
Neural Networks
CS 550: Machine Learning

Classifiers and Discriminant Functions
(revisited)
§ A classifier is represented with a set of discriminant

functions gj(x) for j = 1, 2, … C

§ A given instance x is then classified with the class Cj for
which the discriminant function gj(x) is the maximum

1. Likelihood-based approaches

2. Discriminant-based approaches

Likelihood-Based Approaches
(revisited)
§ They estimate class probabilities on the training samples

and then use them to define the discriminant functions

For each class, estimate
the likelihood and the
prior from the training
samples that belong to
this class

Discriminant-Based Approaches
(revisited)
§ They learn discriminant functions directly on the training

samples

§ They make an assumption on the form of the discriminant
functions and learn their parameters from the training
samples without estimating the class probabilities

§ Linear discriminants assume that each
discriminant function is a linear combination
of the input features

Linear Discriminants
§ They define gj(x) as a linear combination of the input

features

Linear Discriminants
§ They yield hyperplane decision boundaries
§ Consider the 2-class classification problem

Linear Discriminants

xa

d x
b

Let’s take two points on the
decision plane

Linear Discriminants
We consider the multiclass classification as

Class

1

Class
3

Class 2

C1
no

t C
1

g1(x)

g3(x)

g2(x)

C2not C2

not C3
C3

Class

1

Class
3

Class 2

C1
C3

g13(x)

g23(x)
g12(x)

C2C1

C2
C3

1. one-against-one OR 2. one-against-all
C (C – 1) / 2 discriminants C discriminants

To resolve ambiguities, we
may assign x to the class
for which the discriminant
is highest (it is also
possible to reject
classification or combine
the discriminants in a
different way)

How to Learn

construct a linear model

define a criterion function

select W and W0 that minimize this
error on the training samples

Sum of squared
errors

x y
1 1.2
2 2
3 3.1
4 2.9

Although we will use linear discriminants for classification,
let’s first consider a linear regression problem

Construct a linear model on the
following data points

Analytical Solution

In our example

x y
1 1.2
2 2
3 3.1
4 2.9

ITERATIVE
OPTIMIZATION
METHODS

In many cases, there is no analytical solution
(If the linear system has a singular matrix,
no solution or multiple solutions exist)

Gradient Descent Algorithm
§ One commonly used iterative optimization method
§ Goal is to find the parameters that minimize the loss

– Starting with random parameters, it iteratively updates them in
the direction of the steepest descent (in the opposite direction of
the gradient) until the gradient is zero (or small enough)

It finds the nearest minimum,
which could be local
It does not guarantee to find
the global minimum
η is the learning rate, which determines how much
to move in the direction of the steepest descent

à if it is too small, convergence is slow
à if it is too large, we may overshoot the minimum

(divergence might occur)

Regression
Let’s derive the update rules for regression

x0 x1 xd

y

W0 W1 Wd

…

-5 0 5

0

0.5

1

x

f(x
)

Classification (Logistic Regression)
Let’s derive the update rules for 2-class classification

x0 x1 xd

y

W0 W1 Wd

…

Logarithmic sigmoid function

-5 0 5
-1

0

1

x

f(x
)

Hyperbolic tangent sigmoid function

Classification (Logistic Regression)
Let’s derive the update rules for 2-class classification

x0 x1 xd

y

W0 W1 Wd

…

Cross entropy

Squared error

When squared error is used

Classification
Let’s derive the update rules for multiclass classification

Classification
Let’s derive the update rules for multiclass classification

Cross entropy

Squared error

x0 x1 xd

y2

…

y1 yC…

Wij

When squared error is used

softmax(nett
k)

Batch or Stochastic Learning?
§ Batch learning allows using some second-order

techniques that
– Cannot be easily incorporated into stochastic learning

§ Stochastic training is preferred for most applications
– Especially when datasets are highly redundant
– It is typically faster than batch training

§ Mini-batch stochastic learning is a good tradeoff

Adding Nonlinearity
§ Linear discriminants yield hyperplane decision boundaries

§ If they are not sufficient to construct a “good” model
1. We may transform the space into a new one using

nonlinear mappings and construct linear discriminants
on the transformed space à SVMs

2. We may learn the nonlinearity at the same time as
the linear discriminants à ANNs

XOR Problem

Support vector machines use the idea of nonlinear
mapping to find a linearly separable space

x1

x2

z1

z2z1 = x1
z2 = x1 x2

XOR Problem

x1

x2

Neural networks learn the nonlinearity at the same
time as the linear discriminants
(learn all the weights at the same time)

net1 = W12 x2 + W11 x1 + W10
h1 = sign(net1)1
0

net2 = W22 x2 + W21 x1 + W20
h2 = sign(net2)1
0

x0 x1 x2

h1 =sign(net1)

W10 W12W1
1

x0 x1 x2

h2 =sign(net2)

W20 W22W21

h0 = 1

y =sign(net)
W0 = 0.5

W1 = 1 W2 = -1

net = W0 h0 + W1 h1 + W2 h2

Multilayer Perceptrons
§ Also contain hidden layers in addition to input and output layers

x0 x1 xd

h2

…

h1 hm…

Wij

h0

y2y1 yC…

Wjk

In this network
1. Each hidden unit computes its net

activation

2. Each hidden unit emits an output
that is a nonlinear function of its
activation

3. Each output unit computes its net
activation

4. Each output units emits an output

Hidden units hj’s can be viewed as new
“features” obtained by combining xi’s

A deeper architecture with nonlinear
activations is more expressive than a
shallow one

How to Learn?
§ In linear discriminants, we select the weights to minimize a

loss function defined on the difference between the actual and
computed output values

§ In multilayer structures, we can also select the hidden-to-
output-layer weights to minimize a loss function defined on the
actual and computed output values

§ However, we cannot select the input-to-hidden-layer weights in
a similar way since we do not know the actual values of the
hidden units

§ Thus, to learn the input-to-hidden-layer weights, we propagate
the loss function (defined on the output values) from the
output layer to the corresponding hidden layer
à BACKPROPAGATION ALGORITHM

Backpropagation Algorithm
Let’s derive the update rules for multiclass classification

Squared error

Hidden-to-output-
layer weights

Backpropagation Algorithm
Let’s derive the update rules for multiclass classification

Squared error

Input-to-hidden
layer weights

Exercise: Derive the
update rules for regression

More Hidden Layers

x0 x1 xd

h2

…

h1 hm…

Wij

h0

h'2h'1 h’m’…

Wj(j+1)

y2y1 yC…

h'0

W(j+1)k

Input-to-first-hidden layer weights

δj may vanish after repeated multiplication
This makes deep architectures hard to train
(when the initial values of the weights are
not “good” enough)

Activation Function
§ The activation function σ (.)

must be nonlinear and
σ (.) and σ ’(.) must be defined
throughout the range of their
argument (for backpropagation)

– Logarithmic sigmoid function

– Rectified linear unit (ReLU)

)exp(1
1)(

x
xf

-+
=

Target Output Values
§ In classification, a target value can be represented by

– 0/1 target values
§ Outputs represent posterior probabilities
§ Using the softmax function, the maximum output is transformed

towards 1.0 and all others reduced to 0.0

– -1/+1 target values
§ Outputs do not represent posterior properties

§ A proper activation function should be used in the
output layer
– Depending on the selected target value representation

When to Stop
§ When the change in the loss function is smaller than some

preset value θ

§ When a minimum is reached on the validation set
§ Training error ultimately reaches an

asymptotic value

§ The error on an independent test set
is virtually always higher
– Although it usually decreases, it can

also increase or oscillate

Initializing Weights
§ We cannot initialize the weights to zero
§ We want to have uniform learning

– All weights reach their final equilibrium at about the same time
– For that, with standardized data, we choose weights

randomly from a uniform distribution –ω < w < ω
– When the sigmoid function is used (for calculating an output

and/or for defining hidden units in MLPs)
§ If ω is chosen too small, the net will be too small
§ If ω is chosen too large, sigmoid may saturate even before

learning begins
§ Set ω such that sigmoid is in its linear range

Learning Rate
§ In principle, if the learning rate is small enough,

it ensures the convergence
– Its value determines only the speed
– Not the final weight values

§ In practice, the learning rate can indeed affect
the quality of the final network
– Since networks are not fully trained most of the time

Learning Rate

§ The optimal learning rate leads to the local minimum in one step

§ The optimal rate is found as

§ The system converges for and
– But training is needlessly slow

§ It is found that the system diverge if opthh 2>

opthh < optopt hhh 2<<

Learning Rate
§ Thus, in order to have rapid and uniform learning

– For each weight, calculate and set the optimal
learning rate separately (not so much practical)

§ For typical networks that use sigmoid functions
– η=0.1 is a good choice to start with

§ It should be lowered if the loss function diverges
§ It should be raised if learning seems unduly slow

§ During training, it is also possible to change the learning
rate η as a function of time (epoch number)

Regularization
§ Adding regularization term to the loss function

reduces sensitivity to training samples and
decreases the risk of overfitting

Regularization
Dropout regularization
§ During training, in each iteration, randomly drop out units

(also their incoming and outgoing connections) with
probability p to sample a “thinned” network and train it

§ Training can be seen as training a collection of different
thinned networks with extensive weight sharing

§ Training typically takes longer
§ In testing, consider the entire network where the weights

are scaled down by multiplying them a factor of 1 – p

Momentum
§ Error surfaces often have plateaus

– Regions in which the derivative is
very small

– Such plateaus may arise especially
when there are too many weights
such that the loss function only
weakly depends on any of them

§ Momentum allows to learn more
quickly when there are such
plateaus

Momentum
§ For stochastic learning algorithm, we include some fraction

of the previous weight updates into the learning rule

– Parameter a should be nonnegative and less than 1
– If a = 0, it is the same as the standard gradient descent
– If a = 1, the weight vector moves with constant velocity
– Values typically used are a @ 0.9

§ The use of momentum increases stability
§ It may speed up the learning process

Network Topology
The number of hidden units
§ It controls the expressive power of the network

– Thus, the complexity of the decision boundary

§ There is no foolproof method to set the number of
hidden units before training
– If samples are well-separated

§ few hidden units are enough
– If samples have complicated densities

§ more hidden units may be necessary

Network Topology

§ If too much hidden units,
– The network is tuned to the particular dataset (overfitting)

§ Training error can become small, but test error is unacceptably high

§ If too few hidden units,
– The network does not have enough free parameters to fit the

training data well
§ Training and test errors are high

