Ensemble Learning

CS 550: Machine Learning

Ensemble Learning

- Problem: Given M base learners {L₁, L₂, ..., L_M}, find a combined (meta) learner with better performance
 - Very effective in many applications
 - Usually easy to implement

- 1. How to generate the base learners?
- 2. How to combine them?

How to Generate Base Learners?

- Ensemble techniques usually work well when base learners are "reasonably" accurate (but not too much) and diverse
- Base learners can be generated using
 - Different learning algorithms
 - Same algorithm with different parameters
 - Different representations of the same input
 - Sensor fusion at the data level, feature level or decision level
 - Different training sets
 - Bagging (samples are randomly drawn)
 - Boosting (samples are drawn to generate complementary learners)

How to Combine Base Learners?

 We combine the base learners after training them in parallel

We combine them while training them in serial

Voting

- Simplest ensemble method
- Suppose that learner L_j has prediction d_j with weight W_j Final output $y = \sum_{j=1}^{M} W_j d_j$, $W_j \ge 0$ and $\sum_{j=1}^{M} W_j = 1$
- Simple voting (majority voting in classification) $W_j = \frac{1}{M}$
- Weighted voting
 - For example, use posteriors as weights and For example, use posteriors as weights and select the class for which y_i is the maximum $y_i = \sum_{i=1}^{m} P(C_i \mid x, L_j)$

- You can also consider the whole procedure as a Bayesian model

$$y_i = P(C_i | x) = \sum_{j=1}^{M} P(C_i | x, L_j) P(L_j)$$

Bagging (Bootstrap AGgregating)

- Generate L base learners from the same training set *D*
 - For each learner, use a separate training set that is generated by drawing N samples randomly from *D* by replacement (each training set may have duplicate samples)
 - For a given new sample, combine the decisions of all learners (for example by simple voting)

Boosting

- Generate L base learners from the same training set *D*
 - For the first classifier, generate a training set similar to bagging
 - Then, for the next classifier, generate a training set that more likely contains samples misclassified by the previous classifiers
 - The most famous boosting algorithm is called AdaBoost (by Freund and Schapire, 1996), which has many variants

AdaBoost – Training

There are M learners, L_j , each of which will be trained on \mathcal{D}_j generated from the training set $\mathcal{D} = \{x^t\}_{t=1}^T$ p_j^t : probability of selecting sample x^t for the training set \mathcal{D}_j of the learner L_j

```
initialize p_1^t = 1/T
for j = 1 to M
      construct \mathcal{D}_j by drawing N samples from \mathcal{D} according to p_j^t
      train L_i on \mathcal{D}_i
      calculate the class of each sample using L_j and compute the error rate \epsilon_j
      if \epsilon_i > 0.5 stop
      \beta_j = \frac{\epsilon_j}{1 - \epsilon_i}  (\beta_j < 1 when \epsilon_j < 0.5)
      for each sample x^t
            if x^t is correctly classified
                 p_{j+1}^t = \beta_j \cdot p_j^t
                                               (decrease its probability)
           else
                 p_{i+1}^{t} = p_{i}^{t}
      normalize probabilities by p_{j+1}^t = \frac{p_{j+1}^t}{\sum_{u} p_{j+1}^u}
```

AdaBoost – Classifying

for a given x, calculate $P(C_i|x, L_j)$ using each classifier L_j

for each class i

$$y_i = \sum_{j=1}^M \log(\frac{1}{\beta_j}) \cdot P(C_i | x, L_j)$$

select the class with the maximum y_i

Random Forests

- Construct many classification trees (diversity is important) and combine their decisions (for example by voting)
- Each tree may be grown
 - Using a different training set (e.g., draw N samples from the original set with replacement)
 - Randomly selecting k features out of d features and considering only the splits on the selected features
 - Using a different training set without any pruning

Mixture of Experts

- Each base learner is considered as an expert
- There is a gating network that outputs the weight of each expert for a given sample x

determined for each sample separately by the gating network How do you learn the gating network?

Stacking

 There is a meta learner that learns the output of a sample from the outputs of the base learners (not directly from the inputs of the sample)

How do you learn the meta learner?

Arbiter Trees

- Base learners are trained on disjoint subsets of training data
- \mathcal{D}_{ii} can be formed
 - Considering samples on which base classifiers disagree 1.
 - Item 1 + incorrectly classified samples 2.
 - Item 2 + some (or all) correctly classified samples 3.
- To classify an unseen sample, one may
 - Use the arbiter if there exists disagreement
 - Combine its decision with those of the base learners.
 - Use your own technique

Error-Correcting Output Codes

- Create many binary classifiers that distinguish one class from the others and then combine their decisions
- After training binary classifiers, classify a sample with each of them and select the class whose coding is the most similar to the coding of the sample $W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} K & K \\ K & K \end{bmatrix}$
 - Sum of squared errors
 - Hamming distance

Binary classification by the 5th learner gives label 0 for Class 1 and 5 gives label 1 for Class 2, 3, 4, and 6

Error-Correcting Output Codes

- How to construct a codebook? ← IMPORTANT CHALLENGE
 - Could be set a priori
 - Could be formed in a random manner
 - Could be designed to optimize accuracy

