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Abstract

In this paper, we propose a new support vector cluster-
ing (SVC) strategy by combining (SVC) with spectral graph
partitioning (SGP). SVC has two main steps: support vector
computation and cluster labeling using adjacency matrix.
Spectral graph partitioning (SGP) method is applied to the
adjacency matrix to determine the cluster labels. It is feasi-
ble to combine multiple adjacency matrices computed using
different parameters. A novel multi-resolution combination
method is proposed for cluster labeling using the SGP for
the purpose of boosting the clustering performance.

1. Introduction

SVMs are powerful pattern recognition techniques and
have been successfully applied to many machine learning
tasks such as classification [1] and regression [2]. SVMs
have outperformed many other machine learning methods
such as artificial neural networks and k-nearest neighbors
and attracted a great deal of attention from the machine
learning community because of many desirable properties,
including good generalization performance, robust noise
performance and fast convergence. Although SVMs have
been widely recognized as supervised learning techniques,
they have recently been adapted for unsupervised learning
such as novelty detection [3] and cluster analysis [4, 5].
With the support vector clustering method, data points are
first mapped to a high dimensional feature space. Then a hy-
persphere with a minimum radius R and center�a is searched
to enclose most of the data points in the new feature space.
When this hypersphere is mapped back to the original data
space, its surface forms a set of closed contours enclosing
the data points. These contours correspond to the cluster-
ing boundaries which are defined by the support vectors. To
assign data points to individual clusters, a straightforward
geometric approach was used. Each pair of data points are
defined either as adjacent or not depending on whether the

line segment connecting the pair of data points goes outside
of the enclosing sphere or not. Clusters are then defined
as the connected components of the graph induced by the
adjacency matrix between pairs of points.

Despite the many advantages the support vector cluster-
ing method has, its time complexity is very high. The algo-
rithm consists of two major steps: support vector learning
and cluster assignment. Suppose that the number of data
points is n and M points are sampled for each line segment
during the cluster assignment. The complexity of cluster
assignment step is O(n2M) which is much higher than that
of support vector learning. Therefore, reducing the compu-
tation of the cluster assignment step is the crucial issue in
support vector clustering. Yang et al. [5] has proposed the
constructing of a proximity graph to model a data set. This
method avoids redundant checks in a complete graph and
successfully reduced the computation cost in cluster assign-
ment to a certain extent. However, other problems still exist
in the cluster labeling stage. When an adjacency matrix is
constructed, and a sampling strategy is employed for check-
ing whether the line segment connecting two data points
goes outside the enclosing sphere. It is possible that some
data points outside the enclosing sphere may be skipped.
As a result, two data points might be denoted as adjacent
to each other and given the same class label when the con-
nected component approach [4, 5] is employed.

In this paper, we propose a support vector clustering
method using spectral graph partitioning (SGP) for the clus-
ter label assignment We combine several adjacency matri-
ces to produce a new adjacency matrix, and apply SGP to it
for cluster label computation. It can be considered that the
σ in the Gaussian kernel function plays a role of yielding
multi-resolution results for SVC: a small σ produces high
resolution (detail) contours while a larger σ produces low
resolution (smoothing) contours. When we combine sev-
eral adjacency matrices, we select them to represent differ-
ent resolutions, from coarse to fine. The method improves
the accuracy of cluster assignment and avoid the merging of
clusters in the same spirit of wavelet convolution.
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2. Support Vector Clustering using Kernel
Technique

2.1 Support vector analysis using Kernel

Given a set of data points X = {xi}, i = 1, 2, .., n,
where xi ∈ Rd, a nonlinear mapping Φ transforms the
data points to some high dimensional feature space, and we
search for the smallest hypersphere that contains most data
points. Mathematically, we can express the problem as:

min
�a, R, ξj

R, subject to ||Φ(xj) − �a||2 ≤ R2 + ξj ∀j. (1)

We can construct the Lagrangian to solve the problem:

L = R2 −
∑

j

(R2 + ξj − ||Φ(xj) − �a||2)βj

−
∑

ξjµj + C
∑

ξj , (2)

where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is a
constant, and C

∑
ξj is a penalty term for the outliers. Ap-

plying KTT complementarity conditions the problem can be
reformed as:

max L =
∑

i

βiΦ(�xi)2 −
∑
i,j

βiβjΦ(�xi) · Φ( �xj),

subject to 0 ≤ βi ≤ C,
∑

βi = 1, i = 1, . . . , n.(3)

If βi = C, then xi is a bounded support vector or BSV,
which lies outside of the hypersphere and is treated as noise.
If 0 < βi < C, then xi is a support vector or SV, which
lies on the surface of the hypersphere and thus is on cluster
boundaries. For xi with βi = 0, it is inside the hypersphere.

Following the SVMs methods, a kernel representation
K(�xi, �xj) = Φ(�xi) ·Φ( �xj) is adopted and Eq. (3) is rewrit-
ten as:

max L =
∑

i

βiK(�xi, �xi) −
∑
i,j

βiβjK(�xi, �xj),

subject to 0 ≤ βi ≤ C,
∑

βi = 1, i = 1, . . . , n.(4)

The kernel methods do not require an explicit calculation of
the feature map Φ but only use the values of the dot products
between mapped patterns. For clustering purpose, Gaussian

kernels Kq(�xi, �xj) = e−
|| �xi− �xj ||2

2σ2 are generally used. The
clustering level can be controlled by the width parameter
of the Gaussian kernel (σ). When σ decreases, the number
of disconnected contours in the data space increase, which
leads to an increasing number of cluster. The distance from
the center of the hypersphere to the image of a point x in
the feature space can be calculated as:

R2(�x) = K(�x, �x)−2
∑

j

βjK( �xj , �x)+
∑
i,j

βiβjK(�xi, �xj)

(5)

The radius R of the sphere is the distance between the hy-
persphere center and the support vectors:

R = {R(�xi)| xi is a support vector} . (6)

Cluster boundaries are formed from the set of points in
data space {�x| R(�x) = R}. Therefore, SVs are on cluster
boundaries, BSVs are outside the clusters, and other points
are inside the clusters.

2.2 Cluster Labeling

The current cluster labeling method generally employees
a straightforward geometric approach to define their assign-
ment to clusters based on the following observation: given
a pair of data points in different clusters, any path that con-
nects them must exist from the hypersphere.

This is based on the observation that an adjacency matrix
between pairs of points is defined as:

Aij =
{

1 if, R(xi + λ(xj − xi)) ≤ R, ,∀λ ∈ [0, 1]
0 otherwise.

(7)
The adjacency matrix A can be constructed based on a

complete graph (CG) or a proximity graph[5] such as the
Delaunay Diagram(DD), Minimum Spanning Tree(MST)
or k-nearest neighbors (k-NN). In the CG-based strategy,
matrix A is computed using all the pairs of xi and xj , while
the proximity graph strategy calculate Aij’s only for pairs
of xi and xj when they are linked by an edge. The second
strategy reduces time complexity significantly compared
with the first one. After constructing the matrix A, clus-
ters are defined as the connected components of the graph
A.

3. Cluster Labeling using SGP

3.1 Spectral Multi-way Graph Partitioning

We consider the absolute value of the (i, j) element of
an adjacency matrix A as a measure of the similarity of
feature points i and j with feature points belonging to the
same cluster more similar than those of other points. Our
goal is then to partition the feature points into S clusters so
that feature points are more similar within each cluster than
across different clusters. Let A = (aij) with aij = |Aij |.
For a given partition of the feature points into S groups,
we can permute the rows and columns of A so that rows
and columns corresponding to the feature points belonging
to the same objects are adjacent to each other (i.e., we can
re-order the columns and rows of the A matrix accordingly
such that A = {Aij}S

i,j=1)
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We want to find a partition such that Aii will be large
while Aij , i �= j will be small, and to measure the size of
a sub-matrix matrix Aij we use the sum of all its elements
and denoted as

∑
(Aij). Let xi be a cluster indication vec-

tor accordingly partitioned with that of A with all elements
equal to zero except those corresponding to rows of Aii,

xi = [0 · · · 0 1 · · · 1 0 · · · 0]T .

Denote D = diag(D1, D2, · · · , DS) such that Di =∑S
j=1 Aij . Since we want to find a partition which will

maximize
∑

(Aii) while minimizing
∑

(Aij), i �= j, we
seek to minimize the following objective function by find-
ing a set of indicator vectors xi.

MCut =
xT

1 (D − A)x1

xT
1 Ax1

+ · · · + xT
S (D − A)xS

xT
SAxS

=
xT

1 Dx1

xT
1 Ax1

+ · · · + xT
SDxS

xT
SAxS

− S.

If we define yi = D1/2xi/||D1/2xi||2 and YS =
[y1, · · · , yS ], we have

MCut =
1

yT
1 Ây1

+
1

yT
2 Ây2

+ · · · + 1
yT

S ÂyS

− S (8)

where Â = D−1/2AD−1/2. It is easy to see that the yi

are orthogonal to each other and normalized to have Eu-
clidean norm one. If we insist that the yi be constrained to
inherit the discrete structure of the indicator vectors xi, then
we will be solving a combinatorial optimization problem
which has been proved to be NP-hard even when S = 2 [6].
The idea of spectral clustering is to relax these constraints
which allows the yi to be an arbitrary set of orthonormal
vectors. In this case, the minimum of Eq. 8 can be shown
to be achieved by an orthonormal basis y1, · · · , yS of the
subspace spanned by the eigenvectors corresponding to the
largest S eigenvalues of Â. Next we discuss how to assign
the feature points to each of the clusters based on the eigen-
vectors and QR decomposition.

3.2 Clustering Labeling using QR Decomposition

Here we follow the approach proposed in [7]. De-
note Ŷ = [ŷ1, · · · , ŷS ]T as the optimal solution of Eq 8.
The vectors ŷi can be used for cluster assignment because
ŷi ≈ D1/2x̂i/||D1/2x̂i||2, where x̂i is the cluster indicator
vector of i− th cluster. Ideally, if A is partitioned perfectly
into S clusters, then, the columns in X̂ = [x̂1, · · · , x̂S ]T of
the i − th cluster are the same, one for the i − th row and
zeros for the others. Two columns of different clusters are

orthogonal each other. This property is approximately in-
herited by Ŷ : two columns from two different clusters are
orthogonal to each other, and those from one cluster are the
same. We now pick a column of Ŷ which has the largest
norm and say it belongs to cluster i. We have orthogonal-
ized the rest of the columns of Ŷ against this column. We
assign the columns to cluster i whose residual is small. We
then perform this process S times. As discussed in [7], it
is exactly the same procedure for QR decomposition with
column pivoting applied to Ŷ . In particular, we compute
QR decomposition of Y T with column pivoting

Y T E = Q̂R = Q̂[R11, R12]

where Q̂ is a S×S orthogonal matrix, R11 is a S×S upper
triangular matrix, and E is a permutation matrix. Then we
compute a matrix R̂ as

R̂ = R−1
11 [R11, R12]ET = [IS , R−1

11 R12]ET , (9)

The matrix R̂ ∈ RS×N can be considered as giving a level
of confidence to a point that is to be assigned to each clus-
ter. Notice that the columns correspond to the feature points
and the rows correspond to the clusters. The cluster mem-
bership of each feature point is determined by the row index
of the largest element in absolute value of the corresponding
column of R̂.

3.3 Multi-Resolution Combination (MRC)

It can be considered that the σ in the Gaussian kernel
function plays a role of yielding multi-resolution results
for SVC: a small σ produces high resolution (detail) con-
tours while a larger σ produces low resolution (smooth-
ing) contours. We propose a multi-resolution combination
method using SGP to boost clustering performance in the
same spirit of wavelet convolution . Several adjacency ma-
trices are computed using different σ’s which cover high
resolution to low resolution of the feature space contours.
We simply make a combinatorial adjacency matrix by linear
combination of the adjacency matrices. Finally, the matrix
is applied to SGP algorithm to assign cluster labels.

4. Experiment Results

We performed experiments using a 2D synthetic data
set (150 points, 5 clusters). Fig. 1 illustrates comparison
of the results between the complete graph (CG) approach
(1st row) and the K-NN approach (2nd row), and the com-
parison results among connected component (CC) label-
ing scheme ((a)&(d)), SGP labeling scheme ((b)&(e)), and
MRC labeling scheme ((e)&(f)).

In Fig. 1, each black dot of the connected component
based labeling approach represents an independent cluster.
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Figure 1. SVC Clustering Results. Each color represents a cluster but black dots represent cluster fragments. (a)∼(c): com-
plete graph based SVC. (d)∼(f): K-NN based SVC. (a)&(d): Connected Component based approach. (b)&(e): Spectral Graph
Partitioning based approach. (c)&(f): Multi-Resolution Combination approach (σ=0.3,0.6 and 0.9).

The black dots of the SGP based labeling denote points
whose corresponding column values of the matrix R̂ (Eq 9)
are close to zero. As explained in Sec 3.2, column values
of R̂ represent the levels of confidence of the points to be
assigned to each cluster. If a point has almost zero level of
confidence for all clusters, the point is not assigned to any
cluster and considered as a cluster fragment. These points
are generated if the number of graph fragments in an adja-
cent is much greater than that of the given cluster number.

As depicted in Fig 1, the CC approach and K-NN ap-
proach yield very similar results. As far as the labeling
method is concerned, the SGP based method (single res-
olution) performs very similar compared to the CC-based
labeling. However, when we compare (d)-σ=0.9 (CC) and
(e)-σ=0.9(SGP), the SGP approach (single resolution infor-
mation is used) can divide the points into 5 clusters while
the CC approach merges the right upper two clusters. The
MRC method, which combines three adjacency matrices
computed using σ=0.3, 0.6 and 0.9, yields better results than
the other two methods. Especially, MRC labeling with the
K-NN approach successfully divides all the points into 5
clusters without cluster fragments.

5. Conclusion

We have proposed a new MRC cluster labeling method,
which bases on SVC along with spectral graph clustering.
The method allows us to combine several adjacency matri-
ces which cover low resolution to high resolution of SVC
contours. It is shown in the experimental results that the
proposed MRC cluster labeling method yields better per-
formance than the CC approach used in [4, 5]. The CC
approach is very sensitive to SVC parameters such as σ

in Gaussian function and C in Eq. 1. The proposed MRC
method is less sensitive to the parameters than CC approach
by producing better performance. We belive that is because
the method reflects the same spirit of wavelet convolution.
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