Reinforcement Learning

CS 550: Machine Learning

Reinforcement learning

- Reinforcement learning addresses the question of how an autonomous agent that senses and acts in its environment can learn to choose optimal set of actions (learn a control policy) to achieve its goal.
Reinforcement learning

- Each time, after the agent takes an action, it MAY be provided with a reward (or a penalty), depending on the desirability of the next step that its action produces.

- The task is to learn, from these indirect-delayed rewards, a policy (how to choose sequences of actions) that yields the greatest cumulative reward.

\[
s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots
\]

Goal is to learn a policy that maximizes the cumulative reward

\[
r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots
\]

\(\gamma\) determines the relative value of the delayed rewards to the immediate reward.

The learning task

- \(S\) is a set of states of the environment
- \(A\) is a set of actions that an agent can perform
- \(r_t = r(s_t, a_t)\) is a reward/penalty that the environment gives at time \(t\) when the agent is at the state of \(s_t\) and it takes the action of \(a_t\)
- \(s_{t+1} = \delta(s_t, a_t)\) is the succeeding state

The task is to learn a policy \(\pi : S \rightarrow A\) that is to learn \(\pi(s_t) = a_t\)

- In a Markov decision process, the reward and succeeding state functions depend on only the current state and the current action
- These could also be nondeterministic functions
The learning task

Select the policy that yields the greatest reward

Let $V^\pi(s_t)$ be the cumulative reward value achieved by an arbitrary policy π from an arbitrary initial state s_t

$$V^\pi(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

$0 \leq \gamma < 1$ is a constant that determines the relative value of the delayed rewards to the immediate reward

$\gamma = 0 \Rightarrow$ only the immediate reward is considered

$\gamma \to 1 \Rightarrow$ future rewards are given greater emphasis

The learning task

Optimal policy $\pi^* = \arg \max_{\pi} V^\pi(s)$

$$\pi^*(s) = \arg \max_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

we use V^* instead of V^π
The learning task

Optimal policy \[\pi^* = \arg \max_{\pi} V^\pi(s) \]

\[\pi^*(s) = \arg \max_a \left[r(s,a) + \gamma V^*(\delta(s,a)) \right] \]

However, \(V^* \) is defined on the states not on the actions. Thus, we use \(V' \) instead of \(V^{**} \).

\[Q(s,a) = r(s,a) + \gamma V'(\delta(s,a)) \]

\[\pi^*(s) = \arg \max_a Q(s,a) \]

\[V^*(s) = \max_{a'} Q(s,a') \]

\[Q(s,a) = r(s,a) + \gamma \max_{a'} Q(\delta(s,a),a') \]

The Q-learning algorithm

For each \(s \) and \(a \), initialize \(\hat{Q}(s,a) = 0 \)

Observe the current state \(s \)

Do forever

- Select an action \(a \) and execute it
- Receive the immediate reward \(r \)
- Observe the new state \(s' \)
- Update the table entry for \(\hat{Q}(s,a) = r + \gamma \max_{a'} \hat{Q}(s',a') \)

\(s = s' \)
Reinforcement learning

- Delayed rewards
- Exploration versus exploitation
 - To select the action sequences in training
- Partially observed states
- Life-long learning