
Deep Neural Networks
CS 550: Machine Learning



Deep Architectures
§ They are hard to train by backpropagation due to the 

vanishing gradient problem

§ However, when the initial 
weights are good enough, 
backpropagation works well

§ Layerwise pretraining
– Restricted Boltzmann machines
– Autoencoders

x0 x1 xd

h2

…

h1 hm…

Wij

h0

h'2h'1 h’m’…

Wj(j+1)

y2y1 yC…

h'0

W(j+1)k



Layerwise Pretraining
§ First, train one layer at a time, optimizing P(x)

x0 x1 xd

h2

…

h1 hm…h0

h'2h'1 h’m’…

y2y1 yC…

h'0

Keep 
layer 1 
fixed

Train 
layer 2

x0 x1 xd

h2

…

h1 hm…h0

h'2h'1 h’m’…

y2y1 yC…

h'0

Train 
layer 1

…



Layerwise Pretraining
§ Then, fine-tune weights, optimizing P(y|x) by 

backpropagation

x0 x1 xd

h2

…

h1 hm…h0

h'2h'1 h’m’…

y2y1 yC…

h'0
Fine-tune weights 
by backpropagation



Restricted Boltzmann Machines (RBMs)
§ RBM is a simple energy-based model 

§ Stacked RBMs can be used to construct a deep 
belief net, which is a probabilistic generative model

§ Stacked RBMs can also be used to initialize a deep 
neural network

It only allows 
h-x interactions

normalizer



Training RBMs to optimize P(x)
Maximize the log-likelihood of data

Derivative of the 
log-likelihood

Negative phase 
comes from the model

Positive phase 
comes from the data

The negative phase term is expensive 
to calculate since it requires sampling 
(x, h) from the model. Contrastive 
divergence is a faster solution.



Contrastive Divergence Algorithm
Initialize with the training sample and wait only a few 
sampling steps (usually 1 step) 

h’s and x’s are assumed 
to be binary variables



Autoencoders

§ They learn to “compress” 
and “reconstruct” input data

§ Learn the weights to minimize 
the reconstruction loss

§ This is the same backpropagation for a network with 
one hidden layer, where x(m) is both input and output

§ They can be stacked to form a deep neural network 
– Cheaper alternatives to RBMs
– However, unlike RBMs, they are deterministic and cannot 

form a deep generative model



Denoising Autoencoders

§ Perturb input sample by adding noise to it

§ Learn the weights to minimize the reconstruction 
loss with respect to the original input sample



Layerwise Pretraining
Is it always necessary?
§ Answer in 2006: Yes!
§ Answer in 2014: No!

– If initialization is done well by design (e.g., sparse 
connections and convolutional nets), there may not a 
vanishing gradient problem

– If the net is trained on an extremely large dataset, it 
may not overfit

Slide credit: K. Duh



Convolutional Neural Networks
§ A CNN consists of a number of convolutional and 

subsampling (pooling) layers optionally followed 
by fully connected layers



Convolutional Neural Networks
§ When the input data is an image, a fully 

connected layer will produce a huge number 
of weights (parameters) to be learned

Slide credit: M. A. Ranzato

Example: 
200x200 image
25K hidden units
è ~1B parameters



Convolutional Layer
§ However, spatial correlation is local and statistics is 

similar at different locations
§ Thus, small kernels are defined and their parameters 

are shared by all pixels
§ It is convolution with learned kernels

Slide credit: M. A. Ranzato

Example: 
200x200 image
25K hidden units
10x10 kernels
è ~2.5M parameters 
(instead of 1B parameters)



Convolutional Layer

Slide credit: M. A. Ranzato



Convolutional Layer

Learn this filter 
from data!!!

Slide credit: M. A. Ranzato



Convolutional Layer
Learn multiple filters

Rectified linear unit (ReLU) provides 
nonlinearity: u = max(0, x)
• fast to compute
• reduces the likelihood of the gradient to vanish
• better sparsity

Slide credit: M. A. Ranzato

output 
feature map

input 
feature map

kernel



Convolutional Layer
Learn multiple filters

Slide credit: M. A. Ranzato

Choosing the architecture (the number of 
feature maps, size of kernels, and number 
of convolutional layers) is task dependent 

output 
feature map

input 
feature map

kernel



Pooling Layer
§ By pooling filter responses 

at different locations
– We gain robustness to the 

exact location of features
– Receptive field becomes 

larger for the next layer (the 
next layer will look at larger 
spatial regions)

Slide credit: M. A. Ranzato



Pooling Layer

Slide credit: M. A. Ranzato

L2-pooling:

Average-pooling:

Max-pooling:



Local Contrast Normalization
§ Equalizes feature maps/responses

Slide credits: R. Fergus and M. A. Ranzato



CNNs: Typical Architecture
After one stage 
§ Number of feature maps is 

usually increased (conv. layer)
§ Spatial resolution is usually 

decreased (pooling layer and 
stride in conv. layer) 

§ Receptive field gets larger

After several stages
§ Spatial resolution is greatly 

reduced and number of feature 
maps is large so convolution 
would not make any sense

§ Next layer(s) will consist of 
fully connected layers (with or 
without hidden layers)

Slide credit: M. A. Ranzato

All layers are differentiable so 
that standard backpropagation 
can be used



CNN Examples

Slide credit: M. A. Ranzato

ImageNet by 
Krizhevsky et al., 2012

LeNet-5 by LeCun et al., 1998



Fully Convolutional Networks (FCNs)
§ An FCN is designed for semantic image segmentation

which predicts a label for each pixel of an image 
– Image (input) and its segmentation map (output) have the 

same dimensions

§ As opposed to a CNN designed for image classification
which predicts a class label for the entire image
– Input has MxN dimensions and output is a single class label



CNNs for Image Classification
§ A CNN compresses an image into a set of feature maps to 

capture semantic/contextual information from the image
§ This compression corresponds to downsampling the 

image using convolution and pooling layers
§ Then it puts fully connected layers on the top of the 

feature maps to predict a class for the entire image



FCNs for Image Segmentation
§ An FCN recovers a larger-size segmentation map from the 

compressed image by upsampling via deconvolution
– Downsampling path captures semantic/contextual information
– Upsampling path recovers spatial information
– No fully connected layer is used on the top
– Skip connections (concatenations) from downsampling to 

upsampling layers are often used to recover the fine-grained 
spatial information lost in the downsampling path



Recurrent Neural Networks
§ Feedforward neural networks assume 

that all inputs/outputs are independent
– However, it is not true for sequential data 

(speech recognition, translation, etc)

§ Recurrent neural networks do not 
have this assumption
– They perform the same task for every 

element of a sequence, with the output 
being dependent on previous computations

– They might be considered to have a 
“memory” that captures information about 
what has been calculated so far



Recurrent Neural Networks

RNN unfolded in time

§ All steps of an RNN share the same weights (U, V, W)
– This reflects the fact that each step performs the same task 

just with a different input
– Unlike a deep neural network (which uses different weights 

at each different layer)

f is a non-linear function 
such as tanh or ReLU



Recurrent Neural Networks

RNN unfolded in time

§ Training an RNN also uses backpropagation 
(called backpropagation through time – BPTT)
– In theory, RNNs can learn arbitrarily long sequences
– But, in practice, they have difficulties in learning long-term 

dependencies

f is a non-linear function 
such as tanh or ReLU



Training Recurrent Neural Networks

RNNs with many 
steps are hard to train 
due to the vanishing 
gradient problem 

cross entropy



Long Short Term Memory Networks
§ LSTM network is a type of RNN, which is 

explicitly designed to avoid long-term 
dependency problem

§ It introduces an additional cell state ct that 
controls the flow of information over time

xt

ot

st-1 st

Standard RNN

xt

ot

st-1 st

LSTM network

ct-1 ct



Long Short Term Memory Networks
It contains four layers
1. Forget gate layer ft to control how much 

to remember from the previous time steps
2. Input gate layer it to control how much to 

use from the current time step
3. Output gate layer
4. Tanh layer

xt

ot

st-1 st

ct-1 ct

sigmoid gives values 
in between 0 and 1
0: completely forget
1: completely keep

tanh gives values in 
between -1 and 1

o is an entry-wise product


