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CS 550: Machine Learning 



Ensemble Learning 
  Problem: Given M base learners {L1, L2, …, LM}, 

find a combined (meta) learner with better 
performance 

– Very effective in many applications 

– Usually easy to implement 

1.  How to generate the base learners? 

2.  How to combine them? 



How to Generate Base Learners? 

  Ensemble techniques usually work well when 
base learners are “reasonably” accurate (but not 
too much) and diverse 

  Base learners can be generated using 
– Different learning algorithms 
– Same algorithm with different parameters 
– Different representations of the same input 

 Sensor fusion at the data level, feature level or decision level 

– Different training sets 
 Bagging (samples are randomly drawn) 
 Boosting (samples are drawn to generate complementary 

learners) 



How to Combine Base Learners? 

 We combine the base learners after training 
them in parallel 

 We combine them while training them in serial 
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Voting 

  Simplest ensemble method 

  Suppose that learner Lj has prediction dj with weight Wj 

  Simple voting (majority voting in classification) 

  Weighted voting 
–  For example, use posteriors as weights and  
 select the class for which yi is the maximum 

–  You can also consider 

 the whole procedure as 
 a Bayesian model 

	  	  

€ 

Final	  output	  	  	  	  y = W j
j=1

M

∑ 	  d j 	  	  	  	  	  	  	  	  	  	  	  ,	  W j ≥ 0	  	  	  	  and	  	  	  	   W j
j=1

M

∑ =1

	  	  

€ 

W j =
1
	  M	  

	  	  

€ 

yi = P(Ci | 	  x	  , 	  L j )
j=1

M

∑

	  	  

€ 

yi ≡ P(Ci | x) = P(Ci | 	  x	  , 	  L j )
j=1

M

∑ 	  	  P(L j )



Bagging (Bootstrap AGgregating) 

  Generate L base learners from the same training 
set D 

– For each learner, use a separate training set that is 
generated by drawing N samples randomly from D by 
replacement (each training set may have duplicate 
samples) 

– For a given new sample, combine the decisions of all 
learners (for example by simple voting) 



Boosting 

  Generate L base learners from the same training 
set D 

– For the first classifier, generate a training set similar 
to bagging 

– Then, for the next classifier, generate a training set 
that more likely contains samples misclassified by the 
previous classifiers 

– The most famous boosting algorithm is called 
AdaBoost (by Freund and Schapire, 1996), which has 
many variants 



AdaBoost – Training 



AdaBoost – Classifying 



Random Forests 

  Construct many classification trees (diversity is 
important) and combine their decisions (for 
example by voting) 

  Each tree may be grown 
– Using a different training set (e.g., draw N samples 

from the original set with replacement) 
– Randomly selecting k features out of d features and 

considering only the splits on the selected features 
– Using a different training set without any pruning 



Mixture of Experts 

  Each base learner is considered as an expert 
  There is a gating network that outputs the weight of 

each expert for a given sample x 
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Voting 

same for all instances 

determined  for each sample 
separately by the gating network 
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How do you learn the gating network? 



Stacking 

  There is a meta learner that learns the output of a 
sample from the outputs of the base learners (not 
directly from the inputs of the sample) 

How do you learn the meta learner? 
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Arbiter Trees 
  Base learners are trained on disjoint subsets of training data 
  Dij can be formed 

1.  Considering samples on which base classifiers disagree 
2.  Item 1 + incorrectly classified samples 
3.  Item 2 + some (or all) correctly classified samples 

  To classify an unseen sample, one may 
–  Use the arbiter if there exists disagreement 
–  Combine its decision with those of the base learners 
–  Use your own technique  Arbiter provides an 

alternative decision if 
base classifiers do 
not agree 
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Error-Correcting Output Codes 

  Create many binary classifiers that distinguish one class 
from the others and then combine their decisions 

  After training binary classifiers, classify a sample with 
each of them and select  

 the class whose coding is  
 the most similar to the  
 coding of the sample 

–  Sum of squared errors 

–  Hamming distance 
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Error-Correcting Output Codes 

  How to construct a codebook?  IMPORTANT CHALLENGE  
–  Could be set a priori 
–  Could be formed in a random manner 
–  Could be designed to optimize accuracy 
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