
Ensemble Learning

CS 550: Machine Learning

Ensemble Learning
  Problem: Given M base learners {L1, L2, …, LM},

find a combined (meta) learner with better
performance

– Very effective in many applications

– Usually easy to implement

1.  How to generate the base learners?

2.  How to combine them?

How to Generate Base Learners?

  Ensemble techniques usually work well when
base learners are “reasonably” accurate (but not
too much) and diverse

  Base learners can be generated using
– Different learning algorithms
– Same algorithm with different parameters
– Different representations of the same input

 Sensor fusion at the data level, feature level or decision level

– Different training sets
 Bagging (samples are randomly drawn)
 Boosting (samples are drawn to generate complementary

learners)

How to Combine Base Learners?

 We combine the base learners after training
them in parallel

 We combine them while training them in serial

L1

L2

LM

Final
decision

…

L1
Final
decision

L2 LM
…

Voting

  Simplest ensemble method

  Suppose that learner Lj has prediction dj with weight Wj

  Simple voting (majority voting in classification)

  Weighted voting
–  For example, use posteriors as weights and
 select the class for which yi is the maximum

–  You can also consider

 the whole procedure as
 a Bayesian model

	 	

€

Final	 output	 	 	 	 y = W j
j=1

M

∑ 	 d j 	 	 	 	 	 	 	 	 	 	 	 ,	 W j ≥ 0	 	 	 	 and	 	 	 	 W j
j=1

M

∑ =1

	 	

€

W j =
1
	 M	

	 	

€

yi = P(Ci | 	 x	 , 	 L j)
j=1

M

∑

	 	

€

yi ≡ P(Ci | x) = P(Ci | 	 x	 , 	 L j)
j=1

M

∑ 	 	 P(L j)

Bagging (Bootstrap AGgregating)

  Generate L base learners from the same training
set D

– For each learner, use a separate training set that is
generated by drawing N samples randomly from D by
replacement (each training set may have duplicate
samples)

– For a given new sample, combine the decisions of all
learners (for example by simple voting)

Boosting

  Generate L base learners from the same training
set D

– For the first classifier, generate a training set similar
to bagging

– Then, for the next classifier, generate a training set
that more likely contains samples misclassified by the
previous classifiers

– The most famous boosting algorithm is called
AdaBoost (by Freund and Schapire, 1996), which has
many variants

AdaBoost – Training

AdaBoost – Classifying

Random Forests

  Construct many classification trees (diversity is
important) and combine their decisions (for
example by voting)

  Each tree may be grown
– Using a different training set (e.g., draw N samples

from the original set with replacement)
– Randomly selecting k features out of d features and

considering only the splits on the selected features
– Using a different training set without any pruning

Mixture of Experts

  Each base learner is considered as an expert
  There is a gating network that outputs the weight of

each expert for a given sample x

	 	

€

y = W j (x)	 d j
j=1

M

∑ (x)

	 	

€

y = W j 	 d j
j=1

M

∑ (x)

Voting

same for all instances

determined for each sample
separately by the gating network

L1 L2 LM …

x

y

Gating network

W1
W2

WM

Mixture of experts

How do you learn the gating network?

Stacking

  There is a meta learner that learns the output of a
sample from the outputs of the base learners (not
directly from the inputs of the sample)

How do you learn the meta learner?

L1 L2 LM …

x

y

Meta
learner

Arbiter Trees
  Base learners are trained on disjoint subsets of training data
  Dij can be formed

1.  Considering samples on which base classifiers disagree
2.  Item 1 + incorrectly classified samples
3.  Item 2 + some (or all) correctly classified samples

  To classify an unseen sample, one may
–  Use the arbiter if there exists disagreement
–  Combine its decision with those of the base learners
–  Use your own technique Arbiter provides an

alternative decision if
base classifiers do
not agree

A(M – 1) M

L(M – 1)

D(M – 1)

LM

DM

D(M – 1) M

A34

L3

D3

L4

D4

D34

A12

L1

D1

L2

D2

D12

A1234

D1234

AFINAL

Error-Correcting Output Codes

  Create many binary classifiers that distinguish one class
from the others and then combine their decisions

  After training binary classifiers, classify a sample with
each of them and select

 the class whose coding is
 the most similar to the
 coding of the sample

–  Sum of squared errors

–  Hamming distance

€

W =

1
0
0

0 1 0 0 1 1 0 0
1
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

M binary base learners

K classes

Binary classification by the 5th learner
gives label 0 for Class 1 and 5
gives label 1 for Class 2, 3, 4, and 6

Error-Correcting Output Codes

  How to construct a codebook? IMPORTANT CHALLENGE
–  Could be set a priori
–  Could be formed in a random manner
–  Could be designed to optimize accuracy

€

W =

1
0
0

0 1 0 0 1 1 0 0
1
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

M binary base learners

K classes

Binary classification by the 5th learner
gives label 0 for Class 1 and 5
gives label 1 for Class 2, 3, 4, and 6

