Deep Neural Networks CS 550: Machine Learning

Deep Architectures

 They are hard to train by backpropagation due to the vanishing gradient problem

$$\frac{\partial loss}{\partial W_{ij}} = \frac{\partial loss}{\partial net_j} \frac{\partial net_j}{\partial W_{ij}} = \delta_j x_i$$
$$\delta_j = \left[\sum_{(j+1)} \delta_{(j+1)} W_{j(j+1)}\right] \sigma'(net_j)$$

- However, when the initial weights are good enough, backpropagation works well
- Layerwise pretraining
 - Restricted Boltzmann machines
 - Autoencoders

Layerwise Pretraining

First, train one layer at a time, optimizing P(x)

Layerwise Pretraining

 Then, fine-tune weights, optimizing P(y|x) by backpropagation

Fine-tune weights by backpropagation

Restricted Boltzmann Machines (RBMs)

RBM is a simple energy-based model

$$p(x,h) = \frac{1}{Z_{\theta}} \exp(-E_{\theta}(x,h))$$

$$E_{\theta}(x,h) = -x^{T} W h - b^{T} x - d^{T} h$$

$$Z_{\theta} = \sum_{(x,h)} \exp(-E_{\theta}(x,h))$$
normalizer

It only allows h-x interactions

- Stacked RBMs can be used to construct a deep belief net, which is a probabilistic generative model
- Stacked RBMs can also be used to initialize a deep neural network

Training RBMs to optimize P(x)

Maximize the log-likelihood of data

$$\partial_{W_{ij}} \log P_W(x = x^{(m)}) = \partial_{W_{ij}} \log \sum_h P_W(x = x^{(m)}, h)$$

$$= -\partial_{W_{ij}} \log Z_W + \partial_{W_{ij}} \log \sum_h \exp(-E_W(x^{(m)}, h))$$

$$= -E_{p(x,h)} [x_i h_j] + E_{p(h|x=x^{(m)})} [x_i^{(m)} h_j]$$
Negative phase

Negative phase *comes from the model comes from the data*

Positive phase

The negative phase term is expensive to calculate since it requires sampling (x, h) from the model. Contrastive divergence is a faster solution.

Contrastive Divergence Algorithm

Initialize with the training sample and wait only a few sampling steps (usually 1 step)

1. Let $x^{(m)}$ be a training sample and w_{ij} , b_i , and d_j be the current weights

2. Sample
$$\hat{h}_j \in \{0, 1\}$$
 from $p\left(h_j \mid x = x^{(m)}\right) = \sigma\left(\sum_i w_{ij} x_i^{(m)} + d_j\right), \forall j$

3. Sample $\tilde{x}_i \in \{0, 1\}$ from $p\left(x_i \mid h = \hat{h}\right) = \sigma\left(\sum_j w_{ij} \hat{h}_j + b_i\right), \forall i$

4. Sample
$$\tilde{h}_j \in \{0, 1\}$$
 from $p(h_j \mid x = \tilde{x}) = \sigma(\sum_i w_{ij} \tilde{x}_i + d_j), \forall j$
h's and x's are assumed
to be binary variables

$$w_{ij} = w_{ij} + \gamma (x_i^{(m)} \hat{h}_j - \tilde{x}_i \tilde{h}_j)$$

$$b_i = b_i + \gamma (x_i^{(m)} - \tilde{x}_i)$$

$$d_j = d_j + \gamma (\hat{h}_j - \tilde{h}_j)$$

Autoencoders

- They learn to "compress" and "reconstruct" input data
- Learn the weights to minimize the reconstruction loss

Encoder:
$$h = \sigma(W x + b)$$

Decoder: $x' = \sigma(W' h + d)$

$$loss = \sum_{m} \left(x^{(m)} - x' \right)^2$$

- This is the same backpropagation for a network with one hidden layer, where x^(m) is both input and output
- They can be stacked to form a deep neural network
 - Cheaper alternatives to RBMs
 - However, unlike RBMs, they are deterministic and cannot form a deep generative model

Denoising Autoencoders

Perturb input sample by adding noise to it

Encoder: $h = \sigma(W \tilde{x} + b)$ $\tilde{x} = x + noise$ Decoder: $x' = \sigma(W' h + d)$

 Learn the weights to minimize the reconstruction loss with respect to the original input sample

$$loss = \sum_{m} \left(x^{(m)} - x' \right)^2$$

Layerwise Pretraining

Is it always necessary?

- Answer in 2006: Yes!
- Answer in 2014: No!
 - If initialization is done well by design (e.g., sparse connections and convolutional nets), there may not a vanishing gradient problem
 - If the net is trained on an extremely large dataset, it may not overfit

Convolutional Neural Networks

 A CNN consists of a number of convolutional and subsampling (pooling) layers optionally followed by fully connected layers

Convolutional Neural Networks

 When the input data is an image, a fully connected layer will produce a huge number of weights (parameters) to be learned

Example: 200x200 image 25K hidden units → ~1B parameters

Slide credit: M. A. Ranzato

- However, spatial correlation is local and statistics is similar at different locations
- Thus, small kernels are defined and their parameters are shared by all pixels
- It is convolution with learned kernels

Example: 200x200 image 25K hidden units 10x10 kernels → ~2.5M parameters (instead of 1B parameters)

Slide credit: M. A. Ranzato

Slide credit: M. A. Ranzato

Slide credit: M. A. Ranzato

Learn multiple filters

Rectified linear unit (ReLU) provides nonlinearity: u = max(0, x)

- fast to compute
- reduces the likelihood of the gradient to vanish
- better sparsity

Learn multiple filters

Choosing the architecture (the number of feature maps, size of kernels, and number of convolutional layers) is task dependent

Pooling Layer

- By pooling filter responses at different locations
 - We gain robustness to the exact location of features
 - Receptive field becomes
 larger for the next layer (the next layer will look at larger spatial regions)

Slide credit: M. A. Ranzato

Pooling Layer

Slide credit: M. A. Ranzato

Local Contrast Normalization

Equalizes feature maps/responses

$$h^{n+1}(x, y) = \frac{h^n(x, y) - m^n(N(x, y))}{\max(\varepsilon, \sigma^n(N(x, y)))}$$

Slide credits: R. Fergus and M. A. Ranzato

CNNs: Typical Architecture

All layers are differentiable so that standard backpropagation can be used

After one stage

- Number of feature maps is usually increased (conv. layer)
- Spatial resolution is usually decreased (pooling layer and stride in conv. layer)
- Receptive field gets larger

After several stages

- Spatial resolution is greatly reduced and number of feature maps is large so convolution would not make any sense
- Next layer(s) will consist of fully connected layers (with or without hidden layers)

CNN Examples

ImageNet by Krizhevsky et al., 2012 LeNet-5 by LeCun et al., 1998

Fully Convolutional Networks (FCNs)

- An FCN is designed for <u>semantic image segmentation</u> which predicts a label for each pixel of an image
 - Image (input) and its segmentation map (output) have the same dimensions
- As opposed to a CNN designed for <u>image classification</u> which predicts a class label for the entire image
 - Input has MxN dimensions and output is a single class label

CNNs for Image Classification

- A CNN compresses an image into a set of feature maps to capture semantic/contextual information from the image
- This compression corresponds to downsampling the image using <u>convolution and pooling</u> layers
- Then it puts fully connected layers on the top of the feature maps to predict a class for the entire image

FCNs for Image Segmentation

- An FCN recovers a larger-size segmentation map from the compressed image by <u>upsampling via deconvolution</u>
 - Downsampling path captures semantic/contextual information
 - Upsampling path recovers spatial information
 - No fully connected layer is used on the top
 - Skip connections (concatenations) from downsampling to upsampling layers are often used to recover the fine-grained spatial information lost in the downsampling path

Recurrent Neural Networks

- Feedforward neural networks assume that all inputs/outputs are independent
 - However, it is not true for sequential data (speech recognition, translation, etc)
- Recurrent neural networks do not have this assumption
 - They perform the same task for every element of a sequence, with the output being dependent on previous computations
 - They might be considered to have a "memory" that captures information about what has been calculated so far

Recurrent Neural Networks

- All steps of an RNN share the same weights (U, V, W)
 - This reflects the fact that each step performs the same task just with a different input
 - Unlike a deep neural network (which uses different weights at each different layer)

Recurrent Neural Networks

- Training an RNN also uses backpropagation (called backpropagation through time – BPTT)
 - In theory, RNNs can learn arbitrarily long sequences
 - But, in practice, they have difficulties in learning long-term dependencies

Training Recurrent Neural Networks

Long Short Term Memory Networks

- LSTM network is a type of RNN, which is explicitly designed to avoid long-term dependency problem
- It introduces an additional cell state c_t that controls the flow of information over time

Standard RNN

LSTM network

Long Short Term Memory Networks

It contains four layers

- **1.** Forget gate layer f_t to control how much to remember from the previous time steps
- **2.** Input gate layer i_t to control how much to use from the current time step
- 3. Output gate layer \tilde{O}_t
- 4. Tanh layer \tilde{c}_t

$$\begin{aligned} f_t &= \sigma \left(U_f x_t + W_f s_{t-1} \right) \\ i_t &= \sigma \left(U_i x_t + W_i s_{t-1} \right) \\ \tilde{o}_t &= \sigma \left(U_o x_t + W_o s_{t-1} \right) \\ \tilde{c}_t &= \tanh \left(U_c x_t + W_c s_{t-1} \right) \end{aligned} \right\}$$
 sigmoid in between C_t in between C_t is a sigmoid in C_t is a sigmoid in C_t in C_t is a sigmoid in C_t is a sigmoid in C_t in C_t in C_t is a sigmoid in C_t in C_t is a sigmoid in C_t in C_t is a sigmoid in C_t in C_t

sigmoid gives values
in between 0 and 1
0: completely forget
1: completely keep
tanh gives values in
between -1 and 1

 $c_{t} = f_{t} \circ c_{t-1} + i_{t} \circ \tilde{c}_{t}$ $s_{t} = \tilde{o}_{t} \circ \tanh(c_{t})$

o is an entry-wise product

