
Decision Trees 
CS 550: Machine Learning 



Decision Trees 
  A decision tree provides a classification or regression model 

built in the form of a tree structure 

  It corresponds to partitioning the input space into localized 
regions, each of which can make different decision 

  Decision tree learning aims to find these partitions 
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Decision Trees 
  It is composed of internal decision nodes and leaves 

–  An internal node corresponds to a test function whose discrete 
outcomes label the branches 

–  A leaf defines a localized region (and a class for classification 
and a numerical value for regression) 
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Decision Trees 
  In training, the goal is to construct a tree yielding the minimum error 

–  At each step, the “best” split is selected among all possible ones 

–  Tree construction iteratively continues until all leaves are pure 
–  This is the basis of CART, ID3, and C4.5 algorithms 

  For an unseen instance, start at the root, take branches according to 
the test outcomes until a leaf is reached 
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–  The value in the leaf is the output 



Decision Trees 
  Univariate trees 

–  Test functions use one feature at a time 
–  Define splits orthogonal to the coordinate axes 

  Multivariate trees  
–  Test functions use more than one feature at a time 
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Classification Trees 
  For tree construction, iteratively select the “best” split 

until all leaves are pure 

  What is the “best” split? 
–  The goodness of a split is quantified by an impurity measure 

–  Entropy is one of the most commonly used measures 
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Classification Trees 
Construct a tree for the training instances below 

x1 x2 class 

S1 red 0.5 1 

S2 red 0.2 2 

S3 green 0.5 2 

S4 blue 0.1 1 

S5 red -0.5 2 

S6 green 0.1 1 

S7 green 0.4 2 

S8 blue 0.0 2 

  At every step 
1.  List all possible splits 
2.  Calculate the entropy for every split 
3.  Select the one with the minimum 

entropy 



Classification Trees 
Construct a tree for the training instances below 

x1 x2 class 

S1 red 0.5 1 

S2 red 0.2 2 

S3 green 0.5 2 

S4 blue 0.1 1 

S5 red -0.5 2 

S6 green 0.1 1 

S7 green 0.4 2 

S8 blue 0.0 2 

  For classification 
–  Each different value of a discrete 

feature will define a split 

–  Halfway between continuous 
feature values of the samples 
belonging to different classes will 
be split points 

–  Possible splits: 

 x1 = red     x1 = green x1 = blue 
 x2  ≤ 0.05    x2  ≤ 0.15 x2  ≤ 0.45 



Classification Trees 
Construct a tree for the training instances below 

x1 x2 class 

S1 red 0.5 1 

S2 red 0.2 2 

S3 green 0.5 2 

S4 blue 0.1 1 

S5 red -0.5 2 

S6 green 0.1 1 

S7 green 0.4 2 

S8 blue 0.0 2 

  Calculate the entropy for all possible splits 

x1 = red 

S1 – Class 1 
S2 – Class 2 
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S3 – Class 2 
S4 – Class 1 
S6 – Class 1 
S7 – Class 2 
S8 – Class 2 	  	  
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Classification Trees 
Construct a tree for the training instances below 

x1 x2 class 

S1 red 0.5 1 

S2 red 0.2 2 

S3 green 0.5 2 

S4 blue 0.1 1 

S5 red -0.5 2 

S6 green 0.1 1 

S7 green 0.4 2 

S8 blue 0.0 2 

  Select the split with the minimum entropy 
and continue 

x2 ≤ 0.05 
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Pure then 
STOP 

Continue for this branch 
List all possible splits for 
this branch, calculate the 
entropy for each, and select 
the one with the min entropy 



Alternative Splitting Criteria 
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When to Stop Splitting 
  Until all leaves are pure  Overfitting 

  To prevent overfitting 
–  Set a small threshold value in the reduction in impurity 

–  Use cross validation techniques (e.g., continue splitting if the 
cross validation error is decreasing) 

–  Use an explicit measure of the complexity to encode the training 
samples and the tree, stop growing when the encoding size is 
minimized (minimum description length principle) 

–  Use statistical tests (e.g., use chi-squared statistic to understand 
if a split differs significantly from a random one) 

  Then, it might be useful to keep the classes existing in a 
leaf together with their class probabilities 



Pruning 
  Prepruning: Stop growing the tree earlier before it 

overfits the training samples 

  Postpruning: Grow the tree until it overfits the training 
samples (all leaves are pure) then prune the grown tree 
–  Reduced error pruning: Remove nodes (or subtrees) only if the 

pruned tree performs no worse than the unpruned one over the 
validation set 

–  Rule post pruning: Convert a tree into a set of rules and simplify 
(prune) each rule by removing any preconditions that result in  
no-worse-than validation performance 

if  (x1  ≥  θ1)  and  (x2  ≥  θ2)  then  Class 2 

Try removing A or B and see what happens 
on the validation set 
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Rule Extraction 
  One advantage of using a decision tree classifier is its 

ability to extract human interpretable rules 

x1:  living close to migration routes (Yes / No) 
x2:  feeding poultry (Yes / No) 
x3:  contact with sick poultry (Yes / No) 
x4:  gender (Male / Female) 

Rule 1: if  (contact = yes)  then  high-risk 
Rule 2: if  (contact = no)  and  (feeding = yes)  then  medium-risk 
Rule 3: if  (contact = no)  and  (feeding = no)  and  (close-living = yes)  then  medium-risk 
Rule 4: if  (contact = no)  and  (feeding = no)  and  (close-living = no)  then  low-risk 

x3 = Yes 

high-risk x2 = Yes 

x1 = Yes medium-risk 

medium-risk low-risk 

Consider the following problem setting in 
which we estimate the risk of getting avian flu 

Rule support is the percentage of the training samples covered by the rule 



Attributes with Differing Costs 
  There is always trade-off between the classification 

accuracy and the cost of features used by the 
classification algorithm 
–  More expensive features usually yield more accurate results 

  One can build decision trees that are also sensitive to 
the cost of feature extraction by defining the splitting 
criterion accordingly 
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Missing Values 
If a feature value is missing in a training instance 
  Assign a value to this feature in entropy calculation 

–  The most common value among training instances at the current node 

–  The most common value among training instances at the current node 
that belong to the same class 

  Assign a probability to every possible value of that feature and 
consider it as a set of fractional instances 
–  Probabilities can be estimated based on the frequencies of that feature’s 

values among training instances at the current node 

If it is missing in an unseen instance 
  A set of fractional instances can be used 

–  The final decision is a weighted sum of the decisions of every reached leaf 

  Estimate the missing value using the existing features 



Regression Trees 
  Continuous outputs at leaves (instead of class labels) 
  Error measure is used for the goodness of a split 

(instead of an impurity measure) 
  Iteratively grow the tree until the error measure falls 

below a certain threshold 
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To estimate fm 
The mean (median) over the 
outputs of the training samples 
at node m could be used 
(piecewise constant approx.) 

A linear function is fit over the 
outputs of the training samples 
at node m and its output value 
could be used 
(piecewise linear approx.) 



Regression Trees 
 Exercise: Show how to construct a regression tree for the 

training samples given below (show how the selection of the 
stopping threshold affects the constructed tree) 

x 

y 


