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Abstract. We give a sampling-based algorithm for the k-Median problem, with running time O(k( k2

ε
log k)2

log ( k
ε

log k)), where k is the desired number of clusters and ε is a confidence parameter. This is the first k-Median
algorithm with fully polynomial running time that is independent of n, the size of the data set. It gives a solution
that is, with high probability, an O(1)-approximation, if each cluster in some optimal solution has �( nε

k ) points.
We also give weakly-polynomial-time algorithms for this problem and a relaxed version of k-Median in which
a small fraction of outliers can be excluded. We give near-matching lower bounds showing that this assumption
about cluster size is necessary. We also present a related algorithm for finding a clustering that excludes a small
number of outliers.
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1. Introduction

Clustering, or grouping data into representative groups, is a tool commonly used in data
analysis, and can often make the manipulation of large data sets simpler. For example, in
a large customer database a cluster might represent customers with similar characteristics.
In a vision application, a cluster might be the group of pixels that form a single object
in the viewed image. In the context of the web, a cluster could be a set of web pages
with similar content. In census data a cluster might represent a population center. In each
of these applications, computing a clustering makes the data easier to manipulate, and
easier for a human to parse. For example, finding clusters in a customer database might
facilitate targeted advertising or allow compression of the data set to a summary of large
customer segments. Clustering algorithms have been the subject of a great deal of research
(Bradley, Fayyad, & Reina, 1998; Charikar et al., 1997; Duda & Hart, 1972; Feder &
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Greene, 1988; Gonzalez, 1985; Hartigan, 1975; Marroquin & Girosi, 1993; Pelleg & Moore,
1999; Zhang, Ramakrishnan, & Livny, 1996).

Data sets in the applications mentioned are growing at an exponential rate. The web is
the most striking example of this expansion, but exponential growth has been observed
in many other domains as well. As the data sets grow, the need for fast clustering algo-
rithms becomes more and more apparent. Most of the theoretical work in clustering has
focused on producing polynomial-time approximation algorithms for NP-Hard clustering
problems. While these algorithms work very well for moderately sized data sets, the pattern
of exponential growth suggests that even a linear-time algorithm may soon be too slow
in practice, and so we consider the possibility of sublinear-time clustering algorithms that
maintain provable approximation bounds. We cannot read the entire data set within such a
running time, and so we must make several reasonable assumptions about the nature of the
data (essentially, that the best clustering cannot be greatly influenced by the presence of a
relatively small number of points). We show that these assumptions are necessary and that
our running times are within a polylogarithmic factor of the best possible. Since without
reading the entire data set we run the (small) risk that the points we do examine will not be
representative of the entire data set, we will only give a high-probability guarantee on the
quality of the clustering we find.

Different notions of clustering. The general term “clustering” covers many different types
of problems. All involve a subdivision of a data set into groups of similar elements, but
there are many measures of similarity, many ways of measuring how well the subdivision
reflects the character of the data, and even various concepts of subdivision. Many clustering
algorithms assume that the points exist in some metric space, often real space under the
Euclidean (or another Lp) norm; the similarity is then defined simply by the distance
metric (Charikar & Guha, 1999; Meyerson, 2001). In the field of document clustering, the
“cosine distance,” which is nearly a metric (it obeys a “relaxed triangle inequality” although
not the triangle inequality itself), is often used (Steinbach, Karypis, & Kumar, 2000). For
some clustering problems, the distance function need not obey the triangle inequality, be
symmetric, be real-valued, or even be defined on all pairs of points (Bansal, Blum, &
Chawla, 2002; Lin & Vitter, 1992; Young, 2000).

Just as there are different notions of similarity, there are different notions of what cluster-
ings are legal, and what constitutes a good clustering. Under some definitions of clustering,
a point can belong fractionally to each of several groups in the subdivision; this type of clus-
tering is sometimes called “soft,” as distinct from a “hard” clustering, in which a partition is
imposed on the data so each point is assigned to exactly one group. For example, if the data
are considered to be drawn from a distribution, such as a mixture of k Gaussians, we may
use an EM algorithm to learn the distribution (Dempster, Laird, & Rubin, 1984; Redner
& Walker, 1984); in this case, for every data point x and each of the learned Gaussians
Fi = N (µi , σi ), there will be some probability (possibly very small) that Fi generated x .
On the other hand, k-Means (Bradley, Fayyad, & Reina, 1998) is an example of an algorithm
that makes a “hard” assignment of points to clusters. k-Means aims to find k centroids such
that, if every point in the data set is “assigned” to its closest centroid, the sum of assignment
distances is minimized, where, typically, the points come from a real space R

d , and the
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assignment distance of a point is defined as the squared Euclidean distance from the point
to its nearest centroid.

In most clustering problems, the quality of a particular solution is given by some (usually
NP-Hard) objective function defined over the set of possible solutions. For example, given
a set of n points in R

d , one may wish to find the k Gaussians that were most likely to
have generated this set (Dasgupta, 1999). In the case of the k-Center problem, the goal
is to choose k members of the data set, called “centers,” so as to minimize the maximum
assignment distance (where assignment distance is, as before, the distance from a data point
to its nearest center) (Hochbaum & Shmoys, 1985). The Correlation Clustering problem
is, given a complete graph on n vertices (which can be thought of as data points), each of
whose edges is labelled “+” or “−,” find a partition of the vertices into subsets, to minimize
the number of “+” edges between subsets, plus the number of “−” edges within subsets
(Bansal, Blum, & Chawla, 2002). An exception to the general rule that clustering is NP-
Hard is the following problem: given n points with a symmetric but possibly non-metric
distance function, divide the points into clusters so as to maximize D − d, where D is
the minimum inter-cluster distance and d is the maximum cluster diameter. Hierarchical
agglomerative clustering (HAC) (Pitt & Reinke, 1988) finds the optimal solution to this
problem in polynomial time.

The k-median problem. In this paper, the Metric k-Median problem, one of the most
popular and best studied clustering measures, will be discussed. An instance of the Metric
k-Median problem (hereafter, simply “k-Median”) consists of a data set N , a distance metric,
and an integer k; we are to choose k members of N as “medians,” and assign each member
of N to its closest median. As before, the assignment distance of a point x ∈ N is the
distance from x to the median to which it is assigned, and the k-Median objective function,
which is to be minimized, is the sum of assignment distances. This problem is related to the
one that k-Means attempts to optimize (although k-Means finds a locally optimal solution,
not necessarily a global optimum).

k-Median is NP-Hard: there is no polynomial-time algorithm that is guaranteed to find
the optimal solution for all instances of k-Median, unless P = NP. Despite the fact that it is
NP-Hard, there are polynomial-time algorithms guaranteed to find approximately optimal
solutions to the problem. Given an NP-Hard optimization problem �, let I denote the set
of instances of �, and let C : I → R

+ ∪ {0} denote the objective function to be optimized.
For convenience, assume that C is to be minimized; if C is to be maximized, the definitions
are analogous. For all I ∈ I, let S∗

I denote an optimal solution to I , and let C∗
I = C(S∗

I )
denote the cost of this solution. As � is NP-Hard, there is no polynomial-time algorithm that
guarantees to find S∗

I for each I ∈ I, unless P = NP. An α-approximation algorithm A for
� is a polynomial-time algorithm that guarantees that, for any I ∈ I, C(A(I )) ≤ αC(S∗

I ),
where A(I ) is the solution found by A for I . That is, the cost of the solution found by A
for I is guaranteed to be no more than α times the cost of the cheapest solution for I . (If
C is to be maximized rather than minimized, then an α-approximation algorithm A, for
α < 1, would guarantee that C(A(I )) ≥ αC(S∗

I ).) In general, α may depend on the size of
the problem instance (for example, α could be log n); for the k-Median problem, there exist
α-approximation algorithms for constant α.
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It is NP-Hard to approximate k-Median within a factor of 1 + 2/e (Jain et al., to appear),
i.e., unless P = NP, there is no α-approximation algorithm for k-Median with α < 1 + 2/e.
Nevertheless, the abundance of work on the k-Median problem has provided a number of
constant-factor approximation algorithms (Charikar & Guha, 1999; Charikar et al., 2002;
Guha et al., 2000; Jain & Vazirani, 1999). In the geometric setting, Arora, Raghavan, and Rao
(1998) gave a polynomial-time approximation scheme (PTAS) for the k-Median problem
in low dimensions; a PTAS is a family of algorithms that includes, for each fixed ε > 0,
a polynomial-time (1 + ε)-approximation algorithm. (In general, the running time may be
exponential in 1/ε.)

Like many optimization problems, k-Median can be expressed as an integer program, as
follows. If the data set is denoted N , for each point x ∈ N there is a variable m(x) that is
set to 1 if x is chosen as a median, and 0 otherwise. For each pair (x, y) of points there is a
variable a(x, y) that is set to 1 if x is assigned to y, and 0 otherwise. The constraints are:

∀ x ∈ N , m(x) ∈ {0, 1}
∀ x, y ∈ N , a(x, y) ∈ {0, 1}

∀ x ∈ N ,
∑
y∈N

a(x, y) ≥ 1

∀ x, y ∈ N , a(x, y) ≤ m(y)∑
x∈N

m(x) ≤ k

so each point must be assigned to some median, and a point y must be a median if some
point is assigned to it. The objective function is

∑
x �=y∈N a(x, y) · d(x, y), where d(x, y) is

the distance from x to y.
Charikar et al. (2002) gave the first constant-factor approximation algorithm for the k-

Median problem on general metric spaces. The algorithm employs LP-rounding: it optimally
solves an LP, a linear relaxation of the above integer program, in which each m(x) and each
a(x, y) can take on any value in [0, 1]. Then, if the solution found is not a feasible k-Median
solution (e.g., if there are more than k points with non-zero m(x)), the m(x) and a(x, y)
values are rounded so that a legal k-Median solution is obtained. The authors showed that
their method of rounding produced an approximately optimal k-Median solution.

Jain and Vazirani (1999), gave a primal-dual approximation algorithm. The Jain-Vazirani
algorithm does not solve an LP, but uses LP duality to find lower bounds on the cost
of the optimal k-Median solution. Charikar and Guha (1999) subsequently improved the
approximation ratio. The best approximation known is 3 + ε, given by Arya et al. (2001).
All these algorithms require �(n2) running time to compute an approximate k-Median
solution on n points. Guha et al. (2000) gave a divide-and-conquer algorithm that improves
the running time to Õ(nk) with some loss in the approximation ratio (here, Õ indicates
hidden polylogarithmic factors). They also showed a �(nk) lower bound on the running
time of any deterministic k-Median approximation algorithm. Thorup (2001) gave an O(1)-
approximation algorithm for k-Median on sparse graph metrics (a sparse graph metric is a
metric space describable by a sparse graph that represents points as vertices, and inter-point
distances as the shortest-path distances between vertices); the algorithm runs in Õ(m) time,
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where m is the number of edges in the graph. Indyk (1999) gave a sampling-based bicriteria
algorithm with running time O(nk), which returns a solution with βk medians of cost at
most α times the cost of the optimal solution with exactly k medians, where α and β are
both greater than 1. Mettu and Plaxton (2002) gave a sampling-based algorithm that, with
high probability, produces a constant-factor approximation; this algorithm assumes that the
diameter of the point set does not exceed the smallest distance between distinct points by a
factor of more than 2O(n/ log (n/k)). The running time of this algorithm is O(nk), where k is
�(log n), in the case of the standard k-Median problem; in the case of the weighted k-Median
problem, in which each point may be associated with a non-unit weight, the algorithm runs
in time O(n(k + log n) + k2 log2 n), which is O(nk) when k is �(log n) and O(n/ log2 n).
Mettu and Plaxton also showed that any randomized k-Median algorithm guaranteeing an
approximation ratio of α with nonnegligible probability (say, at least 1/100) requires �(nk)
running time, under one assumption: that the ratio between the diameter of the point set
and the smallest distance between two distinct points in the set, is at least αβn/k, where β

is a sufficiently large constant.

Running in sublinear time. These algorithms produce good approximations but all have
running times that are superlinear in the number of data points. When the data set is very
large, even linear time can be prohibitive. We therefore turn to sampling algorithms, which
select only a subset of the data to use in computing a clustering. Mishra, Oblinger, and Pitt
(2001) gave a sampling-based algorithm that, with probability at least 1 − δ, produces a
k-Median clustering of cost at most 2αOPT + εn, where OPT is the optimum k-Median cost,
α is the approximation ratio guaranteed by the k-Median approximation algorithm used
as a subroutine, and ε is an input parameter. The running time depends on (M/ε)2, where
M is the diameter of the data set, and on log(n/δ). In the special case of Euclidean space,
the dependence of the running time on log(n/δ) is avoided, and the clustering cost is at
most αOPT + εn (with probability 1 − δ). As the only previous algorithm with running time
independent of n, this algorithm of Mishra et al. is the existing result most comparable to
the results presented here. The running times of the algorithms we present are independent
of n regardless of the metric, but two of the algorithms we will present also have weakly
polynomial running time, due to a dependence on log M , and the other has fully polynomial
running time. Mishra et al. use results from statistics to bound the difference between the true
cost and sample cost of the k-Median objective function, whereas, in this paper, a purely
multiplicative guarantee is given using Chernoff Bounds. Alon et al. (2000) presented a
sampling-based property-testing algorithm for the related k-Center problem, in which the
aim is to minimize the maximum assignment distance, rather than the sum of assignment
distances. Sampling has also proved to be a successful technique in practice for various
clustering problems (Guha, Rastogi, & Shim, 1998; Joze-Hkajavi & Salem, 1998; Palmer
& Faloutsos, 2000).

We immediately recognize several challenges that will arise if sampling is to be used.
First, we must be able to sample the data uniformly at random. Otherwise, an adversary
could generate a sample that left out significant portions of the data set and therefore lose
the chance of producing a good clustering. Second, it is possible for a small number of
data points to have a very significant effect on the clustering. For example, suppose there
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is a very small (say o(
√

n)) set S of points that are extremely far from all the other points.
If any of these points are assigned to groups containing points outside of S, the clustering
quality will be poor. Unfortunately, a small uniform sample will be very unlikely to include
even one point from this set, and so it will be impossible to produce a good solution for
this instance without changing the sample size or sampling method.1 Third, this approach
precludes outputting an explicit assignment of each point to a group, since performing this
assignment will require at least linear time.

In order to deal with these problems, we will make several assumptions. First, we will
assume that we can select a data point chosen uniformly at random in constant time. In other
words, we assume that in constant time we can read the identity of a point from the point
set, regardless of the size of the key giving the identity. We can think of the data as being
stored on some random-access memory device, so that we can select a random location and
access that data point in effectively constant time. For example, the data set could be a set of
documents, distributed over a network of machines that store the documents in RAM. Given
an index of a set of webpages stored in such a distributed network, for example, one could
pick a random sample of the document set, and then request them, in time proportional to
the size of the sample. We observe that if we do not have random access, and the data are
ordered adversarially on a device that must be read in-order, then the data are effectively
streaming and the best we can hope for is linear time, even if we perform no operations
outside of a scan of the point set. Second, we assume that each of the clusters in the optimum
solution, against which we compare our clustering, is large. The “average” size of a cluster
would be n/k, and we will assume each cluster to have �(n/k) size. Equally well, we
can allow our solution to disregard a small fraction of “outlying” points. Third, we will
output k medians that are “representative” of the data set. We consider this output sufficient
without assigning each point explicitly to its nearest median (indeed, if the data set is large,
it is probably better to output the median set rather than an explicit assignment of every
point).

The assumption that some optimal solution has relatively “large” clusters, or that some
portion of the data set can be regarded as outlying noise has been treated earlier in clustering
literature. For example, Dasgupta (1999) assumes that the data points are generated from
k Gaussians each with weight �(1/k), and there are various papers on clustering with
outliers (Alon et al., 2000; Charikar et al., 2001). The assumption is motivated by the fact
that the goal of our algorithms is to produce several broad classes that are representative of
most data points, and that clustering a small number of outliers is not as important. Often
the data set itself has “noise” due to observational or recording errors; this noise may lead
to a small number of extreme outliers which should in fact be disregarded.

Overview. In Section 2, we will mention a few results from previous work that we will
refer to throughout the paper. In Section 3 we will summarize our results. In Section 4 we
will present our first k-Median algorithm. This algorithm assumes that in some optimal
k-Median solution, the clusters are of at least a given size. In Section 5 we will present a
simpler algorithm for the same problem, and in Section 6 we will present a related algorithm
for the version of k-Median in which the solution may exclude a small number of outliers,
but there is no assumption on the sizes of clusters in optimal solutions. Finally, in Section 7
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we show some lower bounds that prove that, under certain assumptions, our sample sizes
are as small as possible.

2. Preliminaries

In this section we will establish a few facts that we will use throughout the paper. First
we will point out a simple property of the k-Median problem, and then we will give the
running times of two k-Median approximation algorithms that we will use as subroutines
in the algorithms we will present.

Restricting the median set. For completeness, we mention a convenient fact that has often
been observed in related literature.

Fact 2.1. Let N be a set of points, with S ⊆ N. Let k be an integer with 0 ≤ k ≤ n. Let
K ⊆ S be the k-element subset of S minimizing

∑
x∈S d(x, K ), where d(·, ·) is the distance

function on N , and d(x, K ) denotes minm∈K d(x, m). Then if K ′ is a k-element subset of
N ,

∑
x∈S d(x, K ) ≤ 2

∑
x∈S d(x, K ′).

Proof: We will give an example K ′′ ⊆ S with |K ′′| = k such that
∑

x∈S d(x, K ′′) ≤
2

∑
x∈S d(x, K ′); by the optimality of K , the fact will follow. Let K ′′ be chosen in the

following way: for each element p of K ′, K ′′ will contain the closest member, say q(p) of
S, i.e., q(p) = argminr∈Sd(p, r ).

Consider an x ∈ S, and let m be the closest member of K ′ to x , so that d(x, K ′) = d(x, m).
Then d(x, K ′′) ≤ d(x, q(m)) ≤ d(x, m) + d(m, q(m)), which, by definition of q(m), is at
most 2d(m, x). Therefore, d(x, K ′′) ≤ 2d(x, m) = 2d(x, K ′). The fact follows.

In particular, this fact implies that if we solve an instance of k-Median on a sample S of
a point set N , insisting that the medians be members of S, rather than arbitary members of
N , costs only a factor of two in the cost of the optimal solution.

Subroutine running times. Next we review the running times of two k-Median approx-
imation algorithms we will be using as subroutines for our algorithms. The algorithm of
Arya et al. (2001) guarantees a (3 + 2/p)-approximation to the k-Median problem. It uses
local search, meaning it begins with an initial solution and then iteratively refines this solu-
tion by means of local improvements, each of which, in the case of this algorithm, lowers
the solution cost by a factor of (1 − γ /k) or more (where γ is a constant). If the initial
solution is an O(n)-approximation to the optimal k-Median solution, where n is the num-
ber of points in the k-Median instance, then O(k log n) improvement steps are sufficient
to guarantee that the algorithm will arrive at a constant-factor approximation. An exam-
ple of such an O(n)-approximation is the O(nk)-time farthest-point k-Center algorithm of
Gonzalez (1985). Each improvement step takes O((nk)p+1), because at most O((nk)p) pos-
sible improvements will need to be evaluated, at a cost of O(nk) per evaluation, before one
is chosen and effected (at which time the cost is lowered and another round of searching
for an improvement step begins). Therefore, the running time of the entire algorithm is
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dominated by the time spent in the local-improvement stage (and not in the initial-solution
stage), so the running time is O(k(nk)p+1 log n) for an n-point instance.

The algorithm of Charikar et al. (2001) will be used as a subroutine in two of the algorithms
presented in this paper. This algorithm is a constant-factor approximation algorithm for the
“robust” k-Median problem, meaning that it gives the following guarantee: Given an instance
of k-Median on n points, if there is a choice K ∗ of k medians such that the sum of the lowest
(1− δ)n assignment distances to K ∗ is C , then this algorithm will find a set K of k medians
such that the sum of the lowest (1 − κ1δ)n assignment distances to K is at most κ2C . This
algorithm, like that of Jain and Vazirani (1999), uses LP duality. The linear program used
by Charikar et al. is a relaxation of the basic k-Median LP, in which not every point need be
assigned to a median, but an additional cost is charged per unassigned point. The running
time of this algorithm is O(n2 log n log M) where M is the diameter of the point set. The
second and third algorithms that we will present, which use this algorithm as a subroutine,
will therefore have weakly polynomial running time.

3. Our results

Our first k-Median algorithm will use the algorithm of Arya et al. (2001) as a subroutine.
The running time of our algorithm will be O(k( k2

ε
log k)p+1 log ( k

ε
log k)), where ε is a

real number between 0 and 1 such that, in some optimum solution, each cluster contains
at least εn

k data points. This running time is independent of n, the number of data points.
Our algorithm guarantees that, with high probability, the cost of the solution we produce is
within O(1) of the cost of some optimum solution in which each cluster contains at least
εn
k points. Our methods also provide a technique for evaluating candidate clusterings in

sublinear time, under the same assumptions about the nature of the data set.
Next we give a simpler k-Median algorithm that uses the algorithm of Charikar et al.

(2001) as a subroutine. This algorithm runs in O(( k
ε

log k
ε
)2 log ( k

ε
log k

ε
) log M) time and

will, with high probability, produce a k-Median solution whose cost is at most a constant
times the optimal solution cost. Here, M is the diameter of the point set; we note that this
algorithm is only weakly polynomial.

Our third algorithm is nearly identical to the first, but works for the case that it is acceptable
to leave a small fraction of the points out of the clustering solution. In particular, if the
optimal k-Median solution that assigns (1 −φ)n points has a cost of C (i.e., on the (1 −φ)n
points of lowest assignment distance), our algorithm will, with high probability, produce a
median set that, if it can expand the fraction of points excluded by a constant factor, will
have a total assignment cost that is O(1) times C . The running time of this algorithm is
O(( k

φ
[log k3 + log k2

φ
])2 log ( k

φ
[log k3 + log k2

φ
]) log M).

We also give near-matching lower bounds relating the size of a uniform sample to the
smallest minimum cluster size that is allowable if a constant-factor approximation is to be
produced; in particular, we show that our sample size is at most (log(k/ε)) times as large as
the smallest uniform sample we would need to guarantee a constant-factor approximation
with non-negligible probability. We note that Thorup (2001) and Mettu and Plaxton (2002)
show how to sample several times, using information from previous samples so that smaller
samples can be taken later from a reduced point set.
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4. k-Median algorithm

The first k-Median algorithm we will present consists of two steps. In the first step, described
in Section 4.2, we generate several candidate median sets. To generate each set, we draw a
sample uniformly with replacement from the data and compute an approximately-optimal
clustering for the sample using the algorithm of Arya et al. (2001). We show that, with
constant probability, the cost of a candidate set is within O(1) of that of the best k-Median
solution. By increasing the constants in the approximation factor and sample size, we
could produce an algorithm that would with high probability produce a good clustering; the
required increases would be unacceptably large, however. We can obtain better results by
repeatedly sampling and clustering, and taking the best of our candidate median sets.

Determining the best set of candidate medians is a nontrivial problem. The straightforward
approach to testing would take linear time. Thus, the second part of our algorithm is a
method for determining the best of several candidate clusterings. We show, given a number
of candidates, that we are able to select one whose cost is within O(1) of the cost of the best
candidate. This process can be performed, again using sampling, in time independent of n.
The basic technique is to draw a number of random samples and measure the quality of each
set of candidate medians on each random sample. We will return the set of medians that
have the best observed quality (lowest minimum value over all samples). This evaluation
of candidates is discussed in Section 4.3. As mentioned earlier, both steps of our algorithm
require that the clusters in some optimal solution be large, and that we can select a data
point uniformly from the input in constant time.

Combining the steps outlined above gives us an algorithm that produces constant-factor
approximations to the best k-Median solution, in running time independent of n, the size
of the data set (under certain assumptions about the nature of the input). We present this
overall result in Section 4.4, and near-matching lower bounds in Section 7.

Some data sets contain “noise” or “outliers” that make the data inherently difficult to
cluster, in the following sense: the best possible k-Median solution is “much more expensive”
than the best solution that excludes a small number of points (i.e., does not group them
and does not pay their assignment costs). Using a natural extension of the algorithms
already described, we can produce a constant-factor approximation to the best clustering
that excludes εn outliers, provided our algorithm is allowed to exclude a slightly higher
(O(1) times εn) number of outliers. The approach used is identical, except that we need to
use the algorithm of Charikar et al. (2001) instead of that of Arya et al. (2001) to cluster
the sample. We discuss this extension in Section 6.

4.1. Notation

Before giving the full description and analysis of the algorithm, we first introduce some
notation.

Definition 1. N is the data set, with n = |N |.

Definition 2. S and T are samples, with s = |S| and t = |T |.
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Definition 3. k is the desired number of medians; K ∗ represents an optimum median set,
and K will represent a candidate set of medians. Here |K | = |K ∗| = k.

Definition 4. ε is such that in some optimum solution every cluster contains at least εn
k

points.

Definition 5. We will use d(·, ·) to denote the distance function. For points x and y, d(x, y)
will denote the distance between x and y. For a point x and a set T of points, we will use
d(x, T ) to denote the distance from x to the set T , meaning miny∈T d(x, y).

Definition 6. f N (K ) represents the cost of the median set K as a clustering of the data
set N . That is, f N (K ) = ∑

x∈N d(x, C(x)), where C(x) is the closest member of K to x .
f S(K ) is the quality of the same median set K when used to cluster the sample S.

4.2. Generation of a good candidate set

We will draw a sample S of s points, by selecting s points uniformly at random, with
replacement, from N , where s is �( k

ε
log k). We solve the k-Median problem to obtain a

g-approximation on this sample using the algorithm2 of Arya et al. (2001). The value of g
depends on the version of Arya’s algorithm we use; by modifying the running time of the
algorithm we can obtain any 3 < g ≤ 5.

Theorem 1. With constant probability we will produce medians K such that f N (K ) is
O(1) f N (K ∗).

Proof: The main idea of the proof is to show that each of the optimum medians has one
of our medians nearby. This claim depends upon various probabilistic events, and requires
the assumption that the optimum clusters are large.

Consider an optimal median set K ∗ = {K ∗
1 , . . . , K ∗

k }. For 1 ≤ i ≤ k, let C∗
i be the cluster

of points about K ∗
i . Let ni = |C∗

i |, so ni ≥ εn
k . Let nS

i be the number of points in the i th
optimal cluster that were also picked by the sample. For all x ∈ N , let C∗(x) denote the
closest median in K ∗ and C(x) the closest median in K . Let Qi = ∑

x∈C∗
i

d(x, C∗(x)) and
Ri = ∑

x∈C∗
i

d(x, C(x)). That is, Qi is the total assignment cost under the optimal centers
K ∗ for the points in C∗

i and Ri is the total assignment cost of the same points to our centers
K . We immediately observe that

∑
1≤i≤k Qi = f N (K ∗) and that

∑
1≤i≤k Ri = f N (K ). Let

QS
i and RS

i represent the same summations as Qi and Ri , but restricted to cover only the
points in the sample: QS

i = ∑
x∈C∗

i ∩S d(x, C∗(x)) and RS
i = ∑

x∈C∗
i ∩S d(x, C(x)).

We observe
∑

1≤i≤k QS
i = f S(K ∗) and

∑
1≤i≤k RS

i = f S(K ). The triangle inequality
ensures a bound of

min
x∈C∗

i ∩S
(d(K ∗

i , x) + d(x, C(x)))
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on the distance from optimum median K ∗
i to the nearest K j . This quantity is at most

1

nS
i

( ∑
x∈C∗

i ∩S

d(x, C∗(x)) + d(x, C(x))

)
= 1

nS
i

(
QS

i + RS
i

)

We can then bound the cost of using our medians to cluster the entire data set N . The
distance from a point x ∈ N to the nearest median in K is bounded by the sum of the
distance to its optimum median and the distance from this optimum median to the nearest
median in K . f N (K ) is therefore at most

∑
x∈N

d(x, C∗(x)) +
k∑

i=1

∑
x∈C∗

i

1

nS
i

(
QS

i + RS
i

) =
∑
x∈N

d(x, C∗(x)) +
k∑

i=1

ni

nS
i

(
QS

i + RS
i

)
.

By Chernoff Bounds, ∀ i Pr[nS
i < Bni (s/n)] < exp(−sni (1 − B)2/(2n)), where 0 <

B < 1 is a chosen parameter that trades the sample size against the approximation factor.
We would like this probability to be smaller than 1

k so that there is a constant probability
that all clusters are well represented in the sample. After some algebra, and making use
of our assumption that ni ≥ εn

k , we can determine that s = 2
(1−B)2

k
ε

log (32k) is sufficient
to guarantee that Pr[∃i ns

i < Bni (s/n)] < 1
32 . The important point is that, with constant

probability, all of the optimum clusters will be well represented in the sample. Provided all
optimum clusters are well represented, we can simplify the earlier expression given for the
quality of clustering using the medians derived from the sample, obtaining

f N (K ) ≤ f N (K ∗) + n

s B

k∑
i=1

(
QS

i + RS
i

) = f N (K ∗) + n

s B
( f S(K ) + f S(K ∗)).

Because the median set K was found by the algorithm of Arya et al., it is guaran-
teed that for all k-element median sets K ′ ⊆ S, f S(K ) ≤ g f S(K ′). Fact 2.1 guaran-
tees, then, that for all k-element median sets K ′ ⊆ N , f S(K ) ≤ 2g f S(K ′). In par-
ticular, f S(K ) ≤ 2g f S(K ∗). It follows that f N (K ) ≤ f N (K ∗) + n

s B (1 + 2g) f S(K ∗).
The final step is estimating f S(K ∗), the cost of K ∗ on the sample. The expected value is
E[ f S(K ∗)] = s

n f N (K ∗). Of course, there is some possibility that our sample has a much
higher cost, but we can apply Markov’s Inequality to bound the probability of this event.
We observe that Pr[ f S(K ∗) ≤ 16

15
s
n f N (K ∗)] ≥ 1

16 . We conclude that Pr[ f N (K ) ≤ 1 +
(1 + 2g) 16

15B f N (K ∗)] ≥ 1 − 1
32 − 15

16 = 1
32 . The required sample size was s = 2

(1−B)2
k
ε

log (32k). If we consider B = 4
5 we will obtain an approximation ratio of 1 + (1 + 2g) 4

3
with probability at least 1

32 , and a sample size of 50 k
ε

log (32k). By modifying the constants
involved, we can make our approximation ratio arbitrarily close to 2 + 2g.

We have shown that a given candidate set, generated as described, has constant probability
of being a good approximation to k-Median. One approach to clustering would be to change
the constants so as to guarantee a high probability of success. We observe, however, that our
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proof depends upon the claim that f S(K ∗) = s
n f N (K ∗). This claim holds in an expected

sense but not with high probability. It might be the case that a small number of points
contribute significantly to the cost of clustering; imagine a set of n

s points which account
for nearly all the cost of the optimum clusters on the set N . Our sample expects to see only
one of these points, but there is reasonably good probability we will see two, thus doubling
the value of f S(K ∗) relative to f N (K ∗). Guaranteeing a good result with high probability
would therefore cost us at least a factor of two in the approximation ratio.

Instead, we will independently generate m candidate sets, where m is a constant. The
probability that at least one of them produces a good approximation tends towards 1−( 31

32 )m .
This process allows us to guarantee with high probability that we can generate a set of
candidates such that one of them is a good approximation to k-Median. That is, if the
candidate sets are K1, . . . , Km , and KBEST is the candidate set with the lowest f N cost, then
with probability at least 1− (31/32)m , f N (KBEST ) ≤ (1+ 4

3 (1+2g)) f B(K ∗). Next we give
a procedure that will identify a good median set from K1, . . . , Km .

4.3. Close estimation of candidate quality

Suppose we are given m sets of candidate medians K1 through Km . We would like to
determine which of these sets minimizes f N (Ki ), in sublinear time. Clearly it is possible to
measure f N (Ki ) exactly for each i , by calculating, for each Ki , the assignment distances
of all n points in N to the medians Ki . This process would take �(nkm) time, however,
defeating the purpose of using a sampling-based algorithm. Instead, we will estimate each
f N (Ki ).

The estimation procedure will be as follows. l independent estimation samples T1, . . . , Tl ,
with |Tj | = t for all 1 ≤ j ≤ l, will be drawn uniformly at random from N . Each of these
samples will consist of t points drawn uniformly at random, with replacement. The number l
and the size of these samples will be discussed shortly. On each of these estimation samples
Tj , for each Ki , f Tj (Ki ) will be computed exactly. For each Ki , the estimated cost f EST (Ki )
will be calculated as min1≤ j≤l ( n

t f Tj (Ki )). The candidate set with minimum f EST will be
returned as the final k-Median solution.

First we will show that KBEST , the candidate set with lowest f N cost, will with high
probability have f EST (KBEST ) ≤ α f N (KBEST ), for some small constant α. It will follow
that with high probability there will be some Ki with a small f EST (Ki ), and therefore that
the median set returned by the algorithm will at least have a low estimated cost. Finally we
will show the soundness of the estimation procedure: that for every candidate set Ki it will
be unlikely that f EST (Ki ) is much lower than f N (Ki ). It will follow that the median set
returned has not only a low estimated cost but also a low actual ( f N ) cost.

We introduce two new parameters α and c. The parameter α trades off the number of sam-
ples against the accuracy of the estimation, while c trades off the number of samples against
the probability of failure. We independently draw l = cα

α−1 samples Tj from N , each of size
t = �( k

ε
log k

ε
). For each median set i , we will compute f EST (Ki ) = min1≤ j≤l ( n

t f Tj (Ki )).
We will show that the medians that minimize f EST produce a good approximation to the
minimum f N .
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Low-estimate property of candidate sets. We will first show that, for any candidate set
K , our estimated cost f EST (K ) is unlikely to be much higher than the actual cost f N (K )
on the whole data set.

Lemma 1. For any candidate set K , if we compute f EST (K ) using cα
α−1 samples (α ≥ 2),

then with probability at least 1 − e−c, f EST (K ) ≤ α f N (K ).

Proof: The proof follows directly from Markov’s Inequality, and the fact that for any
random sample Tj , Pr[ f Tj (K ) > α f N (K )] is at most µ

α f N (K ) , where µ is the expected
value of f Tj (K ). Therefore, this probability is at most t

nα
≤ 1

α
. The probability that f EST (K )

exceeds α f N (K ) is the probability that for all Tj f Tj (K ) > α f N (K ), which, because the
samples were drawn independently, is at most 1

α

cα
α−1 ≤ e−c.

As f N (KBEST ) is with high probability close to f N (K ∗), with high probability f EST (KBEST )
is close to f N (K ∗). Therefore, with high probability some candidate set will have an f EST

close to f N (K ∗).

Soundness of the estimation method. For each candidate median set K we can consider
the ordering of all the points x ∈ N by their assignment distances under K 3. Further,
imagine dividing all the points of N into b = k D

ε
“bins” each containing εn

k D points, where
D ≥ 2 is a constant (see figure 1). The first bin will have the “cheapest” points (i.e., those
with the smallest assignment distances) and the last bin will have the most expensive points.
We will denote by COST(i) the cost of the i th bin, that is, the sum of assignment distances
of points in this bin.

By selecting our sample size to be sufficiently large, we will guarantee that with high
probability, for each median set, each bin is “well-represented” in each estimation sample.
We will then show how to bound the cost f N (K ) in terms of f EST (K ) under the assumption
that all bins are well-represented.

We will set t = 4b
(1−β)2 log (mb cα

α−1 ), which is �( k
ε

log k
ε
). Here β is a parameter trading

off between the sample size and the accuracy of the estimation method, m is the number of
samples, b = k D

ε
is the number of bins, and α and c are the parameters defining the number

of samples.

Figure 1. Ordering of points by assignment distances under a candidate median set K .
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Lemma 2. With high probability, for every triple of (bin, median set, sample), we have
at least βt

b points from this bin in the sample.

Proof: The expected number of points is t
b since points from N are equally divided among

the bins. Using Chernoff Bounds, the probability that a particular bin for a particular median
set has at most βt/b points in a particular sample is at most e

−t(1−β)2

2b . Substituting the value
of t yields a probability of at most (mb cα

α−1 )−2. There are m median sets, b bins, and cα
α−1

samples, so the probability that there exists a bad triple remains very small (and can be
reduced by increasing the constants).

Lemma 3. With high probability, for all median sets K , f EST (K ) ≥ β
∑b−1

i=1 COST(i).

Proof: Let us denote by dmax
i the assignment distance of the last point, i.e., the point with

largest assignment distance, in bin i . Let dmin
i be the assignment distance of the first point

in bin i . (See figure 1.)
Recall that

f EST (K ) = min
1≤ j≤l

(
n

t
f Tj (K )

)
,

where l = cα/(α − 1) is the number of estimation samples, and Tj is the j th estimation
sample. By Lemma 2, with high probability, all Tj have at least βt/b points that fall into bin
i for median set K , and that will therefore contribute at least dmin

i apiece to f Tj (K ). There-
fore, with high probability, ∀ j 1 ≤ j ≤ l f Tj (K ) ≥ ∑b

i=1
βb
t dmin

i , and so, since f EST (K )
= min1≤ j≤l ( n

t f Tj (K )), we have

f EST (K ) ≥ n

t

b∑
i=1

βt

b
dmin

i .

n
t

∑b
i=1

βt
b dmin

i ≥ βn
b

∑b−1
i=1 dmax

i , since, for all 1 ≤ i ≤ b, dmin
i ≥ dmax

i−1 . βn
b

∑b−1
i=1 dmax

i ≥
β

∑b−1
i=1 COST(i), because COST(i) is the sum of assignment costs of the n/b members of bin

i , for medians K , and these costs are each at most dmax
i .

Lemma 4. For all candidate median sets K , the cost of the most expensive bin, COST(b),
is at most f N (K ∗) + 1

D−1

∑b−1
i=1 COST(i).

Proof: We will show an upper bound on the cost of the most expensive bin, by showing
a way of “moving” points in this bin to their centers.4 We will call a point “bad” if it is
in the most expensive bin, and we will call it “good” if it is not in any of the D − 1 most
expensive bins. Figure 2 shows the bins re-labelled as to whether they contain good, bad,
or non-good points.

Consider the optimal clusters C∗
1 , C∗

2 , . . . , C∗
k (those induced by the optimal medians

K ∗). Some of these contain bad points. We will imagine moving each bad point first to
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Figure 2. Good, bad, and non-good bins.

its optimal median and then to the location of a good point in the same optimal cluster, in
such a way that each bad point has a unique new (good) location and so that the sum of
new assignment distances of the (formerly) bad points is bounded. For each optimal cluster
containing one or more bad points, we can find for each bad point a unique good point in
the same cluster (because each optimal cluster contains at least εn

k points, and there are at
most (D − 1) εn

k D = D−1
D

εn
k points in N which are not good). If we move each bad point to

the location of a good point in the same optimal cluster, then we know that the sum of the
movement distances is at most f N (K ∗). This bound holds because each bad point is moved
at most d1 +d2 where d1 is its own assignment distance under the optimal centers, and d2 is
the assignment distance of a different point in that optimal cluster; adding up a d1 and a d2

for each bad point, we get a sum of only some of the optimal-median assignment distances,
which is then at most f N (K ∗). Figure 3 illustrates this process.

Now that the bad points are all at good locations, we need to show that the points at
these good locations can be assigned to medians in K for a total assignment cost of at

Figure 3. Assignment distances of bad points.
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most 1
D−1

∑b
i=1(COST(i)); the lemma will follow. Recall that each bad point was assigned

to a unique good point, and so, in the worst case, the bad points have been moved so that
they occupy exactly the locations of the points from bin b − D + 1 (the “worst” good
bin). In other words, the total remaining distance that the bad points need to travel from
their new locations to medians in K is at most COST(b − D + 1). Since the points were
arranged in bins by non-decreasing assignment distances, bin b − D + 1 accounts for at
most a 1/(D − 1) fraction of the costs of the D − 1 bins from b − D + 1 through b − 1.
Therefore, COST(b − D + 1) ≤ 1

D−1

∑b−1
i=b−D+1 COST(i) ≤ 1

D−1

∑b−1
i=1 COST(i). The lemma

follows.

Theorem 2. With high probability, f N (K ) is at most f N (K ∗) + 1
β

D
D−1 f EST (K ).

Proof: This follows directly from Lemmas 3 and 4.

By adjusting the constants, we can cause the above expression to converge so that f N (K )
is bounded by an expression arbitrarily close to f N (K ∗) + f EST (K ). Combining this result
with Lemma 1, we have f N (K ) − f N (K ∗) ≤ f EST (K ) ≤ α f N (K ).

4.4. Combining generation and estimation

We will restate the algorithm that we have built up over the last several sections, and state and
prove its approximation and probability guarantees. The k-Median algorithm is as follows:

Algorithm Sample-k-Median

1. For i = 1 to m, draw a sample Si of s = 50 k
ε

log (32k) points uniformly at random, with
replacement, from N . m is a constant.

2. For i = 1 to m, solve k-Median to a g-approximation on Si , using the algorithm of Arya
et al., to produce a median set Ki .

3. For j = 1 to l = cα
α−1 , draw a sample Tj of t = 4b

(1−β)2 log (mb cα
α−1 ) points uniformly at

random, with replacement, from N . α ≥ 2, β < 1, and c > 1 are constants; b is k D/ε

for constant D ≥ 2.
4. For each pair (Ki , Tj ), calculate f Tj (Ki ), and for each Ki let f EST (Ki ) = min1≤ j≤l

( f Tj (Ki )).
5. Return Ki such that f EST (Ki ) is minimum, as a k-Median solution for N .

The running time of the algorithm is equal to the time required for sampling plus the time
required for clustering and estimating clustering cost. The amount of time spent on sampling
is O( k

ε
log k

ε
). Since the algorithm of Arya et al. clusters n points in O(k(nk)p+1 log n) time,

the time spent clustering is O(k( k2

ε
log k)p+1 log ( k

ε
log k)). If A is a set of size a, it takes

O(ak) time to estimate f A(K ), so the amount of time spent estimating the costs of the
median sets is O( k2

ε
log k

ε
). The overall running time, then, is asymptotically equal to the

time spent clustering the samples S1 through Sm , or

O

(
k

(
k2

ε
log

(
m

cα

α − 1

k

ε

))p+1

log

(
k

ε
log

(
m

cα

α − 1

k

ε

)))
.
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Theorem 3. Given an instance of k-Median, a data set N of n points with metric dist,
and an integer k, with optimal solution K ∗ having all clusters of size at least εn

k , we can
with high probability produce a (9 + O( 1

p ))-approximation (where p ∈ {1, . . . , k}), in
running time O(k( k2

ε
log (m cα

α−1
k
ε
))p+1 log ( k

ε
log (m cα

α−1
k
ε
))). The probability of success

is at least 1 − ( 31
32 )m − e−c − (mb cα

α−1 )−2.

Proof: We first generate a large number of candidate median sets. By Theorem 1 the
approximation ratio of the best candidate set is with high probability bounded above by a
quantity arbitrarily close to 2+2g. We then perform the testing step, selecting a candidate K
whose estimated cost f EST (K ) is (by Theorem 2) with high probability between f N (K ) −
f N (K ∗) and α f N (K ). Therefore, the true approximation factor of the final medians is
1+α(2+2g), with high probability. g is the approximation ratio of the k-Median algorithm
used to find the candidates; the algorithm of Arya et al. yields g = 3 + 2/p.

The probability of failure is at most the sum of the failure probabilities, which are ( 31
32 )m

(the probability that no median set will have a low enough cost on N ); e−c (the probability
that the candidate median set with the lowest cost on N will not have a low enough estimated
cost); and (mb cα

α−1 )−2 (the probability that the candidate set with the lowest estimated cost
will have a high cost on N ).

The theorem follows.

5. A simpler algorithm

In this section we will give a simpler algorithm, involving just a single random sample
of size O( k

ε
ln k

ε
), and a single invocation of a k-Median approximation algorithm, that,

with high probability finds an approximately optimal k-Median solution in the case that the
optimal clusters are not too small.

We again have a set N of n points, and a parameter k, so that, in some optimal k-Median
clustering of N , each cluster contains at least εn

k points. We will use as a subroutine the
algorithm of Charikar et al. (2001) that will produce a (1 − κ1δ)-solution of cost at most κ2

times the optimal (1−δ)-solution cost (where κ1 and κ2 are constants). Here for 0 ≤ γ ≤ 1,
a (1 − γ )-solution K is a set of k medians that leave γ n points unassigned. We will ignore
the γ n members of N farthest from K in evaluating the cost of K as a (1 − γ )-solution; in
particular, we will say that the (1 − γ )-cost of K on N , which we will denote f N

1−γ (K ), is
the sum of the assignment distances of the (1 − γ )n members of N that are closest to the
medians K .

We will pick a constant κ1, and let δ = (0.375ε)/((κ1 + 0.3)k), δ′ = κ1δ, and D be a
constant no less than (κ1 + 0.3)/(0.3).

We will show that, with probability at least 1− 1
k2 , the following algorithm, OneSample,

will produce a median set K with f N (K ) ≤ (1 + (1+κ2)D
0.3(D−1) ) f N (K ∗).

Algorithm OneSample

1. Draw a sample S of s = ck D
ε

ln ( k D
ε

) points uniformly at random, with replacement, from
N . (The constant c will be specified shortly.)
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2. Using the algorithm of Charikar et al., find median set K = {K1, . . . , Kk} whose (1−δ′)-
cost on S is at most κ2 times the cost of the best (1 − δ)-solution for S.

3. Return K .

The running time of this algorithm is the amount of time spent computing the clustering,
which, since the algorithm of Charikar et al. runs in O(n2 log n log M) time on a diameter-M
point set of n points, is equal to

O

((
k

ε
log

k

ε

)2

log

(
k

ε
log

k

ε

)
log M

)
.

We claim that OneSample will, with high probability, produce an approximately optimal
clustering of N . The following definitions will facilitate our proof:

Definition 7. As before, let K ∗ = {K ∗
1 , . . . , K ∗

k } denote some optimal set of medians for
N ; for each 1 ≤ l ≤ k, let C∗

l again denote the members of N assigned to K ∗
l , and let |C∗

l |
= nl .

Definition 8. Given a point set X , a median set Y for X , and an integer z < |X | (for
simplicity we assume z divides |X |), let “bins” W1, . . . , Wz ⊆ X be defined as follows. The
elements of X , in increasing order of d(·, Y ), are assigned to bins in the order W1, . . . , Wz ,
so that each bin receives |X |/z points. We will call the bins W1, . . . , Wz a z-bin division of
X with respect to Y .

Definition 9. Let B1, . . . , Bb be a b-bin division of N with respect to K ∗, where b = k D
ε

.

Definition 10. Let Ĉl = C∗
l \ Bb; let n̂l = Ĉl ; let S′ = S \ Bb.

Fact 5.1. n̂l ≥ D−1
D nl .

Proof: Recall that nl = |C∗
l |, and n̂l = |Ĉl |. By the definitions of Ĉl and C∗

l , n̂l ≥ nl −n/b
= nl − (nε)/(k D) ≥ nl − nl/D = D−1

D nl .

Lemma 5. If s ≥ max {35b ln (4k2b), 35b
D−1 ln (4k3)}, then with probability at least 1− k−2

the following are both true:
1. (Condition I) For all 1 ≤ i ≤ b, |S ∩ Bi | ∈ [ 0.75s

b , 1.25s
b ].

2. (Condition II) For all 1 ≤ l ≤ k, |S′ ∩ C∗
l | = |S ∩ Ĉl | ∈ [ 0.75n̂l s

n , 1.25n̂l s
n ].

Proof: The proof follows by a straightforward application of Chernoff Bounds. If s ≥
35b ln (4k2b), it follows that for a particular bin Bi the probability that |S ∩ Bi | < 0.75s

b is
at most 1

4k2b , and the probability that |S ∩ Bi | > 1.25s
b is also at most 1

4k2b . Therefore, the
probability that there exists a bin Bi with |S ∩ Bi | < 0.75s

b is at most 1
4k2 , and the probability

that there exists a bin Bi with |S ∩ Bi | > 1.25s
b is also at most 1

4k2 , so the probability that
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there exists a bin with |S ∩ Bi | �∈ [ 0.75s
b , 1.25s

b ] is at most 1
2k2 . It can similarly be shown,

using Fact 5.1, that if s ≥ 35b
D−1 ln (4k3) the probability that there exists 1 ≤ l ≤ k for which

|S ∩ Ĉl | �∈ [ 0.75n̂l s
n , 1.25n̂l s

n ] is at most 1
2k2 . The lemma follows.

Therefore, we will assume from here on that both Conditions I and II hold. Now we can
prove an upper bound on f N (K ), the cost of the medians output by OneSample.

Lemma 6.

f N (K ) ≤ f N (K ∗) + nD

0.75s(D − 1)
( f S′

(K ∗) + f S′
(K )).

Proof: As before, we observe that the cost of sending all members of N to the medians K
is the cost of moving each point to the closest member of K ∗, and then moving each point
from its optimal median to the nearest member of K . That is,

f N (K ) ≤ f N (K ∗) +
k∑

l=1

nld(K ∗
l , K ).

Using an argument similar to the one from the proof of Theorem 1, we see that

k∑
l=1

nld(K ∗
l , K ) ≤

k∑
l=1


 nl

|C∗
l ∩ S′|

∑
x∈C∗

l ∩S′
(d(K ∗

l , x) + d(x, K ))




≤
k∑

l=1


 nln

0.75n̂l s

∑
x∈C∗

l ∩S′
(d(K ∗

l , x) + d(x, K ))




≤ nD

0.75s(D − 1)
( f S′

(K ∗) + f S′
(K ))

The second inequality follows from Condition II, and the third from Fact 5.1.

Fact 5.2. f S′
(K ∗) ≤ 1.25s

n f N (K ∗).

Proof: Recall that S′ contains no points from the highest bin Bb, and that (by Condition I)
it contains at most 1.25s/b points from each bin Bi with i < b. By arguments similar to
those in the proof of Lemma 3, the result follows.

Lemma 7. f S′
(K ) ≤ f S′

(K ∗) + 2κ2 f S
1−δ(K ∗).

Proof: Let P1, . . . , Pb′ be a b′-bin division of S with respect to K , where b′ = 1/δ′. Note
that by Condition II, each cluster C∗

l contains at least 0.75n̂l s
n points from S′.
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We claim that 2s/b′ ≤ 0.75n̂l s
n , or, equivalently, that 0.375κ1ε

(κ1+0.3)k = δ′ ≤ 0.375n̂l
n . It is then

sufficient to show that εn
k

κ1
(κ1+0.3) ≤ n̂l . Note that by definition of D, the assumption that

nl ≥ εn/k, and Fact 5.1, εn
k

κ1
(κ1+0.3) ≤ εn

k
D−1

D ≤ nl
D−1

D ≤ n̂l . Therefore, each cluster C∗
l

contains at least 2s/b′ points from S′. By definition of the b′-bin division, S′ contains at
most s/b′ points from S′ ∩ Pb, and so we can map each x ∈ S′ ∩ Pb to a unique g(x) in
S′ \ Pb, that is in the same optimal cluster C∗

l as x . We can then account for the cost of
f S′∩Pb′ (K ) as the cost of moving each x ∈ S′ ∩ Pb to the closest member of K ∗, then to
g(x), and then to the closest member of K to g(x). Then we have

f S′∩Pb′ (K ) ≤ f S′∩Pb′ (K ∗) + f S′\Pb′ (K ∗) + f S′\Pb′ (K )

= f S′
(K ∗) + f S′\Pb′ (K )

f S′
(K ) = f S′∩Pb′ (K ) + f S′\Pb′ (K )

≤ f S′
(K ∗) + 2 f S′\Pb′ (K )

= f S′
(K ∗) + 2 f S

1−δ′ (K )

≤ f S′
(K ∗) + 2κ2 f S

1−δ(K ∗)

The last inequality follows from the use of the algorithm of Charikar et al., which guarantees
a (1 − δ′) solution for S whose cost is at most κ2 times the cost of the best (1 − δ) solution,
which in turn cannot exceed f S

1−δ(K ∗).

Theorem 4. f N (K ) ≤ (1 + (1+κ2)D
0.3(D−1) ) f N (K ∗).

Proof: First we show that |Bb ∩ S| ≤ δs, i.e., that the top bin Bb of N contains at
most δs members of S. First, by Condition I, |Bb| ≤ 1.25s/b, so it suffices to show
that 1.25/b ≤ δ. Recall that δ = 0.375ε

(κ1+0.3)k , which, by definition of b, is 0.375D
(κ1+0.3)b ; by

choice of D this quantity is at least 0.375/(0.3b) = 1.25/b. Therefore, excluding the
δs members of S that are furthest from K ∗ means excluding all the members of Bb.
Since by Condition I S contains at most 1.25s/b points from each bin Bi , we can use
the same arguments from the proofs of Lemma 3 and Fact 5.2 to show that f1−δ(K ∗) ≤
1.25s

n f N (K ∗). Combining this bound with the results of Lemma 6, Fact 5.2, and Lemma 7, we
get:

f N (K ) ≤ f N (K ∗) + nD

0.75s(D − 1)
( f S′

(K ∗) + f S′
(K ))

≤ f N (K ∗) + nD

0.75s(D − 1)

(
f S′

(K ∗) + f S′
(K ∗) + 2κ2 f S

1−δ(K ∗)
)

≤ f N (K ∗) + nD

0.75s(D − 1)

(
2 f S′

(K ∗) + 2.5κ2s

n
f N (K ∗)

)

≤ f N (K ∗) + nD

0.75s(D − 1)

(
2.5s

n
f N (K ∗) + 2.5κ2s

n
f N (K ∗)

)
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≤ f N (K ∗) + D

0.75s(D − 1)
(1 + κ2)2.5s f N (K ∗)

=
(

1 + (1 + κ2)D

0.3(D − 1)

)
f N (K ∗)

6. Clustering with outliers

Instead of assuming all the optimum clusters are large, we can instead allow a clustering
that discards some fraction φ of the demand points. These points are considered outliers
(or noise) and their distances are not included in the cost of the solution. Recall that if K
is a set of k medians for a set N of n points, we call the cost of K on N , not counting
the φn highest assignment distances, the (1 − φ)-cost of the solution K ; as before, this
cost will be denoted f N

1−φ(K ). For a point set N , a set of medians that are considered in
terms of their (1 − φ)-cost on N will be called a (1 − φ)-solution for N ; for simplicity, the
(1 −φ)-cost of a solution already designated as a (1 −φ)-solution will simply be called the
cost of the solution (unless this term is ambiguous). Finally, a median set K ∗ is an optimal
(1 − φ)-solution if it is the set of medians with the lowest (1 − φ)-cost on N .

As we will show, given a set N of n points for which the median set K ∗ = {K ∗
1 , . . . , K ∗

k }
is an optimal (1 − φ)-solution, with high probability the following algorithm OutlierKM
will produce a median set K whose (1−αφ)-cost on N (for constant α) is at most a constant
times f N

1−φ(K ). In the following algorithm, κ1 and κ2 are constants.

Algorithm OutlierKM

1. Draw a sample S of s = max ( 35
φ

ln 4k2

φ
, 32k

φ
ln 4k3) points independently and uniformly

at random with replacement from N .
2. Using the algorithm of Charikar et al. (2001), find a (1 − 2.5κ1φ)-solution K with

f S
1−2.5κ1φ

(K ) ≤ κ2 f S
1−2.5φ(K̂ ), where K̂ is the optimal (1 − 2.5φ)-solution for S.

3. Return K as a (1 − (9 + 7κ1)φ)-solution for N .

The running time of OutlierKM is the amount of time spent computing the clustering.
This is equal to

O

((
k

φ

[
log k3 + log

k2

φ

])2

log

(
k

φ

[
log k3 + log

k2

φ

])
log M

)
.

We will show that with probability at least 1 − 3
4k2 ,

f N
1−(9+7κ1)φ(K ) ≤

[
1 + 10

3
(1 + κ2)

]
f N
1−φ(K ∗).

Definition 11. Let B1, . . . , Bb be the b-bin division (where b = 1/φ) of N with respect to
K ∗.
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Definition 12. Let the median set K ∗ = {K ∗
1 , . . . , K ∗

k } be the optimal (1 −φ)-solution for
N ; for each l with 1 ≤ l ≤ k, let C∗

l denote the set of points of N assigned to K ∗
l (therefore,

none of the φn points left unassigned by the (1 − φ)-solution K ∗ is a member of a cluster
C∗

l ). For 1 ≤ l ≤ k, let nl = |C∗
l |.

Definition 13. For 1 ≤ l ≤ k, call C∗
l large if |C∗

l | ≥ φn/k; otherwise call C∗
l small. Note

that the small clusters together comprise at most φn points.

Definition 14. Let A denote the subset of S that is assigned under both the following
solutions: K ∗ as a (1 − 2.5φ)-solution for S, and K as a (1 − 2.5κ1φ)-solution for S. That
is, x ∈ A just if x ∈ S, x is among the (1 − 2.5φ)s members of S closest to the median set
K ∗, and x is among the (1 − 2.5κ1φ)s members of S to the median set K . |A| is therefore
at least (1 − 2.5(1 + κ1)φ)s.

Definition 15. If C∗
l is a large cluster with |C∗

l ∩ A| ≥ 1
2 |C∗

l ∩S|, we will say C∗
l is covered.

If a large cluster C∗
l is not covered, we will say C∗

l is lost. Without loss of generality, let
C∗

1 , . . . , C∗
k2

denote the covered clusters, and C∗
k2+1, . . . , C∗

k denote the lost and the small
clusters.

Proof overview. Lemma 8 will show that the sample size s is large enough to guarantee
that S is a “good representation” of N , in that it contains approximately the expected number
of representatives from each large cluster and from each bin Bi . Lemma 9 will show that
f N
1−(9+7κ1)φ(K ) ≤ f N ′

(K ), where N ′ is a conveniently-defined subset of N . From then on,
we will prove upper bounds on f N ′

(K ) rather than on f N
1−(9+7κ1)φ(K ). In Lemma 10 we will

bound f N ′
(K ) in terms of f N

1−φ(K ∗), f S
1−2.5φ(K ∗), and f S

1−2.5κ1φ
(K ∗) by showing that each

member of K ∗ is close to some member of K . With Lemma 11 we will observe that the use
of the algorithm of Charikar et al. in Step 2 guarantees that f S

1−2.5κ1φ
(K ) ≤ κ2 f S

1−2.5φ(K ∗),
so that the bound given in Lemma 10 can be re-written in terms of just f N

1−φ(K ∗) and
f S
1−2.5φ(K ∗). In Fact 6.1 we will bound f S

1−2.5φ(K ∗) in terms of f N
1−φ(K ∗) by using the

assumption that the members of S are well-distributed among the bins B1, . . . , Bb. Finally,
in Theorem 5 we will show that

f N
1−(9+7κ1)φ(K ) ≤

[
1 + 10

3
(1 + κ2)

]
f N
1−φ(K ∗)

by combining all the bounds.

Lemma 8. With probability at least 1 − 3
4k2 , the following conditions both hold:

Condition 6.1.. ∀ i, 1 ≤ i ≤ b, |S ∩ Bi | ∈ [0.75φs, 1.25φs].

Condition 6.2.. ∀ l, 1 ≤ l ≤ k with |C∗
l | ≥ φn/k, |S ∩ C∗

l | ≥ 0.75nls/n (recall nl =
|C∗

l |).
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Proof: A straightforward application of Chernoff Bounds shows that Condition 6.1 holds
since s ≥ 35

φ
ln 4k2

φ
, and Condition 6.2 holds since s ≥ 32k

φ
ln 4k3.

We will assume for Lemmas 9 through 11 and Fact 6.1 that Conditions 6.1 and 6.2 both
hold.

Lemma 9. Let N ′ = N \ (Xex ∪ Xsm ∪ Xl), where Xex is the set of the φn members of
N that are farthest from K ∗ (i.e., that are excluded by the (1 − φ)-solution K ∗); Xsm is the
union of all small clusters; and Xl is the union of all lost clusters. Then f N

1−(9+7κ1)φ(K ) ≤
f N ′

(K ).

Proof: |A| ≥ (1 − 2.5(1 + κ1)φ)s, so |S \ A| ≤ 2.5(1 + κ1)φs. Recall that Xl is the union
of all lost clusters, and that a cluster C∗

l is lost if it is a large cluster such that fewer than half
of its sample representatives (the points in C∗

l ∩ S) are in A. Therefore for each lost cluster
C∗

l , more than half the points in C∗
l ∩ S were in S \ A, and so |C∗

l ∩ S| ≤ 2|(C∗
l ∩ S) \ A|.

Since Xl is the union of lost clusters, it follows that |Xl ∩ S| ≤ 2|Xl ∩ S \ A| ≤ 2|S \ A| ≤
2 · 2.5(1 + κ1)φs = 5(1 + κ1)φs. By Condition 6.2, each large C∗

l has |C∗
l ∩ S| ≥ 0.75 s

n nl .
Thus, we can put a bound on the number of points nl in a large cluster C∗

l , in terms of
the number of representatives it has in S; in particular, nl ≤ 4

3
n
s |C∗

l ∩ S|. Therefore, for
Xl , which is the union of several large clusters (namely, the lost clusters), we have Xl ≤
20
3 (1 + κ1)φn.

It follows that, since Xex and Xsm each contain at most φn points, |N ′| ≥ (1− (2+ 20
3 (1+

κ1))φ)n.
Since N ′ includes a particular set of (1− (2+ 20

3 (1+κ1))φ)n > (1− (9+7κ1)φ)n points,
and f N

1−(9+7κ1)φ(K ) counts the assignment distances of only the closest (1 − (9 + 7κ1)φ)n
points to K , it follows that f N ′

(K ) is an upper bound on f N
1−(9+7κ1)φ(K ).

Therefore, it suffices to prove the appropriate upper bound for f N ′
(K ), and so we need

only consider the covered clusters in what follows.

Lemma 10.

f N ′
(K ) ≤ f N

1−φ(K ∗) + 8

3

n

s

[
f S
1−2.5φ(K ∗) + f S

1−2.5κ1φ
(K )

]

Proof: First, we observe, as in the proof of Lemma 6, that the cost of assigning each
member x of N ′ to the nearest median in K is at most the cost of moving x to the nearest
median in K ∗, plus the further cost of moving x from there to the nearest median in K .
The cost of moving every point x ∈ N ′ to the median nearest it in K ∗ is f N ′

(K ∗), which
is at most f N

1−φ(K ∗) since N ′ excludes the φn members of N furthest from K ∗. For each
(covered) C∗

l , the further cost of moving all the points from K ∗
l to the nearest member of

K is at most nl times the distance from K ∗
l to the nearest member of K . Therefore f N ′

(K )
≤ f N ′

(K ∗) + ∑k2
l=1 nld(K ∗

l , K ).
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For a fixed l with C∗
l covered,

d(K ∗
l , K ) ≤ 1

|C∗
l ∩ A|

∑
x∈C∗

l ∩A

[d(x, K ∗
l ) + d(x, C(x))],

where C(x) is the member of K nearest to x . This quantity is at most 2
|C∗

l ∩S|
∑

x∈C∗
l ∩A

[d(x, K ∗
l ) + d(x, C(x))], since Cl is covered.

Define Ql = ∑
x∈C∗

l ∩A d(x, K ∗
l ) and Rl = ∑

x∈C∗
l ∩A d(x, C(x)). Then, combining these

definitions with the above bounds, we have f N ′
(K ) ≤ f N ′

(K ∗) + ∑k2
l=1

2nl
|C∗

l ∩S| (Ql + Rl).
Recall that, by Condition 6.2, for all large C∗

l , |C∗
l ∩ S| ≥ 0.75 nl s

n , which implies nl
|C∗

l ∩S| ≤
4
3

n
s . f N ′

(K ) ≤ f N ′
(K ∗) + 8

3
n
s

∑k2
l=1 (Ql + Rl).

Note that
∑k2

l=1 Ql is the sum of d(x, K ∗), over all x ∈ A that are members of covered
clusters. This sum is therefore no more than

∑
x∈A d(x, K ∗), which is at most f S

1−2.5φ(K ∗),
since all members of A are members of S assigned by the (1 − 2.5φ)-solution K ∗ for S. By
similar arguments it is possible to show that

∑k2
l=1 Rl ≤ f S

1−2.5κ1φ
(K ). We can conclude that

f N ′
(K ) ≤ f N

1−φ(K ∗) + 8

3

n

s

[
f S
1−2.5φ(K ∗) + f S

1−2.5κ1φ
(K )

]

Lemma 11.

f S
1−2.5κ1φ

(K ) ≤ κ2 f S
1−2.5φ(K ∗)

Proof: Let K̂ denote the optimal (1 − 2.5φ)-solution for S. Then, as guaranteed by the
algorithm of Charikar et al. (2001), f1−2.5κ1φ(K ) ≤ κ2 f1−2.5φ(K̂ ), but, since K ∗ is not
necessarily the optimal (1 − 2.5φ)-solution for S, we have f1−2.5φ(K̂ ) ≤ f1−2.5φ(K ∗), and
the lemma follows.

Fact 6.1.

f S
1−2.5φ(K ∗) ≤ 1.25

s

n
f N
1−φ(K ∗)

Proof: By Condition 6.1, excluding the 2.5φs members of S that are furthest from K ∗

excludes all of Bb−1 ∪ Bb, since no bin contributes more than 1.25φs points to S. Using
the same arguments as those used in the proofs of Lemma 3 and Fact 5.2, we can show
that the cost of assigning to K ∗ the (1 − 2.5φ)s members of S closest to K ∗, is at most
1.25 s

n f N
1−φ(K ∗).

Theorem 5. With probability at least 1 − 3
4k2 ,

f N
1−(9+7κ1)φ(K ) ≤

[
1 + 10

3
(1 + κ2)

]
f N
1−φ(K ∗)
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Proof: The theorem follows immediately from Lemmas 8 through 11 and Fact 6.1.

7. Lower bounds

The following example illustrates the trade-off between sample size and the number of
points that must be excluded from the clustering (or the minimum cluster size). Assume we
are trying to cluster using a sample of size s, and that we want a solution whose (1− δ)-cost
is competitive with the cost of the optimal (1−δ′)-solution. (We will see how δ is a function
of s, but it certainly must be at least δ′.)

Consider the class of data sets consisting of:

– k − 1 “small” clusters, each consisting of n/s co-located points.
– δ′n singleton points.
– One “big” cluster of n − (k−1)n

s − δ′n points that are all co-located.

Assume all inter-point distances are infinite (or very large), except distances between pairs
of co-located points, which are zero.

Then the optimal (1 − δ′)-cost is 0. We will say our sample “misses” a cluster if the
cluster has no members in the sample. For each small cluster that is missed, our solution
will have to exclude an additional n/s points in order to have cost competitive with the best
(1 − δ′)-cost.

We expect each small cluster to contribute one point to the sample. Therefore, each cluster
has constant probability of being missed, and so we expect the sample to miss �(k) small
clusters. Even if we repeat our sampling a constant number of times, it is still likely that
every sample will miss �(k) small clusters.

We conclude that either δ must be at least δ′ + �( k
s ), or our optimum solution must

disallow clusters of size O( n
s ) or smaller.

Our upper bounds match these lower bounds to within a factor of �(log k
ε
). This factor

ensures that clusters are represented in (roughly) equal proportion; this condition is required
for our analysis and is naturally somewhat stronger than the lower bound condition that
each cluster have at least one representative in the sample. It is straightforward to extend
our results to consider samples whose size depends on n; for example if we use samples of
size �(

√
n log n), we can cluster a data set in which the optimum solution has no cluster of

size smaller than
√

n.
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Notes

1. The �(nk) running-time lower bound given by Mettu and Plaxton (2002) reflects this problem, as well.
2. We could reduce running time to get a larger approximation ratio using the algorithm of Guha et al. (2000)

instead.
3. This ordering and division into bins are merely analytical tools in this proof, and are not computed by the

algorithm.
4. The idea of “moving” points is only a tool for analyzing the assignment distances: if there is a path over which

a point x can travel to its center C(x), then the length of this path is certainly an upper bound on the assignment
distance of x .
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