Decision Trees
CS 550: Machine Learning
A decision tree provides a classification or regression model built in the form of a tree structure. It corresponds to partitioning the input space into localized regions, each of which can make different decisions. Decision tree learning aims to find these partitions.
Decision Trees

- It is composed of internal decision nodes and leaves
 - An internal node corresponds to a test function whose discrete outcomes label the branches
 - A leaf defines a localized region (and a class for classification and a numerical value for regression)
Decision Trees

- In training, the goal is to construct a tree yielding the minimum error
 - At each step, the “best” split is selected among all possible ones
 - Tree construction iteratively continues until all leaves are pure
 - This is the basis of CART, ID3, and C4.5 algorithms

- For an unseen instance, start at the root, take branches according to the test outcomes until a leaf is reached
 - The value in the leaf is the output
Decision Trees

- **Univariate trees**
 - Test functions use one feature at a time
 - Define splits orthogonal to the coordinate axes

- **Multivariate trees**
 - Test functions use more than one feature at a time
Classification Trees

- For tree construction, iteratively select the “best” split until all leaves are pure
- What is the “best” split?
 - The goodness of a split is quantified by an impurity measure
 - Entropy is one of the most commonly used measures

\[
I(m) = - \sum_{i=1}^{C} P_m(C_i) \log P_m(C_i)
\]

Entropy at node m

- Number of classes
- Probability of having \(i\)-th class at node \(m\)

\[
I(S) = P_{left} I(left) + P_{right} I(right)
\]

Entropy of a binary split \(S\)
Classification Trees

Construct a tree for the training instances below

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>red</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>S_2</td>
<td>red</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>S_3</td>
<td>green</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>S_4</td>
<td>blue</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>S_5</td>
<td>red</td>
<td>-0.5</td>
<td>2</td>
</tr>
<tr>
<td>S_6</td>
<td>green</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>S_7</td>
<td>green</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>S_8</td>
<td>blue</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- At every step
 1. List all possible splits
 2. Calculate the entropy for every split
 3. Select the one with the minimum entropy
Classification Trees

Construct a tree for the training instances below

<table>
<thead>
<tr>
<th></th>
<th>x₁</th>
<th>x₂</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>red</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>S₂</td>
<td>red</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>S₃</td>
<td>green</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>S₄</td>
<td>blue</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>S₅</td>
<td>red</td>
<td>-0.5</td>
<td>2</td>
</tr>
<tr>
<td>S₆</td>
<td>green</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>S₇</td>
<td>green</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>S₈</td>
<td>blue</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- For classification
 - Each different value of a **discrete feature** will define a split
 - Halfway between **continuous feature** values of the samples belonging to different classes will be split points
 - Possible splits:
 - $x_1 = \text{red}$
 - $x_1 = \text{green}$
 - $x_1 = \text{blue}$
 - $x_2 \leq 0.05$
 - $x_2 \leq 0.15$
 - $x_2 \leq 0.45$
Classification Trees

Construct a tree for the training instances below

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>red</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>(S_2)</td>
<td>red</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>(S_3)</td>
<td>green</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>(S_4)</td>
<td>blue</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>(S_5)</td>
<td>red</td>
<td>-0.5</td>
<td>2</td>
</tr>
<tr>
<td>(S_6)</td>
<td>green</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>(S_7)</td>
<td>green</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>(S_8)</td>
<td>blue</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Calculate the entropy for all possible splits

\[
I(x_1 = \text{red}) = P_{\text{Yes}} I(\text{Yes}) + P_{\text{No}} I(\text{No})
\]

\[
= \frac{3}{8} \left(- \frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3} \right) + \frac{5}{8} \left(- \frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5} \right)
\]

\[
= 0.9512
\]

\[
I(x_2 \leq 0.05) = P_{\text{Yes}} I(\text{Yes}) + P_{\text{No}} I(\text{No})
\]

\[
= \frac{2}{8} \left(- 0 \log 0 - 1 \log 1 \right) + \frac{6}{8} \left(- \frac{3}{6} \log \frac{3}{6} - \frac{3}{6} \log \frac{3}{6} \right)
\]

\[
= 0.7500
\]
Classification Trees

Construct a tree for the training instances below

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>red</td>
<td>0.5</td>
</tr>
<tr>
<td>S_2</td>
<td>red</td>
<td>0.2</td>
</tr>
<tr>
<td>S_3</td>
<td>green</td>
<td>0.5</td>
</tr>
<tr>
<td>S_4</td>
<td>blue</td>
<td>0.1</td>
</tr>
<tr>
<td>S_5</td>
<td>red</td>
<td>-0.5</td>
</tr>
<tr>
<td>S_6</td>
<td>green</td>
<td>0.1</td>
</tr>
<tr>
<td>S_7</td>
<td>green</td>
<td>0.4</td>
</tr>
<tr>
<td>S_8</td>
<td>blue</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Select the split with the minimum entropy and continue

$x_2 \leq 0.05$

$I(x_1 = red) = P_{Yes} I(Yes) + P_{No} I(No)$

$\begin{align*}
&= \frac{2}{6} \left(- \frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} \right) + \\
&\quad \frac{4}{6} \left(- \frac{2}{4} \log \frac{2}{4} - \frac{2}{4} \log \frac{2}{4} \right) \\
&\quad \hdots
\end{align*}$

Pure then STOP

Continue for this branch
List all possible splits for this branch, calculate the entropy for each, and select the one with the min entropy
Alternative Splitting Criteria

Entropy at node m

$$I(m) = - \sum_{i=1}^{C} P_m(C_i) \log P_m(C_i)$$

Probability of having i-th class at node m

Gini impurity at node m

$$I(m) = \sum_{i \neq j} P_m(C_i) \cdot P_m(C_j) = \frac{1}{2} \left[1 - \sum_i \left(P_m(C_i) \right)^2 \right]$$

Misclassification impurity at node m

$$I(m) = 1 - \max_i P_m(C_i)$$
When to Stop Splitting

- Until all leaves are pure → Overfitting

- To prevent overfitting
 - Set a small threshold value in the reduction in impurity
 - Use cross validation techniques (e.g., continue splitting if the cross validation error is decreasing)
 - Use an explicit measure of the complexity to encode the training samples and the tree, stop growing when the encoding size is minimized (*minimum description length principle*)
 - Use statistical tests (e.g., use chi-squared statistic to understand if a split differs significantly from a random one)

- Then, it might be useful to keep the classes existing in a leaf together with their class probabilities
Pruning

- **Prepruning**: Stop growing the tree earlier before it overfits the training samples

- **Postpruning**: Grow the tree until it overfits the training samples (all leaves are pure) then prune the grown tree
 - *Reduced error pruning*: Remove nodes (or subtrees) only if the pruned tree performs no worse than the unpruned one over the validation set
 - *Rule post pruning*: Convert a tree into a set of rules and simplify (prune) each rule by removing any preconditions that result in no-worse-than validation performance

Try removing A or B and see what happens on the validation set
Rule Extraction

- One advantage of using a decision tree classifier is its ability to extract human interpretable rules.

Consider the following problem setting in which we estimate the risk of getting avian flu:

- x_1: living close to migration routes (Yes / No)
- x_2: feeding poultry (Yes / No)
- x_3: contact with sick poultry (Yes / No)
- x_4: gender (Male / Female)

Rule 1: if (contact = yes) then high-risk

Rule 2: if (contact = no) and (feeding = yes) then medium-risk

Rule 3: if (contact = no) and (feeding = no) and (close-living = yes) then medium-risk

Rule 4: if (contact = no) and (feeding = no) and (close-living = no) then low-risk

Rule support is the percentage of the training samples covered by the rule.
Attributes with Differing Costs

- There is always trade-off between the classification accuracy and the cost of features used by the classification algorithm
 - More expensive features usually yield more accurate results

- One can build decision trees that are also sensitive to the cost of feature extraction by defining the splitting criterion accordingly

$$ Splitting \ criterion = \frac{Gain(S, F)^2}{Cost(F)} $$

by Tan 93

$$ Splitting \ criterion = \frac{2^{Gain(S, F)} - 1}{(Cost(F) + 1)^w} $$

by Nunez 98

$$ Gain(S, F) = \text{entropy(before)} - \text{entropy(after)} $$
Missing Values

If a feature value is missing in a training instance

- Assign a value to this feature in entropy calculation
 - The most common value among training instances at the current node
 - The most common value among training instances at the current node that belong to the same class

- Assign a probability to every possible value of that feature and consider it as a set of fractional instances
 - Probabilities can be estimated based on the frequencies of that feature’s values among training instances at the current node

If it is missing in an unseen instance

- A set of fractional instances can be used
 - The final decision is a weighted sum of the decisions of every reached leaf

- Estimate the missing value using the existing features
Regression Trees

- Continuous outputs at leaves (instead of class labels)
- Error measure is used for the goodness of a split (instead of an impurity measure)
- Iteratively grow the tree until the error measure falls below a certain threshold

\[E(m) = \frac{1}{|D_m|} \sum_{x_i \in D_m} (y_i - \hat{f}_m)^2 \]

Mean square error at node m

\[E(S) = P_{left} E(left) + P_{right} E(right) \]

Mean square error of a binary split S

To estimate \(f_m \)
The mean (median) over the outputs of the training samples at node m could be used (piecewise constant approx.)

A linear function is fit over the outputs of the training samples at node m and its output value could be used (piecewise linear approx.)
Regression Trees

Exercise: Show how to construct a regression tree for the training samples given below (show how the selection of the stopping threshold affects the constructed tree)