Deep Neural Networks
CS 550: Machine Learning
Deep Architectures

- They are hard to train by backpropagation due to the vanishing gradient problem

\[
\frac{\partial \text{loss}}{\partial W_{ij}} = \frac{\partial \text{loss}}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial W_{ij}} = \delta_j x_i
\]

\[
\delta_j = \left[\sum_{(j+1)} \delta_{(j+1)} W_{j(j+1)} \right] \sigma'(\text{net}_j)
\]

- However, when the initial weights are good enough, backpropagation works well

- Layerwise pretraining
 - Restricted Boltzmann machines
 - Autoencoders
Layerwise Pretraining

- First, train one layer at a time, optimizing $P(x)$
Layerwise Pretraining

- Then, fine-tune weights, optimizing $P(y|x)$ by backpropagation
Restricted Boltzmann Machines (RBMs)

- RBM is a simple energy-based model

\[
p(x, h) = \frac{1}{Z_\theta} \exp(-E_\theta(x, h))
\]

\[
E_\theta(x, h) = -x^T W h - b^T x - d^T h
\]

\[
Z_\theta = \sum_{(x,h)} \exp(-E_\theta(x, h))
\]

- Stacked RBMs can be used to construct a deep belief net, which is a probabilistic generative model
- Stacked RBMs can also be used to initialize a deep neural network
Training RBMs to optimize $P(x)$

Maximize the log-likelihood of data

$$\partial_{w_{ij}} \log P_W(x = x^{(m)}) = \partial_{w_{ij}} \log \sum_h P_W(x = x^{(m)}, h)$$

$$= - \partial_{w_{ij}} \log Z_W + \partial_{w_{ij}} \log \sum_h \exp(-E_W(x^{(m)}, h))$$

$$= - E_{p(x, h)} [x_i \ h_j] + E_{p(h | x=x^{(m)})} [x_i^{(m)} \ h_j]$$

The negative phase term is expensive to calculate since it requires sampling (x, h) from the model. **Contrastive divergence** is a faster solution.
Contrastive Divergence Algorithm

Initialize with the training sample and wait only a few sampling steps (usually 1 step)

1. Let $x^{(m)}$ be a training sample and w_{ij}, b_i, and d_j be the current weights.

2. Sample $\hat{h}_j \in \{0, 1\}$ from $p(h_j \mid x = x^{(m)}) = \sigma\left(\sum_i w_{ij} x^{(m)}_i + d_j\right)$, $\forall j$.

3. Sample $\tilde{x}_i \in \{0, 1\}$ from $p(x_i \mid h = \hat{h}) = \sigma\left(\sum_j w_{ij} \hat{h}_j + b_i\right)$, $\forall i$.

4. Sample $\tilde{h}_j \in \{0, 1\}$ from $p(h_j \mid x = \tilde{x}) = \sigma\left(\sum_i w_{ij} \tilde{x}_i + d_j\right)$, $\forall j$.

\hat{h}_j’s and \tilde{x}’s are assumed to be binary variables.

$$
\begin{align*}
 w_{ij} &= w_{ij} + \gamma (x^{(m)}_i \hat{h}_j - \tilde{x}_i \tilde{h}_j) \\
 b_i &= b_i + \gamma (x^{(m)}_i - \tilde{x}_i) \\
 d_j &= d_j + \gamma (\hat{h}_j - \tilde{h}_j)
\end{align*}
$$
Autoencoders

- They learn to “compress” and “reconstruct” input data
- Learn the weights to minimize the reconstruction loss
- This is the same backpropagation for a network with one hidden layer, where \(x^{(m)} \) is both input and output
- They can be stacked to form a deep neural network
 - Cheaper alternatives to RBMs
 - However, unlike RBMs, they are deterministic and cannot form a deep generative model

Encoder: \(h = \sigma(Wx + b) \)
Decoder: \(x' = \sigma(W'h + d) \)

\[
\text{loss} = \sum_m \left(x^{(m)} - x' \right)^2
\]
Denoising Autoencoders

- Perturb input sample by adding noise to it

Encoder:
\[h = \sigma(W \tilde{x} + b) \]
\[\tilde{x} = x + \text{noise} \]

Decoder:
\[x' = \sigma(W' h + d) \]

- Learn the weights to minimize the reconstruction loss with respect to the original input sample

\[\text{loss} = \sum_m \left(x^{(m)} - x' \right)^2 \]
Layerwise Pretraining

Is it always necessary?

- Answer in 2006: Yes!
- Answer in 2014: No!
 - If initialization is done well by design (e.g., sparse connections and convolutional nets), there may not a vanishing gradient problem
 - If the net is trained on an extremely large dataset, it may not overfit

Slide credit: K. Duh
A CNN consists of a number of convolutional and subsampling (pooling) layers optionally followed by fully connected layers.
Convolutional Neural Networks

- When the input data is an image, a fully connected layer will produce a huge number of weights (parameters) to be learned

Example:
- 200x200 image
- 25K hidden units
- \(\sim 1B \) parameters

Slide credit: M. A. Ranzato
Convolutional Layer

- However, spatial correlation is local and statistics is similar at different locations
- Thus, small kernels are defined and their parameters are shared by all pixels
- **It is convolution with learned kernels**

Example:
- 200x200 image
- 25K hidden units
- 10x10 kernels
- \(\Rightarrow \) \~2.5M parameters (instead of 1B parameters)

Slide credit: M. A. Ranzato
Convolutional Layer

Slide credit: M. A. Ranzato
Convolutional Layer

Learn this filter from data!!!
Convolutional Layer

Learn multiple filters

\[h^n_j = \max \left(0, \sum_{k=1}^{K} h^{n-1}_k \ast w^n_{kj} \right) \]

Rectified linear unit (ReLU) provides nonlinearity: \(u = \max(0, x) \)
- fast to compute
- reduces the likelihood of the gradient to vanish
- better sparsity

Slide credit: M. A. Ranzato
Convolutional Layer

Learn multiple filters

\[h_j^n = \max \left(0, \sum_{k=1}^K h_{k,j}^{n-1} \ast w_{kj}^n \right) \]

Choosing the architecture (the number of feature maps, size of kernels, and number of convolutional layers) is task dependent.

Slide credit: M. A. Ranzato
Pooling Layer

- By pooling filter responses at different locations
 - We gain robustness to the exact location of features
 - Receptive field becomes larger for the next layer (the next layer will look at larger spatial regions)

Slide credit: M. A. Ranzato
Pooling Layer

Max-pooling:
\[
 h_j^n (x, y) = \max_{\bar{x} \in N(x)} \max_{\bar{y} \in N(y)} h_j^{n-1} (\bar{x}, \bar{y})
\]

Average-pooling:
\[
 h_j^n (x, y) = \frac{1}{K} \sum_{\bar{x} \in N(x)} \sum_{\bar{y} \in N(y)} h_j^{n-1} (\bar{x}, \bar{y})
\]

L2-pooling:
\[
 h_j^n (x, y) = \sqrt{\sum_{\bar{x} \in N(x)} \sum_{\bar{y} \in N(y)} h_j^{n-1} (\bar{x}, \bar{y})^2}
\]
Local Contrast Normalization

- Equalizes feature maps/responses

\[h^{n+1}(x, y) = \frac{h^n(x, y) - m^n(N(x, y))}{\max(\varepsilon, \sigma^n(N(x, y)))} \]

Slide credits: R. Fergus and M. A. Ranzato
CNNs: Typical Architecture

After one stage
- Number of feature maps is usually increased (conv. layer)
- Spatial resolution is usually decreased (pooling layer and stride in conv. layer)
- Receptive field gets larger

After several stages
- Spatial resolution is greatly reduced and number of feature maps is large so convolution would not make any sense
- Next layer(s) will consist of fully connected layers (with or without hidden layers)

All layers are differentiable so that standard backpropagation can be used
CNN Examples

ImageNet by Krizhevsky et al., 2012

LeNet-5 by LeCun et al., 1998

Slide credit: M. A. Ranzato
Fully Convolutional Networks (FCNs)

- An FCN is designed for **semantic image segmentation** which predicts a label for each pixel of an image
 - Image (input) and its segmentation map (output) have the same dimensions

- As opposed to a CNN designed for **image classification** which predicts a class label for the entire image
 - Input has MxN dimensions and output is a single class label
A CNN compresses an image into a set of feature maps to capture semantic/contextual information from the image.

This compression corresponds to downsampling the image using convolution and pooling layers.

Then it puts fully connected layers on the top of the feature maps to predict a class for the entire image.
FCNs for Image Segmentation

- An FCN recovers a larger-size segmentation map from the compressed image by **upsampling via deconvolution**
 - Downsampling path captures semantic/contextual information
 - Upsampling path recovers spatial information
 - No fully connected layer is used on the top
 - Skip connections (concatenations) from downsampling to upsampling layers are often used to recover the fine-grained spatial information lost in the downsampling path
Recurrent Neural Networks

- Feedforward neural networks assume that all inputs/outputs are independent
 - However, it is not true for sequential data (speech recognition, translation, etc)

- **Recurrent neural networks** do not have this assumption
 - They perform the same task for every element of a sequence, with the output being dependent on previous computations
 - They might be considered to have a “memory” that captures information about what has been calculated so far
Recurrent Neural Networks

- All steps of an RNN share the same weights \((U, V, W)\)
 - This reflects the fact that each step performs the same task just with a different input
 - Unlike a deep neural network (which uses different weights at each different layer)

\[
\begin{align*}
\text{Input at time } t & : x_t \\
\text{Hidden state at time } t & : s_t = f(U x_t + W s_{t-1}) \\
\text{Output at time } t & : o_t = \text{softmax}(V s_t)
\end{align*}
\]
Training an RNN also uses backpropagation (called backpropagation through time – BPTT)

- In theory, RNNs can learn arbitrarily long sequences
- But, in practice, they have difficulties in learning long-term dependencies
Training Recurrent Neural Networks

RNNs with many steps are hard to train due to the vanishing gradient problem.

\[s_t = \tanh (U x_t + W s_{t-1}) \]
\[o_t = \text{softmax}(V s_t) \]
\[E(y, o) = \sum_t E(y_t, o_t) \]
\[E(y, o) = \sum_t -y_t \log o_t \quad \text{cross entropy} \]
\[\frac{\partial E}{\partial W} = \sum_t \frac{\partial E_t}{\partial W} \]
\[\frac{\partial E_t}{\partial W} = \frac{\partial E_t}{\partial o_t} \frac{\partial o_t}{\partial s_t} \frac{\partial s_t}{\partial W} = \frac{\partial E_t}{\partial o_t} \sum_{k=0}^t \frac{\partial s_i}{\partial s_k} \frac{\partial s_k}{\partial W} \]
\[\frac{\partial s_t}{\partial s_k} = \frac{\partial s_t}{\partial s_{t-1}} \frac{\partial s_{t-1}}{\partial s_{t-2}} \cdots \frac{\partial s_{k+1}}{\partial s_k} \]

\[\frac{\partial E_t}{\partial W} = \frac{\partial E_t}{\partial o_t} \frac{\partial o_t}{\partial s_t} \sum_{k=0}^t \left(\prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W} \]
Long Short Term Memory Networks

- LSTM network is a type of RNN, which is explicitly designed to avoid long-term dependency problem.
- It introduces an additional cell state c_t that controls the flow of information over time.

$$
\begin{align*}
 s_t &= \tanh\left(U x_t + W s_{t-1} \right) \\
 o_t &= \text{softmax}(V s_t)
\end{align*}
$$
Long Short Term Memory Networks

It contains four layers

1. Forget gate layer \(f_t \) to control how much to remember from the previous time steps
2. Input gate layer \(i_t \) to control how much to use from the current time step
3. Output gate layer \(\tilde{o}_t \)
4. Tanh layer \(\tilde{c}_t \)

\[
\begin{align*}
 f_t &= \sigma (U_f x_t + W_f s_{t-1}) & \text{sigmoid gives values in between 0 and 1} \\
 i_t &= \sigma (U_i x_t + W_i s_{t-1}) & 0: \text{completely forget} \\
 \tilde{o}_t &= \sigma (U_o x_t + W_o s_{t-1}) & 1: \text{completely keep} \\
 \tilde{c}_t &= \tanh (U_c x_t + W_c s_{t-1}) & \text{tanh gives values in between -1 and 1} \\
 c_t &= f_t \circ c_{t-1} + i_t \circ \tilde{c}_t \\
 s_t &= \tilde{o}_t \circ \tanh(c_t) \\
 o_t &= \text{entry-wise product}
\end{align*}
\]