
Decision Trees
CS 550: Machine Learning

Decision Trees
  A decision tree provides a classification or regression model

built in the form of a tree structure

  It corresponds to partitioning the input space into localized
regions, each of which can make different decision

  Decision tree learning aims to find these partitions

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2 Class 1

Class 1 Class 2

Decision Trees
  It is composed of internal decision nodes and leaves

–  An internal node corresponds to a test function whose discrete
outcomes label the branches

–  A leaf defines a localized region (and a class for classification
and a numerical value for regression)

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2 Class 1

Class 1 Class 2

Decision Trees
  In training, the goal is to construct a tree yielding the minimum error

–  At each step, the “best” split is selected among all possible ones

–  Tree construction iteratively continues until all leaves are pure
–  This is the basis of CART, ID3, and C4.5 algorithms

  For an unseen instance, start at the root, take branches according to
the test outcomes until a leaf is reached

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2 Class 1

Class 1 Class 2

–  The value in the leaf is the output

Decision Trees
  Univariate trees

–  Test functions use one feature at a time
–  Define splits orthogonal to the coordinate axes

  Multivariate trees
–  Test functions use more than one feature at a time

xj = red

Discrete features

xj < θ1

Continuous features

x1

x2

w11 x1 + w12 x2 + w10 < 0

Class 1

Class 1

Class 2

w21 x1 + w22 x2 + w20 < 0

Classification Trees
  For tree construction, iteratively select the “best” split

until all leaves are pure

  What is the “best” split?
–  The goodness of a split is quantified by an impurity measure

–  Entropy is one of the most commonly used measures

	 	

€

I(m) = − Pm (Ci)	 logPm (Ci)
i=1

C

∑
Entropy
at node m

number of
classes

Probability of having
i-th class at node m

	 	

€

I(S) = Pleft 	 I(left) + Pright 	 I(right)
Entropy of a
binary split S

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1

S2 red 0.2 2

S3 green 0.5 2

S4 blue 0.1 1

S5 red -0.5 2

S6 green 0.1 1

S7 green 0.4 2

S8 blue 0.0 2

  At every step
1.  List all possible splits
2.  Calculate the entropy for every split
3.  Select the one with the minimum

entropy

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1

S2 red 0.2 2

S3 green 0.5 2

S4 blue 0.1 1

S5 red -0.5 2

S6 green 0.1 1

S7 green 0.4 2

S8 blue 0.0 2

  For classification
–  Each different value of a discrete

feature will define a split

–  Halfway between continuous
feature values of the samples
belonging to different classes will
be split points

–  Possible splits:

 x1 = red x1 = green x1 = blue
 x2 ≤ 0.05 x2 ≤ 0.15 x2 ≤ 0.45

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1

S2 red 0.2 2

S3 green 0.5 2

S4 blue 0.1 1

S5 red -0.5 2

S6 green 0.1 1

S7 green 0.4 2

S8 blue 0.0 2

  Calculate the entropy for all possible splits

x1 = red

S1 – Class 1
S2 – Class 2
S5 – Class 2

S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2
S8 – Class 2 	 	

€

I(x1 = red) = PYes	 I(Yes) + PNo	 I(No)

	 	 	 = 	
3
8
	 −	

1
3
	 log 	 1

3
	 − 	

2
3
	 log 	 2

3
⎛

⎝
⎜

⎞

⎠
⎟ 	 	 +

	 	 	 	 	 	 	 	
5
8
	 −	

2
5
	 log 	 2

5
	 − 	

3
5
	 log 	 3

5
⎛

⎝
⎜

⎞

⎠
⎟

	 	 	 = 	 0.9512

x2 ≤ 0.05

S5 – Class 2
S8 – Class 2

S1 – Class 1
S2 – Class 2
S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2 	 	

€

I(x2 ≤ 0.05) = PYes	 I(Yes) + PNo	 I(No)

	 	 	 = 	
2
8
	 −	 0	 log 	 0	 − 	 1	 log 	 1()	 	 +

	 	 	 	 	 	 	 	
6
8
	 −	

3
6
	 log 	 3

6
	 − 	

3
6
	 log 	 3

6
⎛

⎝
⎜

⎞

⎠
⎟

	 	 	 = 	 0.7500

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1

S2 red 0.2 2

S3 green 0.5 2

S4 blue 0.1 1

S5 red -0.5 2

S6 green 0.1 1

S7 green 0.4 2

S8 blue 0.0 2

  Select the split with the minimum entropy
and continue

x2 ≤ 0.05

S5 – Class 2
S8 – Class 2

S1 – Class 1
S2 – Class 2
S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2

	 	

€

I(x1 = red) = PYes	 I(Yes) + PNo	 I(No)

	 	 	 = 	
2
6
	 −	

1
2
	 log 	 1

2
	 − 	

1
2
	 log 	 1

2
⎛

⎝
⎜

⎞

⎠
⎟ 	 	 +

	 	 	 	 	 	 	 	
4
6
	 −	

2
4
	 log 	 2

4
	 − 	

2
4
	 log 	 2

4
⎛

⎝
⎜

⎞

⎠
⎟

	 	 	 	 	 	 	 	 ...

Pure then
STOP

Continue for this branch
List all possible splits for
this branch, calculate the
entropy for each, and select
the one with the min entropy

Alternative Splitting Criteria

	 	

€

I(m) = − Pm (Ci)	 logPm (Ci)
i=1

C

∑

Entropy at node m

Probability of having
i-th class at node m

	 	

€

I(m) = Pm (Ci)	 	 	 Pm (C j) = 	
i≠ j
∑ 1

2
	 	 1	 − 	 	 Pm (Ci)()2 	

i
∑

⎡

⎣
⎢

⎤

⎦
⎥

	 	

€

I(m) =1	 − 	 max 	
i

Pm (Ci)

Gini impurity at node m

Misclassification impurity at node m

When to Stop Splitting
  Until all leaves are pure Overfitting

  To prevent overfitting
–  Set a small threshold value in the reduction in impurity

–  Use cross validation techniques (e.g., continue splitting if the
cross validation error is decreasing)

–  Use an explicit measure of the complexity to encode the training
samples and the tree, stop growing when the encoding size is
minimized (minimum description length principle)

–  Use statistical tests (e.g., use chi-squared statistic to understand
if a split differs significantly from a random one)

  Then, it might be useful to keep the classes existing in a
leaf together with their class probabilities

Pruning
  Prepruning: Stop growing the tree earlier before it

overfits the training samples

  Postpruning: Grow the tree until it overfits the training
samples (all leaves are pure) then prune the grown tree
–  Reduced error pruning: Remove nodes (or subtrees) only if the

pruned tree performs no worse than the unpruned one over the
validation set

–  Rule post pruning: Convert a tree into a set of rules and simplify
(prune) each rule by removing any preconditions that result in
no-worse-than validation performance

if (x1 ≥ θ1) and (x2 ≥ θ2) then Class 2

Try removing A or B and see what happens
on the validation set

x1 < θ1

x2 < θ2
Class 1

Class 1 Class 2

A B

Rule Extraction
  One advantage of using a decision tree classifier is its

ability to extract human interpretable rules

x1: living close to migration routes (Yes / No)
x2: feeding poultry (Yes / No)
x3: contact with sick poultry (Yes / No)
x4: gender (Male / Female)

Rule 1: if (contact = yes) then high-risk
Rule 2: if (contact = no) and (feeding = yes) then medium-risk
Rule 3: if (contact = no) and (feeding = no) and (close-living = yes) then medium-risk
Rule 4: if (contact = no) and (feeding = no) and (close-living = no) then low-risk

x3 = Yes

high-risk x2 = Yes

x1 = Yes medium-risk

medium-risk low-risk

Consider the following problem setting in
which we estimate the risk of getting avian flu

Rule support is the percentage of the training samples covered by the rule

Attributes with Differing Costs
  There is always trade-off between the classification

accuracy and the cost of features used by the
classification algorithm
–  More expensive features usually yield more accurate results

  One can build decision trees that are also sensitive to
the cost of feature extraction by defining the splitting
criterion accordingly

	 	

€

Splitting
criterion =

Gain(S	 , 	 F)2

Cost(F)
by	 Tan	 93

Splitting
criterion =

2Gain(S	 ,	 F) 	 − 	 1
Cost(F)	 + 	 1()w

by	 Nunez	 98

Gain(S	 , 	 F) = entropy(before) − entropy(after)

Missing Values
If a feature value is missing in a training instance
  Assign a value to this feature in entropy calculation

–  The most common value among training instances at the current node

–  The most common value among training instances at the current node
that belong to the same class

  Assign a probability to every possible value of that feature and
consider it as a set of fractional instances
–  Probabilities can be estimated based on the frequencies of that feature’s

values among training instances at the current node

If it is missing in an unseen instance
  A set of fractional instances can be used

–  The final decision is a weighted sum of the decisions of every reached leaf

  Estimate the missing value using the existing features

Regression Trees
  Continuous outputs at leaves (instead of class labels)
  Error measure is used for the goodness of a split

(instead of an impurity measure)
  Iteratively grow the tree until the error measure falls

below a certain threshold

	 	

€

E(m) =
1

	 Dm 	
	 (yi − fm)

2

xi ∈	 Dm

∑
Mean square
error at node m

training
samples
at node m

estimated
output at
node m

	 	

€

E(S) = Pleft 	 E(left) + Pright 	 E(right)
Mean square error
of a binary split S

To estimate fm
The mean (median) over the
outputs of the training samples
at node m could be used
(piecewise constant approx.)

A linear function is fit over the
outputs of the training samples
at node m and its output value
could be used
(piecewise linear approx.)

Regression Trees
 Exercise: Show how to construct a regression tree for the

training samples given below (show how the selection of the
stopping threshold affects the constructed tree)

x

y

