Very brief introduction to dimensionality reduction

CS 550: Machine Learning
Problems of dimensionality

- It is often reasonable to believe that the performance will improve with the use of additional features
 - No feature is useless unless its means for the two classes are the same

- However, it has frequently been observed in practice that beyond a certain point, the use of additional features leads to worse performance
 - Curse of dimensionality
 - As the dimensionality increases, much more samples are necessary to have a good generalization (to avoid overfitting)
 - Ignoring irrelevant features would improve accuracy
Dimensionality reduction

- We may want to reduce the dimensionality and find the “intrinsic” dimensionality of data
 - To avoid overfitting and disregard irrelevant features
 - To visualize high dimensional data

- The dimensionality reduction is typically achieved by
 - Selecting a subset of the existing features or
 - Combining the existing features
Feature selection

- We select a subset of existing features that yields the highest score
- We need to examine all possible subsets of the given size
 - Impractical (an exhaustive search)
 - Sequential procedures are often used
 - They add or remove features sequentially
 - Common procedures are forward selection and backward elimination

- Common scoring methods:
 - Training or cross-validation accuracy (not test set accuracy)
 - Mutual information between the features and the output
 - Mutual information between two random variables quantifies their mutual dependence

\[
\hat{I}(X,Y) = \sum_{x} \sum_{y} \hat{P}(X = x, Y = y) \log \frac{\hat{P}(X = x, Y = y)}{\hat{P}(X = x)\hat{P}(Y = y)}
\]
Feature selection

- **Forward selection**
 - Start with an empty set of features
 - Incrementally expand the subset by adding a feature
 - Features are added so that the subsequent subsets lead to the highest score
 - Terminate the algorithm if the specified number of features are reached
 - Or alternatively if no additional feature yields a better score
Feature selection

- **Backward elimination**
 - Start with a complete set of features
 - Incrementally remove the features one at a time
 - Features are removed so that the subsequent subsets lead to the highest score
 - Terminate the algorithm if the specified number of features are reached
 - Or alternatively if score significantly decreases with a removal of a feature
Feature selection

- Forward selection and backward elimination are greedy algorithms
 - They do not guarantee to find the optimal solution

- They select the features assuming that they are independent
 - However, there might be features that do not yield a good score when they are used alone but yield better scores when they are used in conjunction with other features
 - Such complimentary features cannot be captured by these algorithms
Feature reduction

- We create new features defined as functions over all features (instead of choosing a subset of features in the case of feature selection)
 - New features may not have a clear physical meaning
- We use linear or non-linear combinations of features
- Linear combinations are particularly attractive
 - They are simple to compute and analytically tractable
 - They project the high-dimensional data onto a lower dimensional space
- This could be achieved in
 - Unsupervised manner
 - For example, principal component analysis chooses a projection that is efficient for representation
 - Supervised manner
 - For example, linear discriminant analysis chooses a projection that is efficient for discrimination
Principal component analysis

- The aim is to find a new feature space with minimum loss of information
- It is assumed that the "most important" aspects of the data lies on the projection with the greatest variance
 - It is often the case, but of course it depends on the application
- Principal component analysis (PCA) transforms the data to a new coordinate system such that
 - The greatest variance lies on the first coordinate (the first principal component), the second greatest variance lies on the second coordinate (the second principal component), and so on
 - The eigenvectors of the covariance matrix of the data correspond to these principal components
Principal component analysis

- Find the covariance matrix of the data set
- Find the eigenvectors and eigenvalues of the covariance matrix
- First n eigenvectors (with largest eigenvalue magnitudes) will correspond to the first n principal components