Practical issues for multilayer perceptrons

CS 550: Machine Learning

Practical issues for MLPs

- So far, we have not considered practical issues for the sake of simplicity.
 - This can lead to unsatisfactory results such as
 - very slow convergence or
 - poor performance

- The practical suggestions have been
 - based on plausible heuristics, and
 - found to be useful in many practical applications

- More in Section 6.8 of Duda-Hart-Stork’s book
Online, stochastic or batch training?

- **Stochastic training is preferred** for most applications
 - Especially when datasets are highly redundant
 - It is typically faster than batch training

- **Batch training** allows using some second-order techniques that
 - Cannot be easily incorporated into stochastic learning

- **Online training** is rarely used in practice
 - When the amount of data is so large or
 - When memory costs are so high

When to stop

- When change in the criterion function is smaller than some preset value θ
 $$\|\nabla E(v, w)\| \leq \theta$$

- When a minimum is reached on the validation set

 - **Training error** ultimately reaches an asymptotic value
 - **The error on an independent test set** is virtually always higher
 - While it generally decreases, it can increase or oscillate.
Activation function

- A number of properties we seek for activation function $f(.)$
 - $f(.)$ must be **nonlinear**
 - Otherwise 3-layer networks provide no further computational power
 - $f(.)$ must be **saturate**: it has some max and min output values
 - This will keep the weights and activations bounded and
 - Keep the training time limited
 - It is also desirable for classification
 - when the output is represented by probabilities
 - It may not be desirable in networks used for regression
 - $f(.)$ and $f'(.)$ must be **defined throughout the range of their argument**
 - Backpropagation works when $f(.)$ is continuous and its derivative is met
 - $f(.)$ should be **linear for small values of net activation**
 - This will enable the system to implement a linear model if it is adequate for low error

One class of such functions is sigmoid

- Logarithmic sigmoid function

 $f(x) = \frac{1}{1 + \exp(-x)}$

- Hyperbolic tangent sigmoid function

 $f(x) = \alpha \tanh(\beta x) = \alpha \frac{\exp(\beta x) - \exp(-\beta x)}{\exp(\beta x) + \exp(-\beta x)}$
Scaling input

- A neural network may prefer some features over the others
 - When the orders of magnitudes of features are different
 - e.g., in fish classification, “mass” is measured in grams and “length” is measured in meters
 - The neural network adjust weights in favor of features with smaller magnitudes
 - e.g., in fish classification, “mass” has larger effects than “length”
 - If “mass” is measured in kilograms and “length” is measured in millimeters, the situation will be reversed
- We normalize the training samples to prevent this problem
 - Samples are shifted so that the average of each feature is 0.0
 - Dataset is normalized so that the variance in each feature is 1.0
- Test samples must be standardized with the same transformation

When the training set is unbalanced

- MLPs may have difficulties in learning the minority class
 - They may favor the majority class
- A common practice for dealing with this is to rebalance such a training set artificially
 - Oversampling: replicate training samples from the minority class(es)
 - Undersampling: ignore training samples from the majority class(es)
When the training set is too small

- Training with noise
 - Virtual training samples can be generated
 - They can be used as if they were normal training samples
 - In the absence of problem-specific information
 - Virtual samples should be generated by
 - Adding \(d\)-dimensional Gaussian noise to true training samples
 - In classification,
 - Noise is added to inputs and class labels should be left unchanged
 - In regression,
 - Noise could be added to both inputs and outputs
 - This method generally does not improve accuracy
 - For highly local techniques
 - such as the nearest neighbor method

- Manufacturing data
 - If we have knowledge about the sources of variation among samples
 - We can “manufacture” training samples that convey more information than uncorrelated noise
 - For example, in optical character recognition, we manufacture data by
 - Rotating the images of training samples
 - Performing simple image processing on the images
 - e.g., to simulate a bold face character
 - Disadvantage
 - Memory requirements may be large
 - Overall training may be slow
Target values

- In classification, a target value can be represented by
 - 0/1 target values
 - Outputs represent posterior probabilities
 - Using softmax function
 » maximum output is transformed to 1.0
 » all others reduced to 0.0
 - -1/+1 target values
 - Outputs do not represent posterior properties

- A proper activation function should be used in the output layer
 - Depending on the selected target value representation

Network topology

- The number of hidden units
 - It controls the expressive power of the network
 - Thus, the complexity of the decision boundary

 - There is no foolproof method to set the number of hidden units before training
 - If samples are well-separated
 - few hidden units are enough
 - If samples have complicated densities
 - more hidden units may be necessary
Network topology

- If too much hidden units,
 - The network is tuned to the particular dataset (overfitting)
 - Training error can become small, but test error is unacceptably high
- If too few hidden units,
 - The network does not have enough free parameters to fit the training data well
 - Training and test errors are high

Network topology

- The number of hidden layers
 - Three layers are enough to implement any arbitrary function
 - Thus the use of more than three layers is only recommended if there are special problem conditions and requirements
 - For example, in optical character recognition,
 - It is desirable to have systems that are invariant with respect to transformations such as translation and rotation
 - It may be easier to learn these transformations with a four-layer neural network
 - Each layer learns a different invariance within a limited range of parameters
 - Multiple layers are stacked to allow the full neural network to learn the full invariance task
Initializing weights

- We cannot initialize the weights to zero
- We want to have uniform learning
 - All weights reach their final equilibrium at about the same time
 - For that, with standardized data, we choose weights randomly from a uniform distribution \(\hat{w} < w < \hat{w} \)
 - If \(\hat{w} \) is chosen too small
 - The net activation of a hidden unit will be small
 - If \(\hat{w} \) is chosen too large
 - The hidden unit may saturate even before learning begins
 - We set \(\hat{w} \) such that the net activation function is in its linear range

Learning rates

- In principle, if the learning rate is small enough to ensure convergence
 - Its value determines only the speed
 - Not the final weight values

- In practice, the learning rate can indeed affect the quality of the final network
 - Since networks are not fully trained most of the time
Learning rates

- The optimal learning rate leads to the local minimum in one step
- The optimal rate is found as
 \[
 \eta_{opt} = \left(\frac{\partial^2 E}{\partial w^2} \right)^{-1}
 \]
- The system converges for \(\eta < \eta_{opt} \) and \(\eta_{opt} < \eta < 2 \eta_{opt} \)
 - But the training is needlessly slow
- It is found that the system diverge if \(\eta > 2 \eta_{opt} \)

Learning rates

- Thus, in order to have rapid and uniform learning
 - For each weight
 - Calculate \(\frac{\partial^2 E}{\partial w^2} \) and
 - Set the optimal learning rate separately
 - For typical networks that use sigmoids
 - It is found that \(\eta \approx 0.1 \) is adequate as a first choice
 - \(\eta \) should be lowered if the criterion function diverges
 - \(\eta \) should be raised if learning seems unduly slow
 - During training, you may also change \(\eta \) as a function of time
Momentum

- Error surfaces often have plateaus
 - regions in which $\frac{\partial E}{\partial w}$ is very small
 - can usually arise when
 - too many weights such that
 - the error only weakly depends on any of them

- Momentum allows to learn more quickly
 - When there are such plateaus

Momentum

- In stochastic learning, we include some fraction of the previous weight update into the learning rule
 \[w^{(t+1)} = w^{(t)} + (1 - \alpha) \Delta w^{(t)} + \alpha \Delta w^{(t-1)} \]
 - Parameter α should be nonnegative and less than 1
 - If $\alpha = 0$, it is the same as standard backpropagation
 - If $\alpha = 1$, the weight vector moves with constant velocity
 - Values typically used are $\alpha \approx 0.9$

- The use of momentum increases stability
 - Thus, it can speed the learning process