
Differential Diagnosis of Erythemato-Squamous Diseases

Machine Learning Application

Student: Narin Emeksiz
Supervisor: H. Altay Güvenir

Department of Computer Engineering and Information Science

Bilkent University

May,1998

2

Abstract

This report is about the implementation of a visual tool for Differential Diagnosis of
Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor
Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBCN) and Voting
Feature Intervals-5 (VFI5). This tool enables the doctors to perform all the necessary
operations occurring in the dermatology department of a hospital.

3

TABLE OF CONTENTS

1 INTRODUCTION.. 4

2 PROBLEM DESCRIPTION ... 4

2.1 WHAT IS DIFFERENTIAL DIAGNOSIS?...4

3 SOLUTION ALGORITHMS.. 5

3.1 THE NEAREST NEIGHBOR CLASSIFIER ALGORITHM ..5
3.2 NAIVE BAYESIAN CLASSIFIER USING NORMAL DISTRIBUTION...6
3.3 VOTING FEATURE INTERVALS-5 ALGORITHM ..7

4. DESIGN OF THE PROJECT .. 10

4.1 DATABASE OPERATIONS TAKE PLACE ...11
4.1.1 Patient Record Entrance ..11
4.1.2 Patient Record Search..14
4.1.3 Patient Record Deletion...15

4.2 PATIENTS IN THE DATABASE ...16
4.3 ALGORITHM DISPLAYS ...17
4.4 HELP ...19

5 CONCLUSION .. 20

REFERENCES ... 20

4

1 INTRODUCTION

The major aim of the project is to implement a visual tool for Differential Diagnosis of
Erythemato-Squamous Diseases based on the 3 different classification algorithms; Nearest
Neighbor Classification on Feature Projections (NN), Naive Bayesian Classifier using
Normal Distribution (NBCN) and Voting Feature Intervals-5 (VFI5).

The project has been developed under supervision of Assoc. Prof. Halil Altay Guvenir
from Department of Computer Science, Bilkent University. Design goals and the targets of
the projects were identified by consulting to Prof. Nilsel Ilter from Department of
Dermatology, School of Medicine, Gazi University.

2 PROBLEM DESCRIPTION

2.1 What is Differential Diagnosis?
The differential diagnosis of erythemato-squamous diseases is a real problem in
dermatology. They all share the clinical features of erythema and scaling, with very little
differences. The diseases in this group are psoriasis (C1), seboreic dermatitis (C2), lichen
planus (C3), pityriasis rosea (C4), cronic dermatitis (C5) and pityriasis rubra pilaris (C6).

These diseases are frequently seen in the outpatient departments of dermatology. At the
first sight all of the diseases look very much alike with the erythema and scaling. When
inspected more carefully some patients have the typical clinical features of the disease at the
predilection sites (localization of the skin where a disease preters) while another group has a
typical localization.

Patients were first evaluated clinically with 12 features. The degree of erythema and
scaling, whether the borders of lesions are definite or not, the presence of itching and
koebner phenomenon, the form of the papules, whether the oral mucosa, elbows, knees and
the scalp are involved or not, whether there is a family history or not are important for the
differential diagnosis.

For example the erythema and scaling of chronic dermatitis is less than of psoriasis, the
koebner phenomenon is present only in psoriasis, lichen planus and pityriasis rosea. Itching
and polygonal papules are for lichen planus and follicular papules are for pityriasis rubra
pilaris. Oral mucosa is predilection site for lichen planus while knee, elbow and scalp
involvements are of psoriasis. Family history is usually present for psoriasis and pityriasis
rubra pilaris usually starts during childhood.

Some patients can be diagnosed with these clinical features only, but usually a biopsy is
necessary for the correct and definite diagnosis. Skin samples were taken for the evaluation
of 22 histopathological features. Another difficulty for the differential diagnosis is that a
disease may show the histopathological features of another disease at the beginning stage
and may have the characteristic features at the following stages. Some samples show the
typical histopathological features of the disease while some do not.

Melanin incontinence is a diagnostic feature for lichen planus, fibrosis of the papillary
dermis is for chronic dermatitis, exocytosis may be seen in lichen planus, pityriasis rosea and
seboreic dermatitis. Acanthosis and parakeratosis can be seen in all the diseases in different
degrees. Clubbing of the rete ridges, thinning of the suprapapillary epidermis are diagnostic
for psoriasis. Disappearance of the granular layer, vacuolization and damage of basal layer,

5

saw-tooth appearance of retes and a band like infiltrate are diagnostic for lichen planus.
Follicular horn plug and perifollicular parakeratosis are hints for pityriasis rubra pilaris.

The features of a patient are represented as a vector of features which has 34 entries for
each feature value. In the dataset, the family history feature has the value 1 if any of these
diseases has been observed in the family, and 0 otherwise. The age feature simply represents
the age of the patient. Every other feature (clinical and histopathological) was given a
degree in the range of 0 to 3. Here, 0 indicates that the feature was not present, 3 indicates
the largest amount possible, and 1, 2 indicate the relative intermediate values. Each feature
has either nominal (discrete) or linear (continuous) values having different weights showing
the relevance to the diagnosis.

3 SOLUTION ALGORITHMS

3.1 The Nearest Neighbor Classifier Algorithm
One of the classification algorithms that we used in this project is the NN classifier as it is
both a simple and a common algorithm. The NN classification is based on the assumption
that examples which are closer in the instance space are of the sample class.

NN algorithm assumes that a new testing variable ought to belong to the same class as
its nearest neighbor among all stored training instances. In this project our aim is to classify
a single test instance depending on the previously established training dataset. Due to this
aim, we did not include the training phase to the project, the methodology that we use is
directly inserting the output data into arrays after performing the training process in a
separate medium. So, for the implementation of the NN classification algorithm we directly
store the train data features and class values in two separate arrays as these are the datasets
produced after the training process. Currently, the dataset for the domain contains 366
instances. We first used all of these instances to obtain a description of the domain. The
structures of the arrays are shown in Figure 1.

int train_value[366][34]={
 {2,2,0,3,0,0,0,0,1,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,55},
 {3,3,3,2,1,0,0,0,1,1,1,0,0,1,0,1,2,0,2,2,2,2,2,1,0,0,0,0,0,0,0,1,0, 8} ,
......................
 {2,1,3,1,2,3,0,2,0,0,0,2,0,0,0,3,2,0,0,0,0,0,0,0,3,0,2,0,1,0,0,2,3,50},
 {3,2,2,0,0,0,0,0,3,3,0,0,0,1,0,0,2,0,2,3,2,3,0,2,0,2,0,0,0,0,0,3,0,35},
};
int train_class[366]=
{2,1,3,1,3,2,5,3,4,4,1,2,2,1,3,4,2,1,3,5,6,2,5,3,5,1,6,5,2,3,
 1,2,1,1,4,2,3,2,3,1,2,4,1,2,5,3,4,6,2,3,3,4,1,1,5,1,2,3,4,2,

 1,5,5,3,1,5,5,6,6,4,4,6,6,6,1,1,1,5,5,1,1,1,1,2, 2,4,4,3,3,1};

Figure 1

All the feature values are assumed to have linear values. The distance metrics used to
obtain the distance between two instances in the NN classification algorithm is the
Euclidean distance metric. Suppose x is the instance that would be classified and y is an
instance that is already in the dataset. The vector representation of x and y is:

x = <x1, x2, x3, …, xn> and y = <y1, y2, y3, …, yn> on an n dimensional space. The
distance is computed by euclidean_distance function based on the equation;

dist(x,y) = Σn
f=1 wf* diff (f,x,y)

2

diff (f,x,y) :
 | xf - yf| if f is linear
 0 if f is nominal and xf = yf
 1 if f is nominal and xf ≠ yf

6

The function that calculates the euclidean_distance is implemented in the project as
follows:

feature_distance (Instance, Feature)
begin

if the instance feature value is not known
 return(1.0)
if train_value[Instance][feature] > test[feature])
 return((train_value[Instance][feature] - test[feature]) / range[feature])
else /*test feature value is bigger*/
 return((test[feature] - train_value[Instance][feature]) / range[feature]);

end

euclidean_distance (Instance)
/* returns the square of euclidean_distance between
 training instance I and the test instance */
begin

for each feature f
 sum += weight[f] * sqr(feature_distance (I,f));
 return(sum);
end

The NN algorithm is more effective when the features of the domain are equally
important. It will be less effective when many of the features are misleading or irrelevant to
classification. To avoid this, the features are given weights such that the irrelevant features
have lower weights (wf) and the strongly relevant features are given higher weights (wf).
Giving different weights to each feature modify the importance of the feature in the
classification process such that a relevant feature becomes more important than a less
relevant one.

We had used the outputs of a genetic algorithm for learning the feature weights to be
used with the Nearest Neighbor classification algorithm. We applied the same genetic
algorithm to determine the weights of the features in our domain to be used with the VFI5
algorithm. The weights of the 34 features, as determined by the genetic algorithm, are
shown below. According to the table, koebner phenomenon has the highest weight 0.0620.
Inflammatory mononuclear infiltrate is also important in the classification, with the weight
of 0.0527. On the other hand, the features acanthosis, follicular horn plug, munro
microabcess, and age are found to be the least relevant.

3.2 Naive Bayesian Classifier Using Normal Distribution
Bayesian classifier is an algorithm that approaches the classification problem using
probabilities of the features. The probability of the instance belonging to a single class is
calculated by using the prior probabilities of classes and the feature values for an instance.

Naive Bayesian Classifier assumes that features are independent. In NBC, each feature
participates in the classification by assigning probability values for each class, and the final
probability of a class is the product of each single feature probabilities; and the probability
of the instance belonging to a class (P(x|Ci)) can be computed as follows:

 n
P(x | Ci) = ∏ P(xf | Ci)

 j =1

NBC estimates the conditional probability density function P(xf | Ci) for a given feature
value xf for the fth feature using the frequency of observed instances around xf. P(xf | Ci)

7

for the nominal features is the ratio of the number of training examples of class Ci with
value xf for feature f over total number of training examples of class Ci.

P(xf | Ci) for continuous features is computed using the normal distribution. The normal
distribution function is as follows: p(xf) = (1/ √2πσ2)e -(xf - µ)2/ 2 σ2

In this project our aim is to classify a single test instance depending on the previously
established training dataset. In order to perform this aim we did not include the training
phase of the NBCN Algorithm to the project, we directly fill in the arrays after performing
the training process in a separate medium. The main components of the normal density
function are the variance σ2 and the mean µ. So, for the implementation of the NBCN
classification algorithm we store the variance and the mean of the linear values in two arrays
called Variance[34] and Mean[34] arrays.

The NBCN algorithm handles the missing feature values by ignoring the feature with the
missing value instead of ignoring the whole instance. When x has unknown value for f, the
conditional probabilities P(xf | Ci) of each class Ci is assigned to 1, which has no effect on
the product of probabilities distributed by each feature. The NBCN classification algorithm
is shown in Figure2.

probability (example x, feature f, class c)
begin
 if feature is nominal and there is not any value belonging to the feature and class
 return(0.0)
 if the feature is nominal
 for each distinct value belonging to the feature for the same class
 density = distribution[c][f][i].count
 else the feature is nominal
 begin
 /*Apply normal distribution*/
 distToMean = x - Mean[c][f];
 temp = distToMean * distToMean / (2 * Variance[c][f]);
 density = exp(- temp) / sqrt(2*PI*Variance[c][f]);
 end
 Pclass_feature[f][c] = density;
 return(density*10);
end

nbcn ()
begin
 g[0]=0
 /*initial value of the class probabilities*/
 for each class
 begin
 g[c] = classProbability[c];
 for each feature value
 if test feature value is known
 g[c] = g[c] * probability (test[f], f, c)
 /* find c with max g[c]*/
 if (g[c] > g[prediction]) prediction = c
 end
 return(prediction)
end

Figure 2

3.3 Voting Feature Intervals-5 Algorithm
The VFI5 classification algorithm represents a concept description by a set of feature
intervals. The classification of a new instance is based on a voting among the classifications
made by the value of each feature separately. It is a non-incremental classification algorithm;
that is, all training examples are processed at once.

From the training examples, the VFI5 algorithm constructs intervals for each feature. An
interval is either a range or point interval. A range interval is defined on a set of consecutive
values of a given feature whereas a point interval is defined for a single feature value. For
point intervals, only a single value is used to define that interval. For range intervals, on the
other hand, it suffices to maintain only the lower bound for the range of values, since all

8

range intervals on a feature dimension are linearly ordered. The lower bound of the range
intervals obtained from the training instances are installed into an array called
SegmentLower and the number of segments formed for each feature value is stored in the
array No_Segments directly at the beginning of the vfi function so no training process is
performed. The structure of the arrays are shown in Figure 3:

int No_Segments[34] = {7, 9, 9, 7, 7, 5, 9, 5, 9, 9, 5, 5, 7, 7, 9, 7, 9, 7, 7, 9,
 9, 7, 9, 7, 7, 7, 7, 5, 7, 7, 7, 5, 9, 21};

int SegmentLower[34][22] =
{
 {-10, 0, 0, 1, 1, 3, 3},

{-10, 0, 0, 1, 1, 2, 2, 3, 3},
{-10, 0, 0, 1, 1, 2, 2, 3, 3},

 {-10, 0, 0, 1, 1, 2, 2, 3, 3},
{-10, 0, 0, 7, 7, 8, 8, 10, 10, 12, 12, 16, 16, 22, 22, 65, 65, 70, 70, 75, 75}

};

Figure 3

For each interval, a single value and the votes of each class in that interval are
maintained. Thus, an interval may represent several classes by storing the vote for each
class. The votes given to the classes for each interval for each feature values are stored in
the SegmentVotes array.

float SegmentVotes[34][22][7] = {
{{0, 0, 0, 0, 0, 0, 0},
 {0, 0.145704, 0, 0.22665, 0, 0.627646, 0},
 {0, 0, 0, 0, 0, 0, 0},
 {0, 0.0596973, 0.0782916, 0.0928625, 0.214423, 0.45921, 0.0955157},
 {0, 0.155105, 0.153693, 0.187658, 0.180077, 0.11666, 0.206807},
 {0, 0.289338, 0.285058, 0.164664, 0.0967822, 0.0455993, 0.118558},
 {0, 0, 0, 0, 0, 0, 0}},
{{0, 0, 0, 0, 0, 0, 0},

 }

The training phase is performed in another platform and the operations take place in the
training process in the VFI5 algorithm is to find the end points for each class ‘c’ on each
feature dimension ‘f’. End points of a given class ‘c’ are the lowest and highest values on a
linear feature dimension ‘f’ at which some instances of class ‘c’ are observed. On the other
hand, end points on a nominal feature dimension ‘f’ of a given class ‘c’ are all distinct values
of ‘f’ at which some instances of class ‘c’ are observed. There are 2k end points for each
linear feature, where k is the number of classes. Then, for linear features the list of end-
points on each feature dimension is sorted. If the feature is a linear feature, then point
intervals from each distinct end point and range intervals between a pair of distinct end
points excluding the end points are constructed. If the feature is a nominal feature, each
distinct end point constitutes a point interval.

The number of training instances in each interval is counted. These counts for each class
‘c’ in each interval ‘i’ on feature dimension ‘f’ are computed. For each training example, the

i’ in which the value for feature ‘f’ of that training example ‘e’ falls is searched. If
interval i is a point interval and ef is equal to the lower bound (same as the upper bound for
a point interval), the count of the class of that instance in interval i is incremented by 1. If
interval i is a range interval and ef is equal to the lower bound of i (falls on the lower
bound), then the count of class ec in both interval i and (i-1) are incremented by 0.5. But if
ef falls into interval i instead of falling on the lower bound, the count of class ec in that
interval is incremented by 1 normally. There is no need to consider the upper bounds as
another case, because if ef falls on the upper bound of an interval I, then ef is the lower

9

bound of interval i+1. Since all the intervals for a nominal feature are point intervals, the
effect of count\instances is to count the number of instances having a particular value for
nominal feature f.

To eliminate the effect of different class distributions, the count of instances of class ‘c’
normalized by class\count[c], which is the total number

of instances of class ‘c’. As these operations occured in the training phase, they are not
included in our program. Only the data set formed after the training phase is directly
initialized to the arrays SegmentLower, No_Segments and SegmentVotes.

The classification process starts by initializing the votes of each class to zero. The
classification operation includes a separate preclassification step on each feature. The
preclassification of feature ‘ f’ involves a search for the interval on feature dimension ‘f’ into
which ef falls, where ef is the value test example ‘e’ for feature ‘f’. If that value is unknown
(missing), that feature does not participate in the classification process. Hence, the features
containing missing values are simply ignored. Ignoring the feature about which nothing is
known is a very natural and plausible approach.

find_segment (value, feature f)
begin
 while ((SegmentLower[f][s]< value) && (s < No_Segments[f]))
 increase s
 if (SegmentLower[f][s] == value)
 return(s);
 else
 return(s-1);
end

feature_votes (int f, float featureVotes[])
 begin
 initalize for prediction
 if test value is known
 s = find_segment(test[f], f);
 for each claass value

 featureVotes[c] = SegmentVotes[f][s][c];
 VotesFeatures[f][c]=featureVotes[c];
end

vfi5 ()
begin
 initalize for prediction the total votes array
 initialize the votes of each feature for each class
 for each feature
 feature_votes(f, featureVotes);
 for each class
 totalVotes[c] += (featureVotes[c]* weight[f]);
 prediction = 0;
 for each class
 check for the class having the largest probability
 return (prediction)
end

Figure 4.

If the value for feature ‘f’ of example ‘e’ is known, the interval ‘I’ into which ef falls is
found. That interval may contain training examples of several classes. The classes in an
interval are represented by their votes in that interval. For each class ‘c’, feature ‘f’ gives a
vote equal to interval\vote[f,~i,~c], which is vote of class c given by interval i on feature
dimension ‘f’. If ef falls on the boundary of two range intervals, then the votes are taken
from the point interval constructed at that boundary point. The individual vote of feature ‘f’

vote[f,c], is then normalized to have the sum of votes of feature ‘f’
equal to 1. Hence, the vote of feature ‘f’ is a real-valued vote less than or equal to 1. Each
feature ‘f’ collects its votes in an individual vote vector VotesFeatures[34][7]. After every
feature completes their preclassification process, the individual vote vectors are summed up
to get a total vote vector totalVotes[7]. Finally, the class with the highest vote from the

10

total vote vector is predicted to be the class of the test instance. The implementation of the
VFI algorithm is in Figure 4:

4. DESIGN OF THE PROJECT
As this application is going to be used by the doctors who are not advanced computer users,
we had aimed to implement the user interface of the Erythemato-Squamous Diseases
application user friendly. In order to make the usage of the program as a joy instead of a
nightmare we choose Borland C++ Builder for Windows 95 & Windows which provides us
the easy usage of the visual aids, and provide us to prepare a database.

Borland C++ Builder is an object-oriented, visual programming environment for rapid
application development of general purpose client/server applications for Microsoft
Windows 95 and Windows NT. C++ Builder enables me to perform complicated
applications with a minimum coding. In C++ environment all the tools needed to design,
develop, test, and debug applications are available.

At first step, in order to warm up to the C++ Builder environment I practice on the
screen designs of the project, and learn the visual programming environment. In the light of
advises of Prof. Ilter and Assoc. Prof. Guvenir, I defined the requirements of a dermatology
department of a hospital.

Being a department of a hospital, dermatology department inherits all the processes take
place in a hospital. Everyday some number of patients are applied to the department as they
have symptoms which are the signs of a skin disease. In order to keep track of each patient
and prepare history for the hospital, I constructed a database in which the detailed
information of each patient would be kept in. The ByopsiNo is selected as the primary key
so it is unique for each patient in the database. Also indexes are formed for PatientName,
PatientSurname and PatientName and PatientSurname. The structure of the database table
consists of the following fields:

Field
ByopsiNo
Patient Name
Patient Surname
Entrance Date
Doctor’s Diagnosis

Also 12 clinical features are stored in the database
Feature1(erythema)
Feature2(scaling)
Feature3(definite borders)
Feature4(itching)
Feature5(koebner phenomenon)
Feature6(polygonal papules)
Feature7(follicular papules)
Feature8(oral mucosal involvement)
Feature9(knee and elbow involvement)
Feature10(scalp involvement)
Feature11(family history)
Feature34(age)

11

Afterwards, skin samples were taken for the evaluation of 22 histopathological features
which is called the biopsy process. The values of the histopathological features are
determined by an analysis of the samples under a microscope. These features are:
Feature12(melanin incontinence)
Feature13(eosinophils in the infiltrate)
Feature14(PNL infiltrate)
Feature15(fibrosis of the papillary dermis)
Feature16(exocytosis)
Feature17(acanthosis)
Feature18(hyperkeratosis)
Feature19(parakeratosis)
Feature20(clubbing of the rete ridges)
Feature21(elongation of the rete)
Feature22(thinning of the suprapapillary epidermis)
Feature23(spongiform pustule)
Feature24(munro microabcess)
Feature25(focal hypergranulosis)
Feature26(disappearance of the granular layer)
Feature27(vacuolisation and damage of basal layer)
Feature28(spongiosis)
Feature29(saw-tooth appearance of retes)
Feature30(follicular horn plug)
Feature31(perifollicular parakeratosis)
Feature32(inflammatory monoluclear inflitrate)
Feature33(band-like infiltrate)

In the dataset constructed for this domain, the biopsy no is the label that is given to each
patient for the differentiation, name and surname belongs to the patient, the doctor’s
diagnosis field stores the doctors prediction about the disease and its range is from 1 to 6
each reflecting the label of the 6 eythemato-squamous diseases, family history feature has
the value 1 if any of these diseases has been observed in the family, and 0 otherwise. The
age feature simply represents the age of the patient. Every other feature (clinical and
histopathological) was given a degree in the range of 0 to 3. Here, a 0 indicates that the
feature was not present, a 3 indicates the largest amount possible, and 1, 2 indicate the
relative intermediate values.

4.1 Database Operations Take Place
Keeping the patient records; entrance of a new patient, searching for an already recorded
patient or extracting a patient from the registration are some of the operations that leads to
the construction of a database. All these operations are performed by specially prepared
forms.

4.1.1 Patient Record Entrance
The Patient Record Entrance Form shown in Figure 5 enables the user to enter all the
information about the patient.

12

Figure 5.

Figure 6.

13

Figure 7.

The save button is enabled only if a new biopsyno is entered. When pressed it attempts
to save the entered data, but initially checks the previous records if this biopsyno already
exists or not. If it exists it shows a warning messages and forces the user to enter a unique
value for the biopsy no. By this method it preserves the primary key property of the
biopsyno. If the biopsyno is unique, then the database is prepared for the insertion. If the
buttons labeled Clinical Features or Histopathological Features is pressed one of the
following forms in Figure 6 or Figure 7 is opened and enables the user to enter the feature
values only by marking the corresponding values.

If a value is not entered in these forms their values are recorded as unknown to the
database and each prediction algorithm handles these unknowns in a specific way depending
on the handling mechanism of the algorithm. Classification algorithms make prediction even
if one of the feature values of clinical or histopathological features is entered. The result of
one prediction is shown in Figure8.

14

Figure 8.

4.1.2 Patient Record Search
As keeping Biopsyno in mind is a difficult task for a human being, we based our searching
methodology on different indexes. The user can reach the target patient by defining its
search criteria on form in Figure 9 after choosing the search patients option from the main
menu.

Figure 9.

15

We have four searching craters;

1). BiopsyNo : If an existing BiopsyNo is entered then the patient
 having this BiopsyNo is displayed.

2). Name : All the patients in the database having this name is returned.
3). Surname : All the patients in the database having this surname is returned.
4). Name Surname: All the patients in the database having this name and surname

 is returned.

The arrows appeared on the form enables to see all the retrieved patients depending on
the selected search criteria. The database is opened depending on the selected search criteria
before each search.

If the detail button is pressed than the form in Figure 10 which contains the detailed
information about the patient is retrieved. This form enables us to make any update on the
previously recorded dataset; to examine the previous patients details and to see the
predictions. The VFI, NN and NBCN Algorithms functions depending on the same
methodology as explained in the Patient Record Entrance Form.

Figure 10.

For the update operation; the biopsy no which is on the form is taken and the database
is opened as indexed by the biopsyno. Then the record which would be updated is found by
the GotoKey() function. This function is specific for the primary keys and directly goes to
the searched key.

4.1.3 Patient Record Deletion
If the data about a patient becomes out of date or a patient is entered by mistaken; the
removal of the patient from the database comes to scene. The special treatments done for
the removal enables the user to clean the database from the unnecessary data. The
methodology to reach the target patient data which would be removed from the database is

16

like the searching process but this time the options of the form displayed, when the detail
button pressed, is different. The detail form, which is shown in Figure11, is only for
reassuring the user that he is deleting the correct patient. It does not have update option and
the algorithms do not do any prediction and all clinical and histopathological forms are
disabled against the user interrupt.

Figure 11

4.2 Patients in the Database
When the database option is selected from the main menu, all the patient details displayed.
For this option I used the query functions of the Borland C++ Builder. I wrote an SQL
statement to the QueryComponent such as “Select * from Patient”. The result of a
selection is displayed in Figure 12.

Figure 12.

17

4.3 Algorithm Displays
As one of the main aims of the project is to be an assistant tool in the training of the
dermatology diseases; the implementation of the 3 different classification algorithms are
placed in both Patient Data Entrance and Searched Patient Details forms by giving the
doctor the chance to compare his own classification with the prediction of the algorithms.
The detailed information given for each of the classification algorithms can provide the
flexibility to the application to be used both in the hospital and in the education process of
the intern-doctors.

If the detail button for the NBCN is pressed then the form which shows the probability
of each of 34 features belonging to any erythemato-squamous diseases is displayed. The
NBCN Form is shown in Figure13.

Figure13.

18

When the detail button is pressed for seeing the logic that lies behind the NN algorithm’s
prediction the form called NN-Detail which is shown in Figure 14 is displayed. As NN
algorithm assumes that a new patient has the same disease as its nearest neighbor; the
design of the NN-Detail form includes both the patient for whom the NN makes
classification and the patient, which has the most similar feature values.

Figure14.

When the detail button is pressed for seeing the logic that lies behind the VFI-5 algorithm’s
classification the form called VFI-Detail which is shown in Figure 15 is displayed.

19

Figure 15.

The rules table in Figure 16 displays the logic that lies behind the votes given to each class
for each of the 34 features.

Figure 16.

4.4 Help
As this program would be used by the doctors who are not much familiar with the
classification algorithms; we include a brief description for each of the algorithms. In the
below the description which is written for NN Classifier is given (Figure 17).

20

Figure 17.

5 CONCLUSION

In our opinion using this tool in the education process provides a more colorful environment
for the doctors than huge hard covered materials. Also the students of the Gazi Medical
School can use the tool for testing their knowledge by comparing their predictions with the
classifications done by the algorithms. Also another advantage of the tool is to be a guide to
the doctors in constructing their own classification mechanisms by examining the working
methodologies of the algorithms presented in the detail sections.

In this project I worked on classification algorithms which were written for UNIX. As
the original version of the algorithm was implemented for both the training and testing
processes. Adapting it for the classification of a single patient and adding the functions,
which would provide the application’s easy usage, was the main theme of the project.

Today, this visual tool for the differentiation of erythemato squamous diseases is ready
for the usage by the doctors and the computer scientists who are interested in machine
learning algorithms.

I would like to express my gratitude to Assoc. Prof. H.Altay Guvenir, for his endurance,
help in the implementation, suggestions, solutions, understanding thorough the
implementation of the project and for everything.

REFERENCES
[1] G. Demiroz. Non-Incremental Classification Learning Algorithms Based On Voting

Feature Intervals. Bilkent University, Dept. Of Computer Engineering and Information
Science, Msc. Thesis, 1997.

[2] G. Demiroz, and H.A. Guvenir, and Nilsel Ilter. Differential Diagnosis of Erythemato-
Squamous Diseases Using Feature Intervals. In Prooceedings of the Sixth Turkish
Symposium on Artificial Intelligence and Neural Networks (TAINN’97), 190-194,
1997.

[3] H.A. Guvenir and I.Sirin, Classification by Feature Partitioning, Machine Learning,
23:47-67, 1996.

