a set of points such that a point in a cluster is closer (more similar) to one or more other points in the cluster than to any point not in the cluster

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

Types of Clusters

Density-based clusters

- A cluster is a dense region of points, which is separated by low-density regions from other regions of high density
- Preferable when clusters are irregular or intertwined and when noise and outliers are present

Conceptual clusters

 A cluster shares some common property or represents a particular concept

Clusters Defined by an Objective Function

- Find clusters that minimize/maximize an objective function
- Consider all possible clusterings and evaluate the goodness of each using the objective function (NP-hard)
- Can use global or local objective functions
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional clustering algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a parameterized model
 - Parameters for the model are determined from the data
 - Mixture models assume that the data is a *mixture* of a number of statistical distributions

Clusters Defined by an Objective Function

- Map the clustering problem to a different domain and solve a related problem in that domain
 - Similarity matrix defines a weighted graph, where the nodes are the points being clustered, and the weighted edges represent the similarities between the points
 - Clustering is equivalent to breaking the graph into connected components (one for each cluster)
 - Minimize the sum of the edge weights between clusters and maximize the sum of the edge weights within clusters

Clustering Algorithms

- 1. K-means clustering
- 2. Hierarchical clustering
- 3. Density-based clustering

- Example of a partitional clustering
- Each cluster is represented with a mean vector (centroid)

```
start with randomly initialized cluster
(mean) vectors m_i
do
for each cluster, estimate samples that
belong to the mean vector m_i (estimate D_i)
Festep
for each cluster, compute the mean
vector m_i that minimizes/maximizes the
criterion function
M-step
```

until there is no (or small) change in m_i

This is an example of the expectation-maximization (EM) algorithm

D_i estimation

Each cluster contains samples that are most similar to m_i

$$D_{i} = \left\{ x \mid \left\| x - m_{i} \right\|^{2} = \min_{j} \left\| x - m_{j} \right\|^{2} \right\}$$

Euclidean distance

m_i computation

Set a value as to minimize/maximize a criterion function

$$\frac{\partial E}{\partial m_i} = 0 \qquad \qquad \frac{\partial E}{\partial m_i} = \frac{1}{2} \sum_{x \in D_i} -2 (x - m_i) = -\sum_{x \in D_i} x + \sum_{x \in D_i} m_i$$
$$m_i = \frac{\sum_{x \in D_i} x}{n_i} \qquad \qquad E = \frac{1}{2} \sum_{i=1}^k \sum_{x \in D_i} \|x - m_i\|^2$$
Number of γ
Sum of squared error

How to measure the similarity between samples?

Use a distance metric as the dissimilarity between samples

- Euclidean distance

$$dist(x, y) = ||x - y||^{2} = \sqrt{\sum_{j=1}^{d} (x_{j} - y_{j})^{2}} = \sqrt{(x - y)^{T} (x - y)}$$

$$\underbrace{\frac{x_{2}}{x_{1}}}_{i} \underbrace{\frac{x_{2}}{x_{1}}}_{i} \underbrace{\frac{x_{2}}{x_{1}}}_{i}$$

- Mahalanobis distance

$$dist(x, y) = \sqrt{(x - y)^{\mathsf{T}} \Sigma^{-1} (x - y)}$$
 Also scale invariant

- Define a similarity function
 - Normalized inner product

$$sim(x, y) = \frac{x^{T}y}{\|x\| \|y\|}$$

Invariant to rotation, but not to translation and scaling

How to evaluate the goodness of clustering?

Sum of squared error

$$E = \frac{1}{2} \sum_{i=1}^{k} \sum_{x \in D_i} \|x - m_i\|^2$$

Could lead to incorrect clusters especially when there are great differences in clusters' sizes and when there are outliers

Related minimum variance criterion

$$E = \frac{1}{2} \sum_{i=1}^{k} n_i \sigma_i$$

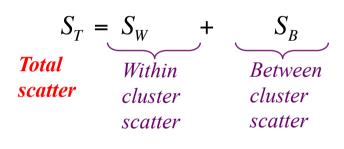
where

$$\sigma_i = \frac{1}{n_i^2} \sum_{x \in D_i} \sum_{y \in D_i} ||x - y||^2$$

Average squared distance between every pair of the samples in the i-th cluster It is also possible to use a similarity measure instead of a distance

How to evaluate the goodness of clustering?

Scatter criteria



$$S_{W} = \sum_{i=1}^{k} \sum_{x \in D_{i}} (x - m_{i}) (x - m_{i})^{\mathsf{T}}$$

$$S_{B} = \sum_{i=1}^{k} n_{i} (m_{i} - m) (m_{i} - m)^{T}$$

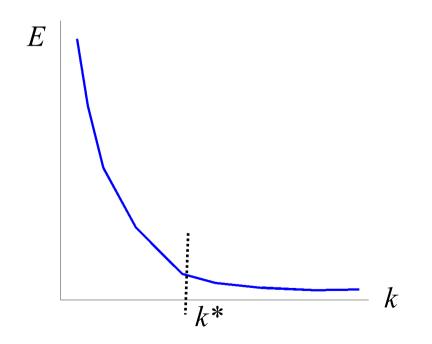
$$Mean of all$$
samples

Maximize the between-cluster scatter or minimize the within-cluster scatter

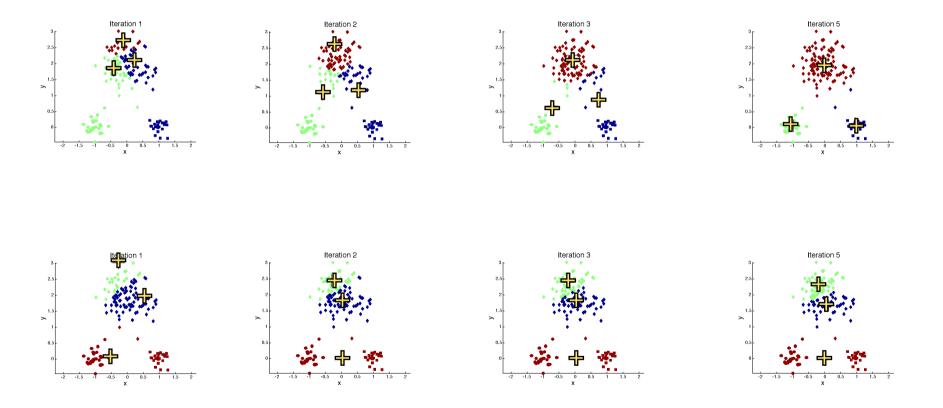
- 1. Trace criterion: Minimize the trace of S_W (sum of the diagonal elements of S_W)
- 2. Determinant criterion: Minimize the determinant of S_W
- 3. Invariant criterion: Maximize the trace of $S_W^{-1} S_B$

How to select the number of clusters?

 We expect a rapid decrease in the criterion function until k is equal to the number of natural clusters in the data and more slow decreases thereafter



Final clustering highly depends on the initial mean vectors



©Tan, Steinbach, Kumar	Introduction to Data Mining	4/18/2004
------------------------	-----------------------------	-----------

How to Select Initial Mean Vectors?

- Use hierarchical clustering to determine initial centroids (mean vectors)
- Select more than k initial centroids, run k-means, and select the "best" centroids as the initial centroids of the final k-means clustering
- Use postprocessing
- Use bisecting k-means algorithm, which is not as susceptible to initialization issues

Preprocessing and Postprocessing

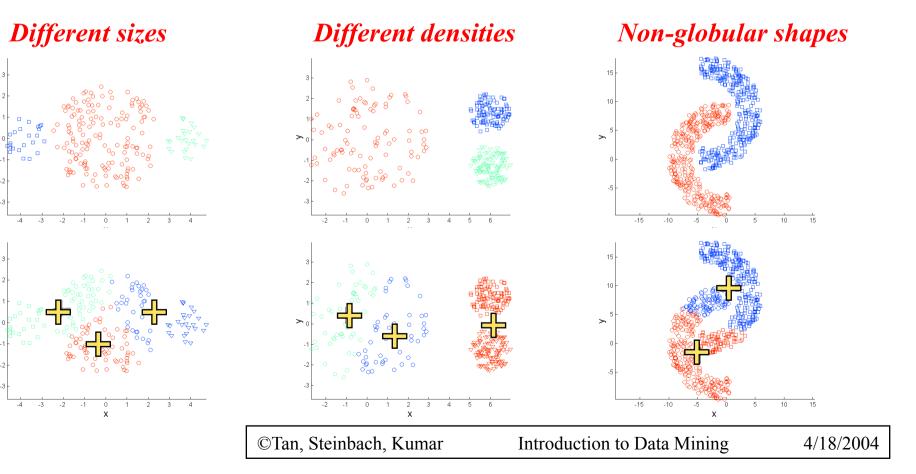
- Preprocessing
 - Data normalization
 - Outlier elimination
- Postprocessing
 - Eliminate small clusters that may represent outliers
 - Split "loose" clusters with relatively high error
 - Merge "close" clusters with relatively low error
 - These steps can be used also during the clustering process
- Basic k-means algorithm may yield empty clusters
 - Choose the point that contributes most to the error function
 - Choose a point from the cluster with the highest error

Bisecting K-means Clustering

```
start with a single cluster containing all
samples (this is the initial list of clusters)
repeat
     pick a cluster to split from the list
     for i = 1 to N (bisecting step)
          bisect the selected cluster using
          the basic k-means
     end for
     add the two clusters corresponding
     to the "best" split into the list
until the list contains k clusters
```

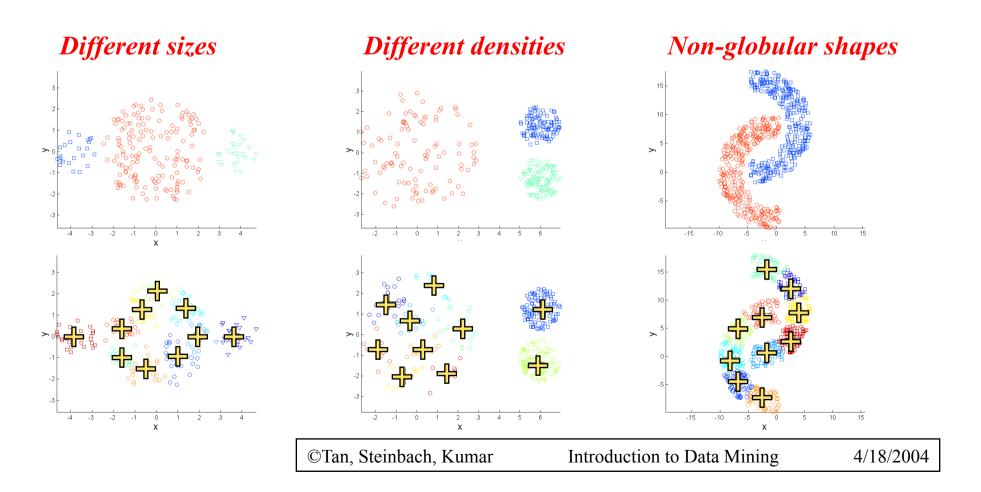
Limitations of K-means Clustering

 K-means may have problems when clusters are of different sizes, densities, and/or non-globular shapes and when data contain some outliers



Overcoming K-means Limitations

 One solution is to use many clusters and then put them together to identify the final clusters



Fuzzy K-means Clustering

Each sample has "fuzzy" membership in every cluster c_i

$$E_{fuzzy} = \sum_{i=1}^{k} \sum_{t=1}^{N} \left[\underbrace{P(c_{i} \mid x^{t})}_{Memberships} \right]^{b} \left\| x^{t} - m_{i} \right\|^{2}$$
Memberships
quantified as
posteriors

$$\frac{\partial E_{fuzzy}}{\partial m_i} = 0 \quad \text{and} \quad \frac{\partial E_{fuzzy}}{\partial P_i} = 0$$

It may improve convergence compared to k-means. However, serious problems may arise when k is incorrectly specified.

```
initialize mean vectors m_i
and posteriors P(m_i, x^t)
normalize P(m_i, x^t)
do
recompute m_i
recompute P(m_i, x^t)
until there is small change
in m_i and P(m_i, x^t)
```

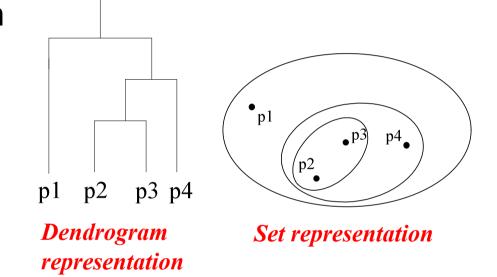
$$\sum_{i} P(c_{i} | x^{t}) = 1$$

$$m_{i} = \frac{\sum_{i} [P(c_{i} | x^{t})]^{b} x^{t}}{\sum_{i} [P(c_{i} | x^{t})]^{b}}$$

$$P(c_{i} | x^{t}) = \frac{(1 / ||x^{t} - m_{i}||^{2})^{1 / (b-1)}}{\sum_{k} (1 / ||x^{t} - m_{k}||^{2})^{1 / (b-1)}}$$

Hierarchical Clustering

- Produces a set of nested clusters organized in a hierarchy
- Can be represented with dendrograms or sets



- Strengths
 - Do not have to assume any particular number of clusters (Any desired number of clusters can be obtained by "cutting" the dendogram at the proper level)
 - They may correspond to meaningful taxonomies

Hierarchical Clustering

- Two main types of hierarchical clustering
- 1. Agglomerative (bottom-up)
 - Start with N singleton clusters and merge the clusters successively with respect to their (dis)similarities
- 2. Divisive (top-down)
 - Start with a single cluster containing all samples and split the clusters successively with respect to their (dis)similarities

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward

```
let each sample be a cluster
compute the dissimilarity (distance) matrix
repeat
    merge the two most similar cluster
    update the distance matrix
until only a single cluster remains
```

 Key operation is the definition of (dis)similarity between two clusters

How to Define (Dis)similarity

• Similarity between clusters c_i and c_j can be defined as

$$s_{\min}(c_{i}, c_{j}) = \min_{\substack{x \in D_{i} \\ y \in D_{j}}} \|x - y\|^{2}$$

$$s_{\max}(c_{i}, c_{j}) = \max_{\substack{x \in D_{i} \\ y \in D_{j}}} \|x - y\|^{2}$$

$$s_{\text{avg}}(c_{i}, c_{j}) = \frac{1}{n_{i}n_{j}} \sum_{x \in D_{i}} \sum_{y \in D_{j}} \|x - y\|^{2}$$

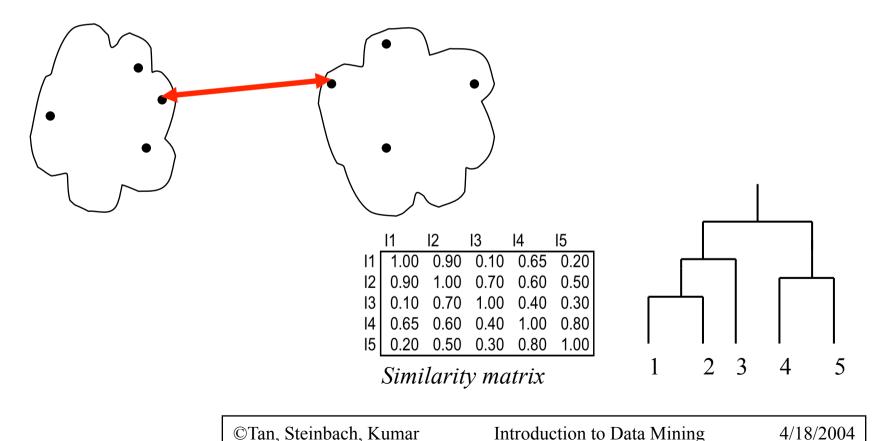
$$s_{\max}(c_{i}, c_{j}) = \|m_{i} - m_{j}\|^{2}$$

 Instead of using the Euclidean distance, one can use another distance metric or a similarity measure

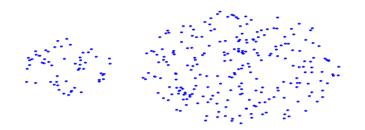
How to Define (Dis)similarity

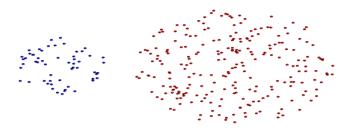
Minimum similarity (or single linkage algorithm)

 Similarity of two clusters is based on the two most similar samples in different clusters

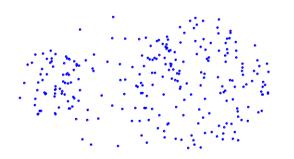


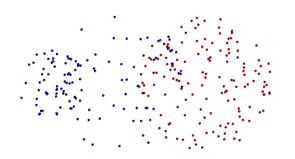
Minimum Similarity (Single Linkage)





Strength: It can handle non-elliptical shapes





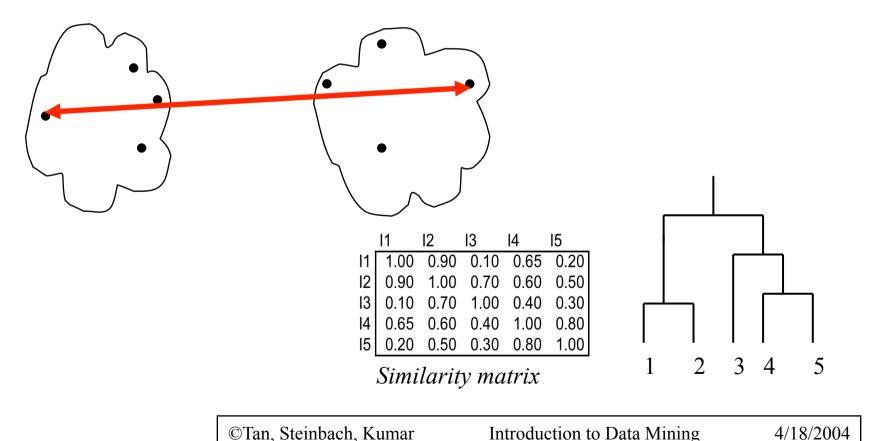
Limitation: It is sensitive to noise and outliers

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

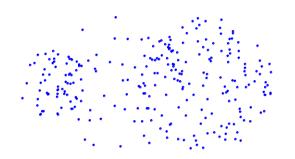
How to Define (Dis)similarity

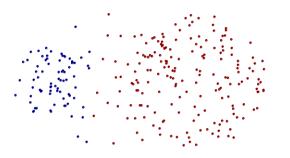
Maximum similarity (or complete linkage algorithm)

 Similarity of two clusters is based on the two least similar samples in different clusters

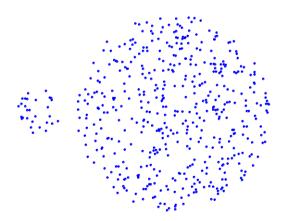


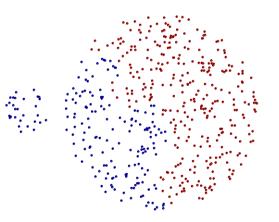
Maximum Similarity (Complete Linkage)





Strength: It is less susceptible to noise and oumers





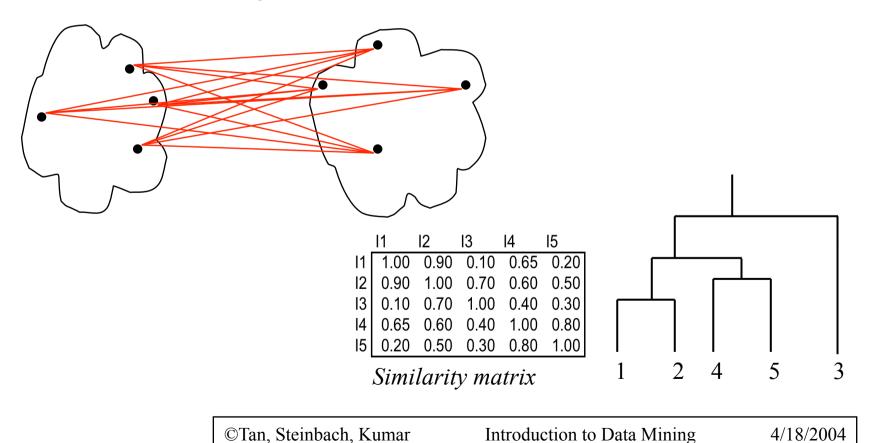
Limitation: It tends to break large clusters Biased towards globular clusters

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

How to Define (Dis)similarity

Group average

 Similarity of two clusters is the average of pairwise similarities of samples in different clusters



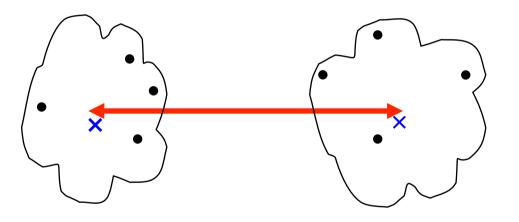
Group Average Similarity

- Compromise between single linkage and complete linkage
- Strength
 - It is less susceptible to noise and outliers
- Limitation
 - It is still biased towards globular cluster

How to Define (Dis)similarity

Similarity between the mean vectors

Similarity of two clusters is the similarity of their centroids



Hierarchical Clustering

Time and space requirements

- O(N²) space since it uses the proximity matrix, where N is the number of samples
- O(N³) time in many cases
 - There are N steps and at each step the proximity matrix must be updated and searched

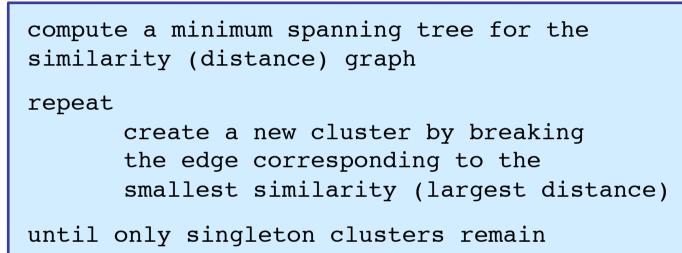
Hierarchical Clustering

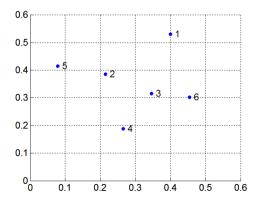
Problems and Limitations

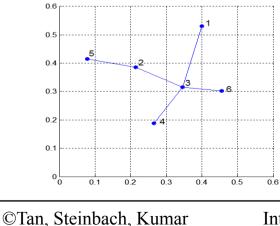
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Divisive Hierarchical Clustering

Can be achieved using a graph





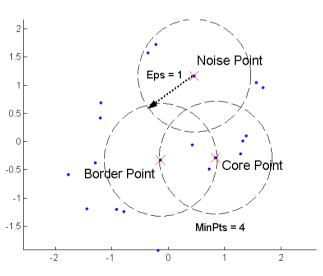


Introduction to Data Mining

Density-Based Clustering

DBSCAN (Density-based spatial clustering of applications with noise)

- Density is defined as the number of points within a specified radius *Eps*
- A point is a core point if it has more than a specified number *MinPts* of points within *Eps*
 - These are points at the interior of a cluster
- A border point has fewer than *MinPts* within *Eps*, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point



- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \gets 1
```

for all core points \mathbf{do}

 ${\bf if}$ the core point has no cluster label ${\bf then}$

 $current_cluster_label \gets current_cluster_label + 1$

Label the current core point with cluster label *current_cluster_label* end if

for all points in the *Eps*-neighborhood, except i^{th} the point itself do

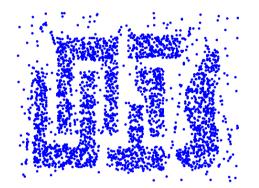
 ${\bf if}$ the point does not have a cluster label ${\bf then}$

Label the point with cluster label $current_cluster_label$

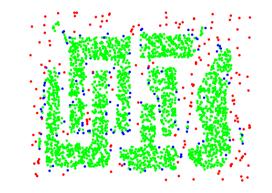
end if

end for

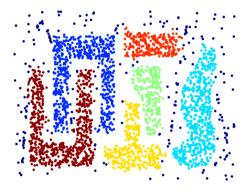
end for



Original points



Point types: core border and noise Eps = 10, MinPts = 4

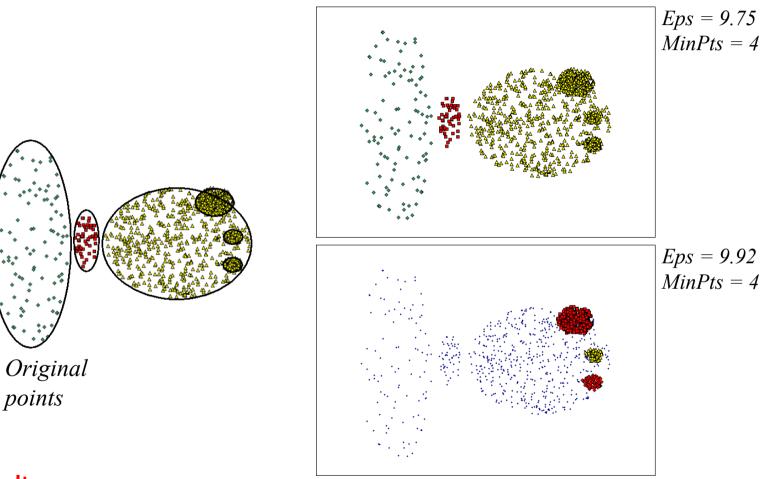


Clusters

Strength:

Resistant to noise Can handle clusters of different shapes and sizes

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004



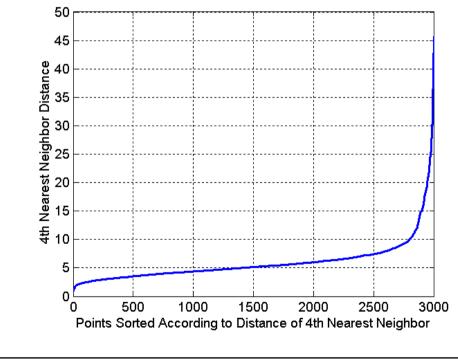
Difficulty:

When there exist clusters with differing densities

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

How to determine *Eps* and *MinPts*

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor



Cluster Validity

- For supervised classification, we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To compare clustering algorithms
 - To compare two clusters
 - To determine the cluster number

Measures of Cluster Validity

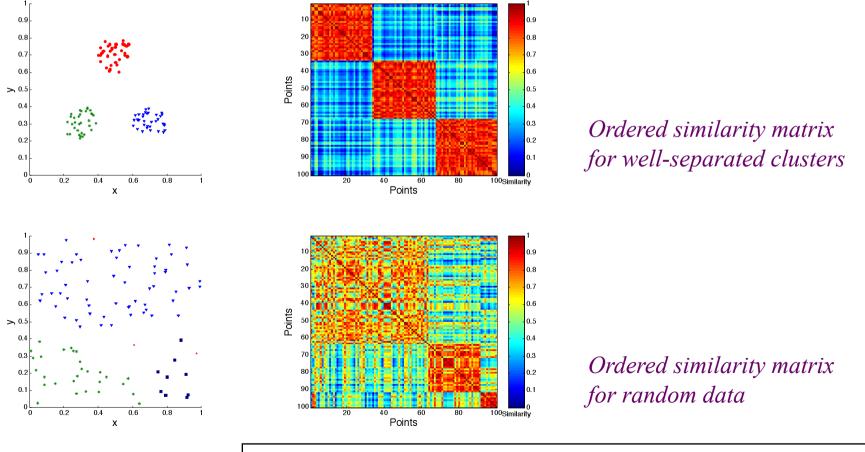
- External Measure: Used to measure the extent to which cluster labels match externally supplied class labels
 - Correlation, entropy
- Internal Measure: Used to measure the goodness of a clustering structure *without* respect to external information
 - Sum of squared error

External Measure: Correlation

- Compute the correlation between the similarity (distance) matrix and the ideal version of the similarity matrix
- Ideal version
 - One row and one column for each point
 - An entry is 1 if the corresponding points belong to the same cluster (according to the externally supplied labels)
 - An entry is 0 if the corresponding points belong to different clusters
- High correlation indicates that points belonging to the same cluster are close to each other

Similarity Matrix for Cluster Validation

 Order the similarity matrix with respect to the externally provided cluster labels and inspect it visually



©Tan, Steinbach, Kumar

Introduction to Data Mining

External Measure: Entropy and Purity

Entropy

- For each cluster, calculate the distribution of the externally provided labels and calculate entropy $E = -\sum_{m=1}^{m} p_{m} \log p$
- Take the weighted sum to calculate the entropy of the clustering

$$E_i = -\sum_{j=1}^{k} p_{ij} \log p_{ij}$$

$$E = \sum_{i=1}^{\kappa} n_i E_i$$

Purity

- For each cluster, the probability of the majority label
- Take the weighted sum to calculate the purity of the clustering

Tuble 9.3. It means of ustering nesults for EA Boodment Bata Get								
Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

$$P_i = \max_j p_{ij}$$
$$P = \sum_{i=1}^k n_i P_i$$

©Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

Internal Measure

- Remember what we have seen before
 - Sum of squared error
 - Related minimum variance criterion
 - Scatter criteria

(within cluster scatter, between cluster scatter)

Final Comment on Cluster Validity

" The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes