Genetic Algorithms
CS 550: Machine Learning
Genetic Algorithm

- It conducts a randomized, parallel, and hill-climbing search for hypotheses (solutions) that optimize a predefined fitness function.

- This search is based on an analogy to biological evolution:
 - It maintains a diverse population of competing hypotheses (they can be considered as individuals who are fighting for survival within a larger population).
 - It generates successor hypotheses by repeatedly mutating and recombining parts of the best currently known hypotheses (among these individuals only the fittest ones will reproduce and survive).
Genetic Algorithm

- The genetic algorithm searches for global maxima/minima
- However, it does not guarantee to find one
- Compare this search with the gradient descent algorithm
Genetic Algorithm

initialization: initialize population to contain \(p \) individuals

repeat

selection: probabilistically (according to the fitness function) select \((1 - r) p \) individuals and add them to the next generation

crossover: probabilistically (according to the fitness function) select \(r.p / 2 \) pairs from the population, crossover each pair, and add the two offspring to the next generation

mutation: choose \(m.p \) individuals to mutate

until **stopping criterion** is satisfied
Hypothesis Representation

- Binary encoding is commonly used
 - Other encoding schemes are also possible
 - Other alphabets can also be used

- Easier to represent discrete features

- However, it could be complicated for continuous features
 - Number of bits dedicated to a particular feature depends on upper and lower bounds of the feature values and the precision
 - Insufficient resolution may result in loss in precision

\[
\text{no}_{\text{bits}} = \left\lfloor \log_2 \frac{x_{\text{max}} - x_{\text{min}} + 1}{\Delta x} \right\rfloor \\
\Delta x = \frac{x_{\text{max}} - x_{\text{min}} + 1}{2^{\text{no}_{\text{bits}}}}
\]
Example: Binary Encoding

- 4-class classification problem with the following features
 - Gender *(female or male)* ➔ 2 distinct values, 1 bit
 - Age *(0-127 years, intervals of 1 year)* ➔ 128 distinct values, 7 bits
 - Height *(0.50 – 2.50 meters, intervals of 0.5 cms)* ➔ 401 distinct values, 9 bits

- Now consider representing a person
 - Female ➔ 1
 - 41 years old ➔ 0 1 0 1 0 0 1
 - 1.76 m tall ➔ 0 1 1 1 1 1 1 0 0 (=252, 0.50 + 252 * 0.005 = 1.76)
 - 3rd class ➔ 0 0 1 0 (if 4 bits are used) OR 1 0 (if 2 bits are used)

One should be careful about not to generate invalid binary encodings after crossover and mutation operations
Example: Binary Encoding

- What about to encode the learning models?
 - Could be hard to encode some learning models
 - Easier to encode if-and-then rules

- Decide whether or not to play tennis depending on
 - Outlook (sunny, cloudy, rainy)
 - Wind (strong, weak)

0 1 1 1 0 0 1
if (outlook = cloudy or rainy) and (wind = strong) then play = NO

1 1 1 0 1 1 0
if (wind = weak) then play = YES

One should be careful about not to generate invalid binary encodings after crossover and mutation operations
Genetic Operators: Crossover and Mutation

Single point crossover

Parents: 1 1 0 0 0 1 0
Mask: 1 1 1 1 0 0 0
Offspring: 1 1 0 0 1 1 0

Parents: 0 0 0 1 1 1 0
Mask: 0 0 0 1 0 0 1
Offspring: 0 0 0 1 0 0 1

Two-point crossover

Parents: 1 1 0 0 0 0 1
Mask: 1 1 0 0 0 1 1
Offspring: 1 1 0 1 1 0 1

Parents: 0 0 0 1 1 1 0
Mask: 0 0 0 0 0 1 0
Offspring: 0 0 0 0 0 1 0

Multipoint crossover

Parents: 1 1 0 0 0 0 1
Mask: 1 0 1 1 0 1 0
Offspring: 1 0 0 0 1 0 0

Parents: 0 0 0 1 1 1 0
Mask: 0 1 0 1 0 1 1
Offspring: 0 1 0 1 0 1 1

Point mutation

Parents: 1 1 0 0 0 1
Mask: 1 1 0 0 1 0 0
Offspring: 1 1 0 1 0 0 1

Be careful about not to generate invalid encodings after crossover and mutation!!!
Fitness Function and Selection

- To create a new population, individuals are probabilistically selected according to their fitness values.

- Need to define a fitness function based on the criteria you want to optimize:
 - Classification accuracy
 - Complexity or generality of the rules
 - Classification cost together with feature extraction cost

- Invalid encodings can also be penalized through the fitness function.
Selection Techniques

Fitness proportionate selection (roulette wheel selection)

- Select individuals by a probability that is directly proportional to the raw fitness value

Example:

\[
Pr(h_i) = \frac{\text{fitness}(h_i)}{\sum_j \text{fitness}(h_j)}
\]

One practical difficulty is the problem of CROWDING. It occurs when some individuals are more highly fit than the others especially in the first generations. In this case, they quickly reproduce and very similar individuals take over a large fraction of the population. This reduces the diversity of population.
Selection Techniques

Rank selection

- Sort the hypotheses according to their fitness values
- Then the selection probability is proportional to the ranks (not the raw fitness values)
- It is useful to preserve the diversity better, alleviating the crowding problem

example:

\[\Pr(h_i) = \frac{1/rank(h_i)}{\sum_j 1/rank(h_j)} \]
Selection Techniques

Tournament selection

- Randomly select two hypotheses
- Then select the fittest one among these two
- Repeat these two steps until you select what you need
- Similarly, it is useful to preserve the diversity better, alleviating the crowding problem
Crowding

Possible techniques to alleviate the crowding problem

- Alter the selection method: use rank selection or tournament selection
- Use fitness sharing strategy: reduce the fitness of a hypothesis by the presence of other similar hypotheses in the population
- Restrict the kinds of hypotheses allowed to recombine for forming offspring
Initialization and Stopping

Initialization
- Goal is to select an initial population that has both quality and diversity

Stopping criterion examples include to stop when
- A specified number of iterations is reached
- Genetic diversity between the hypotheses is small
- No or marginal improvement is achieved from the current generation to the next
- The fitness value of the fittest hypothesis reaches the targeted goal
Variants to Create Next Generation

- Fittest individuals may survive as unchanged (the algorithm given in Page 4 uses this strategy)
- Or replace an entire population at a time, no individuals survive ($r = 1$ in the given algorithm)
- Select two parents, crossover them, but eliminate only one of them by replacing it with the fittest offspring
- Only crossover “dissimilar” parents
Genetic Programming

- It is a variant of genetic algorithms
- Hypotheses are computer programs rather than bit strings (tree representation could be used)
- The aim is to find a computer program that performs well in a predefined task with respect to a fitness function
- Crossover and mutation operations should be defined to be applied on programs