
Genetic Algorithms
CS 550: Machine Learning

Genetic Algorithm
  It conducts a randomized, parallel, and hill-climbing

search for hypotheses (solutions) that optimize a
predefined fitness function

  This search is based on an analogy to biological
evolution
–  It maintains a diverse population of competing hypotheses

(they can be considered as individuals who are fighting for
survival within a larger population)

–  It generates successor hypotheses by repeatedly mutating and
recombining parts of the best currently known hypotheses
(among these individuals only the fittest ones will reproduce
and survive)

Genetic Algorithm
  The genetic algorithm searches for global maxima/minima

  However, it does not guarantee to find one

  Compare this search with the gradient descent algorithm

Genetic Algorithm
initialization: initialize population to contain p individuals

repeat

 selection: probabilistically (according to the
 fitness function) select (1 – r) p individuals
 and add them to the next generation

 crossover: probabilistically (according to the
 fitness function) select r.p / 2 pairs from the
 population, crossover each pair, and add the
 two offspring to the next generation

 mutation: choose m.p individuals to mutate

until stopping criterion is satisfied

Create a new
generation

Hypothesis Representation

  Binary encoding is commonly used
–  Other encoding schemes are also possible

–  Other alphabets can also be used

  Easier to represent discrete features

  However, it could be complicated for continuous features
–  Number of bits dedicated to a particular feature depends on

upper and lower bounds of the feature values and the precision

–  Insufficient resolution may result in loss in precision

	 	

€

nobits = log2
xmax − xmin +1

Δx
⎡
⎢ ⎢

⎤
⎥ ⎥
	 	 	 	 	 	 	 	 	 	 	 Δx =

xmax − xmin +1
2nobits

Example: Binary Encoding

  4-class classification problem with the following features
–  Gender (female or male) 2 distinct values, 1 bit
–  Age (0-127 years, intervals of 1 year) 128 distinct values, 7 bits
–  Height (0.50 – 2.50 meters, intervals of 0.5 cms) 401 distinct values, 9 bits

  Now consider representing a person
–  Female 1
–  41 years old 0 1 0 1 0 0 1
–  1.76 m tall 0 1 1 1 1 1 1 0 0 (=252, 0.50 + 252 * 0.005 = 1.76)
–  3rd class 0 0 1 0 (if 4 bits are used) OR 1 0 (if 2 bits are used)

1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0

Female Age Height Class

One should be careful about not to generate
invalid binary encodings after crossover and
mutation operations

Example: Binary Encoding

  What about to encode the learning models?
–  Could be hard to encode some learning models
–  Easier to encode if-and-then rules

  Decide whether or not to play tennis depending on
–  Outlook (sunny, cloudy, rainy)
–  Wind (strong, weak)

0 1 1 1 0 0 1

Outlook Wind Play?

if (outlook = cloudy or rainy) and (wind = strong) then play = NO

1 1 1 0 1 1 0 if (wind = weak) then play = YES

One should be careful about not to generate
invalid binary encodings after crossover and
mutation operations

Genetic Operators: Crossover and Mutation

1 1 0 0 0 0 1

0 0 0 1 1 1 0

Parents
1 1 0 0 1 1 0

0 0 0 1 0 0 1

Offspring

1 1 1 1 0 0 0

Mask

1 1 0 0 0 0 1

0 0 0 1 1 1 0

Parents
1 1 0 1 1 0 1

0 0 0 0 0 1 0

Offspring

1 1 0 0 0 1 1

Mask

1 1 0 0 0 0 1

0 0 0 1 1 1 0

Parents
1 0 0 0 1 0 0

0 1 0 1 0 1 1

Offspring

1 0 1 1 0 1 0

Mask

Single point
crossover

Two-point
crossover

Multipoint
crossover

Be careful about not to generate invalid encodings after crossover and mutation!!!

1 1 0 0 0 0 1 1 1 0 1 0 0 1 Point mutation

Fitness Function and Selection

  To create a new population, individuals are probabilistically
selected according to their fitness values

  Need to define a fitness function based on the criteria you
want to optimize
–  Classification accuracy
–  Complexity or generality of the rules
–  Classification cost together with feature extraction cost

  Invalid encodings can also be penalized through the
fitness function

Selection Techniques

Fitness proportionate selection (roulette wheel selection)

  Select individuals by a probability that is directly
proportional to the raw fitness value

	 	

€

example :

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Pr(hi) =
fitness(hi)

	 fitness(h j)
j
∑ 	

One practical difficulty is the problem of CROWDING.
It occurs when some individuals are more highly fit than
the others especially in the first generations. In this case,
they quickly reproduce and very similar individuals take
over a large fraction of the population. This reduces the
diversity of population.

Selection Techniques

Rank selection

  Sort the hypotheses according to their fitness values
  Then the selection probability is proportional to the ranks

(not the raw fitness values)
  It is useful to preserve the diversity better, alleviating the

crowding problem

	 	

€

example :

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Pr(hi) =
1/rank(hi)

	 1/rank(h j)
j
∑ 	

Selection Techniques

Tournament selection

  Randomly select two hypotheses
  Then select the fittest one among these two
  Repeat these two steps until you select what you need
  Similarly, it is useful to preserve the diversity better,

alleviating the crowding problem

Crowding

Possible techniques to alleviate the crowding problem

  Alter the selection method: use rank selection or
tournament selection

  Use fitness sharing strategy: reduce the fitness of a
hypothesis by the presence of other similar hypotheses
in the population

  Restrict the kinds of hypotheses allowed to recombine
for forming offspring

Initialization and Stopping

Initialization
  Goal is to select an initial population that has both

quality and diversity

Stopping criterion examples include to stop when
  A specified number of iterations is reached
  Genetic diversity between the hypotheses is small
  No or marginal improvement is achieved from the

current generation to the next
  The fitness value of the fittest hypothesis reaches the

targeted goal

Variants to Create Next Generation

  Fittest individuals may survive as unchanged (the
algorithm given in Page 4 uses this strategy)

  Or replace an entire population at a time, no individuals
survive (r = 1 in the given algorithm)

  Select two parents, crossover them, but eliminate only
one of them by replacing it with the fittest offspring

  Only crossover “dissimilar” parents

Genetic Programming
  It is a variant of genetic algorithms

  Hypotheses are computer programs rather than bit
strings (tree representation could be used)

  The aim is to find a computer program that performs
well in a predefined task with respect to a fitness
function

  Crossover and mutation operations should be defined
to be applied on programs

