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Abstract
This paper introduces ICET, a new algorithm for cost-sensitive classification. ICET

uses a genetic algorithm to evolve a population of biases for a decision tree induction algo-
rithm. The fitness function of the genetic algorithm is the average cost of classification
when using the decision tree, including both the costs of tests (features, measurements) and
the costs of classification errors. ICET is compared here with three other algorithms for
cost-sensitive classification — EG2, CS-ID3, and IDX — and also with C4.5, which clas-
sifies without regard to cost. The five algorithms are evaluated empirically on five real-
world medical datasets. Three sets of experiments are performed. The first set examines the
baseline performance of the five algorithms on the five datasets and establishes that ICET
performs significantly better than its competitors. The second set tests the robustness of
ICET under a variety of conditions and shows that ICET maintains its advantage. The third
set looks at ICET’s search in bias space and discovers a way to improve the search.

1. Introduction

The prototypical example of the problem of cost-sensitive classification is medical diagno-
sis, where a doctor would like to balance the costs of various possible medical tests with the
expected benefits of the tests for the patient. There are several aspects to this problem: When
does the benefit of a test, in terms of more accurate diagnosis, justify the cost of the test?
When is it time to stop testing and make a commitment to a particular diagnosis? How much
time should be spent pondering these issues? Does an extensive examination of the various
possible sequences of tests yield a significant improvement over a simpler, heuristic choice
of tests? These are some of the questions investigated here.

The words “cost”, “expense”, and “benefit” are used in this paper in the broadest sense,
to include factors such as quality of life, in addition to economic or monetary cost. Cost is
domain-specific and is quantified in arbitrary units. It is assumed here that the costs of tests
are measured in the same units as the benefits of correct classification. Benefit is treated as
negative cost.

This paper introduces a new algorithm for cost-sensitive classification, called ICET
(Inexpensive Classification with Expensive Tests — pronounced “iced tea”). ICET uses a
genetic algorithm (Grefenstette, 1986) to evolve a population of biases for a decision tree
induction algorithm (a modified version of C4.5, Quinlan, 1992). The fitness function of the
genetic algorithm is the average cost of classification when using the decision tree, including
both the costs of tests (features, measurements) and the costs of classification errors. ICET
has the following features: (1) It is sensitive to test costs. (2) It is sensitive to classification
error costs. (3) It combines a greedy search heuristic with a genetic search algorithm. (4) It
can handle conditional costs, where the cost of one test is conditional on whether a second
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test has been selected yet. (5) It distinguishes tests with immediate results from tests with
delayed results.

The problem of cost-sensitive classification arises frequently. It is a problem in medical
diagnosis (Núñez, 1988, 1991), robotics (Tan & Schlimmer, 1989, 1990; Tan, 1993), indus-
trial production processes (Verdenius, 1991), communication network troubleshooting
(Lirov & Yue, 1991), machinery diagnosis (where the main cost is skilled labor), automated
testing of electronic equipment (where the main cost is time), and many other areas.

There are several machine learning algorithms that consider the costs of tests, such as
EG2 (Núñez, 1988, 1991), CS-ID3 (Tan & Schlimmer, 1989, 1990; Tan, 1993), and IDX
(Norton, 1989). There are also several algorithms that consider the costs of classification
errors (Breimanet al., 1984; Friedman & Stuetzle, 1981; Hermanset al., 1974; Gordon &
Perlis, 1989; Pazzaniet al., 1994; Provost, 1994; Provost & Buchanan, in press; Knollet al.,
1994). However, there is very little work that considers both costs together.

There are good reasons for considering both the costs of tests and the costs of classifica-
tion errors. An agent cannot rationally determine whether a test should be performed without
knowing the costs of correct and incorrect classification. An agent must balance the cost of
each test with the contribution of the test to accurate classification. The agent must also con-
sider when further testing is not economically justified. It often happens that the benefits of
further testing are not worth the costs of the tests. This means that a cost must be assigned to
both the tests and the classification errors.

Another limitation of many existing cost-sensitive classification algorithms (EG2, CS-
ID3) is that they usegreedy heuristics, which select at each step whatever test contributes
most to accuracy and least to cost. A more sophisticated approach would evaluate the inter-
actions among tests in a sequence of tests. A test that appears useful considered in isolation,
using a greedy heuristic, may not appear as useful when considered in combination with
other tests. Past work has demonstrated that more sophisticated algorithms can have superior
performance (Tchenget al., 1989; Ragavan & Rendell, 1993; Norton, 1989; Schaffer, 1993;
Rymon, 1993; Seshu, 1989; Provost, 1994; Provost & Buchanan, in press).

Section 2 discusses why a decision tree is the natural form of knowledge representation
for classification with expensive tests and how we measure the average cost of classification
of a decision tree. Section 3 introduces the five algorithms that we examine here, C4.5
(Quinlan, 1992), EG2 (Núñez, 1991), CS-ID3 (Tan & Schlimmer, 1989, 1990; Tan, 1993),
IDX (Norton, 1989), and ICET. The five algorithms are evaluated empirically on five real-
world medical datasets. The datasets are discussed in detail in Appendix A. Section 4 pre-
sents three sets of experiments. The first set (Section 4.1) of experiments examines the base-
line performance of the five algorithms on the five datasets and establishes that ICET
performs significantly better than its competitors for the given datasets. The second set (Sec-
tion 4.2) tests the robustness of ICET under a variety of conditions and shows that ICET
maintains its advantage. The third set (Section 4.3) looks at ICET’s search in bias space and
discovers a way to improve the search. We then discuss related work and future work in Sec-
tion 5. We end with a summary of what we have learned with this research and a statement of
the general motivation for this type of research.

2. Cost-Sensitive Classification

This section first explains why a decision tree is the natural form of knowledge representa-
tion for classification with expensive tests. It then discusses how we measure the average
cost of classification of a decision tree. Our method for measuring average cost handles
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aspects of the problem that are typically ignored. The method can be applied to any standard
classification decision tree, regardless of how the tree is generated. We end with a discussion
of the relation between cost and accuracy.

2.1 Decision Trees and Cost-Sensitive Classification

The decision trees used in decision theory (Pearl, 1988) are somewhat different from the
classification decision trees that are typically used in machine learning (Quinlan, 1992).
When we refer to decision trees in this paper, we mean the standard classification decision
trees of machine learning. The claims we make here about classification decision trees also
apply to decision theoretical decision trees, with some modification. A full discussion of
decision theoretical decision trees is outside of the scope of this paper.

The decision to do a test must be based on both the cost of tests and the cost of classifica-
tion errors. If a test costs $10 and the maximum penalty for a classification error is $5, then
there is clearly no point in doing the test. On the other hand, if the penalty for a classification
error is $10,000, the test may be quite worthwhile, even if its information content is rela-
tively low. Past work with algorithms that are sensitive to test costs (Núñez, 1988, 1991;
Tan, 1993; Norton, 1989) has overlooked the importance of also considering the cost of clas-
sification errors.

When tests are inexpensive, relative to the cost of classification errors, it may be rational
to do all tests (i.e., measure all features; determine the values of all attributes) that seem pos-
sibly relevant. In this kind of situation, it is convenient to separate the selection of tests from
the process of making a classification. First we can decide on the set of tests that are rele-
vant, then we can focus on the problem of learning to classify a case, using the results of
these tests. This is a common approach to classification in the machine learning literature.
Often a paper focuses on the problem of learning to classify a case, without any mention of
the decisions involved in selecting the set of relevant tests.1

When tests are expensive, relative to the cost of classification errors, it may be subopti-
mal to separate the selection of tests from the process of making a classification. We may be
able to achieve much lower costs by interleaving the two. First we choose a test, then we
examine the test result. The result of the test gives us information, which we can use to influ-
ence our choice for the next test. At some point, we decide that the cost of further tests is not
justified, so we stop testing and make a classification.

When the selection of tests is interleaved with classification in this way, a decision tree is
the natural form of representation. The root of the decision tree represents the first test that
we choose. The next level of the decision tree represents the next test that we choose. The
decision tree explicitly shows how the outcome of the first test determines the choice of the
second test. A leaf represents the point at which we decide to stop testing and make a classi-
fication.

Decision theory can be used to define what constitutes an optimal decision tree, given (1)
the costs of the tests, (2) the costs of classification errors, (3) the conditional probabilities of
test results, given sequences of prior test results, and (4) the conditional probabilities of
classes, given sequences of test results. However, searching for an optimal tree is infeasible
(Pearl, 1988). ICET was designed to find a good (but not necessarily optimal) tree, where
“good” is defined as “better than the competition” (i.e., IDX, CS-ID3, and EG2).

1. Not all papers are like this. Decision tree induction algorithms such as C4.5 (Quinlan, 1992) automatically
select relevant tests. Aha and Bankert (1994), among others, have used sequential test selection procedures in
conjunction with a supervised learning algorithm.
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2.2 Calculating the Average Cost of Classification

In this section, we describe how we calculate the average cost of classification for a decision
tree, given a set of testing data. The method described here is applied uniformly to the deci-
sion trees generated by the five algorithms examined here (EG2, CS-ID3, IDX, C4.5, and
ICET). The method assumes only a standard classification decision tree (such as generated
by C4.5); it makes no assumptions about how the tree is generated. The purpose of the
method is to give a plausible estimate of the average cost that can be expected in a real-world
application of the decision tree.

We assume that the dataset has been split into a training set and a testing set. The
expected cost of classification is estimated by the average cost of classification for the test-
ing set. The average cost of classification is calculated by dividing the total cost for the
whole testing set by the number of cases in the testing set. The total cost includes both the
costs of tests and the costs of classification errors. In the simplest case, we assume that we
can specify test costs simply by listing each test, paired with its corresponding cost. More
complex cases will be considered later in this section. We assume that we can specify the
costs of classification errors using a classification cost matrix.

Suppose there are  distinct classes. A classification cost matrix is a  matrix, where
the element  is the cost of guessing that a case belongs in classi, when it actually
belongs in classj. We do not need to assume any constraints on this matrix, except that costs
are finite, real values. We allow negative costs, which can be interpreted as benefits. How-
ever, in the experiments reported here, we have restricted our attention to classification cost
matrices in which the diagonal elements are zero (we assume that correct classification has
no cost) and the off-diagonal elements are positive numbers.2

To calculate the cost of a particular case, we follow its path down the decision tree. We
add up the cost of each test that is chosen (i.e., each test that occurs in the path from the root
to the leaf). If the same test appears twice, we only charge for the first occurrence of the test.
For example, one node in a path may say “patient age is less than 10 years” and another node
may say “patient age is more than 5 years”, but we only charge once for the cost of determin-
ing the patient’s age. The leaf of the tree specifies the tree’s guess for the class of the case.
Given the actual class of the case, we use the cost matrix to determine the cost of the tree’s
guess. This cost is added to the costs of the tests, to determine the total cost of classification
for the case.

This is the core of our method for calculating the average cost of classification of a deci-
sion tree. There are two additional elements to the method, for handling conditional test
costs and delayed test results.

We allow the cost of a test to be conditional on the choice of prior tests. Specifically, we
consider the case where a group of tests shares a common cost. For example, a set of blood
tests shares the common cost of collecting blood from the patient. This common cost is
charged only once, when the decision is made to do the first blood test. There is no charge
for collecting blood for the second blood test, since we may use the blood that was collected
for the first blood test. Thus the cost of a test in this group is conditional on whether another
member of the group has already been chosen.

Common costs appear frequently in testing. For example, in diagnosis of an aircraft
engine, a group of tests may share the common cost of removing the engine from the plane

2. This restriction seems reasonable as a starting point for exploring cost-sensitive classification. In future work,
we will investigate the effects of weakening the restriction.

c c c×
Ci j,
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and installing it in a test cell. In semiconductor manufacturing, a group of tests may share the
common cost of reserving a region on the silicon wafer for a special test structure. In image
recognition, a group of image processing algorithms may share a common preprocessing
algorithm. These examples show that a realistic assessment of the cost of using a decision
tree will frequently need to make allowances for conditional test costs.

It often happens that the result of a test is not available immediately. For example, a
medical doctor typically sends a blood test to a laboratory and gets the result the next day.
We allow a test to be labelled either “immediate” or “delayed”. If a test is delayed, we cannot
use its outcome to influence the choice of the next test. For example, if blood tests are
delayed, then we cannot allow the outcome of one blood test to play a role in the decision to
do a second blood test. We must make a commitment to doing (or not doing) the second
blood test before we know the results of the first blood test.

Delayed tests are relatively common. For example, many medical tests must be shipped
to a laboratory for analysis. In gas turbine engine diagnosis, the main fuel control is fre-
quently shipped to a specialized company for diagnosis or repair. In any classification prob-
lem that requires multiple experts, one of the experts might not be immediately available.

We handle immediate tests in a decision tree as described above. We handle delayed tests
as follows. We follow the path of a case from the root of the decision tree to the appropriate
leaf. If we encounter a node, anywhere along this path, that is a delayed test, we are then
committed to performing all of the tests in the subtree that is rooted at this node. Since we
cannot make the decision to do tests below this node conditional on the outcome of the test at
this node, we must pledge to pay for all the tests that we might possibly need to perform,
from this point onwards in the decision tree.

Our method for handling delayed tests may seem a bit puzzling at first. The difficulty is
that a decision tree combines a method for selecting tests with a method for classifying
cases. When tests are delayed, we are forced to proceed in two phases. In the first phase, we
select tests. In the second phase, we collect test results and classify the case. For example, a
doctor collects blood from a patient and sends the blood to a laboratory. The doctor must tell
the laboratory what tests are to be done on the blood. The next day, the doctor gets the results
of the tests from the laboratory and then decides on the diagnosis of the patient. A decision
tree does not naturally handle a situation like this, where the selection of tests is isolated
from the classification of cases. In our method, in the first phase, the doctor uses the decision
tree to select the tests. As long as the tests are immediate, there is no problem. As soon as the
first delayed test is encountered, the doctor must select all the tests that might possibly be
needed in the second phase.3 That is, the doctor must select all the tests in the subtree rooted
at the first delayed test. In the second phase, when the test results arrive the next day, the
doctor will have all the information required to go from the root of the tree to a leaf, to make
a classification. The doctor must pay forall of the tests in the subtree, even though only the
tests along one branch of the subtree will actually be used. The doctor does not know in
advancewhich branch will actually be used, at the time when it is necessary to order the
blood tests. The laboratory that does the blood tests will naturally want the doctor to pay for
all the tests that were ordered, even if they are not all used in making the diagnosis.

In general, it makes sense to do all of the desired immediate tests before we do any of the
desired delayed tests, since the outcome of an immediate test can be used to influence the
decision to do a delayed test, but not vice versa. For example, a medical doctor will question

3. This is a simplification of the situation in the real world. A more realistic treatment of delayed tests is one of
the areas for future work (Section 5.2).
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a patient (questions are immediate tests) before deciding what blood tests to order (blood
tests are delayed tests).4

When all of the tests are delayed (as they are in the BUPA data in Appendix A.1), we
must decide in advance (before we see any test results) what tests are to be performed. For a
given decision tree, the total cost of tests will be the same for all cases. In situations of this
type, the problem of minimizing cost simplifies to the problem of choosing the best subset of
the set of available tests (Aha and Bankert, 1994). The sequential order of the tests is no
longer important for reducing cost.

Let us consider a simple example to illustrate the method. Table 1 shows the test costs
for four tests. Two of the tests are immediate and two are delayed. The two delayed tests
share a common cost of $2.00. There are two classes, 0 and 1. Table 2 shows the classifica-
tion cost matrix. Figure 1 shows a decision tree. Table 3 traces the path through the tree for a
particular case and shows how the cost is calculated. The first step is to do the test at the root
of the tree (test alpha). In the second step, we encounter a delayed test (delta), so we must
calculate the cost of the entire subtree rooted at this node. Note that epsilon only costs $8.00,
since we have already selected delta, and delta and epsilon have a common cost. In the third
step, we do test epsilon, but we do not need to pay, since we already paid in the second step.
In the fourth step, we guess the class of the case. Unfortunately, we guess incorrectly, so we
pay a penalty of $50.00.

4. In the real world, there are many factors that can influence the sequence of tests, such as the length of the delay
and the probability that the delayed test will be needed. When we ignore these many factors and pay attention
only to the simplified model presented here, it makes sense to do all of the desired immediate tests before we
do any of the desired delayed tests. We do not know to what extent this actually occurs in the real world. One
complication is that medical doctors in most industrialized countries are not directly affected by the cost of the
tests they select. In fact, fear of law suits gives them incentive to order unnecessary tests.

Table 1: Test costs for a simple example.

Test Group Cost Delayed

1 alpha $5.00 no

2 beta $10.00 no

3 delta A $7.00 if first test in group A,
$5.00 otherwise

yes

4 epsilon A $10.00 if first test in group A,
$8.00 otherwise

yes

Table 2: Classification costs for a simple example.

Actual Class Guess Class Cost

0 0 $0.00

0 1 $50.00

1 0 $50.00

1 1 $0.00
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In summary, this section presents a method for estimating the average cost of using a
given decision tree. The decision tree can be any standard classification decision tree; no
special assumptions are made about the tree; it does not matter how the tree was generated.
The method requires (1) a decision tree (Figure 1), (2) information on the calculation of test
costs (Table 1), (3) a classification cost matrix (Table 2), and (4) a set of testing data (Table
3). The method is (i) sensitive to the cost of tests, (ii) sensitive to the cost of classification
errors, (iii) capable of handling conditional test costs, and (iv) capable of handling delayed
tests. In the experiments reported in Section 4, this method is applied uniformly to all five
algorithms.

2.3 Cost and Accuracy

Our method for calculating cost does not explicitly deal with accuracy; however, we can
handle accuracy as a special case. If the test cost is set to $0.00 for all tests and the classifi-
cation cost matrix is set to a positive constant valuek when the guess classi does not equal
the actual classj, but it is set to $0.00 wheni equalsj, then the average total cost of using the
decision tree is , where  is the frequency of errors on the testing dataset and

Table 3: Calculating the cost for a particular case.

Step Action Result Cost

1 do alpha alpha = 6 $5.00

2 do delta delta = 3 $7.00 + $10.00 + $8.00 = $25.00

3 do epsilon epsilon = 2 already paid, in step #2

4 guess class = 0 actual class = 1 $50.00

total cost $80.00

Figure 1: Decision tree for a simple example.
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 is the percentage accuracy on the testing dataset. Thus there is a linear relation-
ship between average total cost and percentage accuracy, in this situation.

More generally, letC be a classification cost matrix that has costx on the diagonal,
, and costy off the diagonal, , wherex is less thany, . We

will call this type of classification cost matrix asimple classification cost matrix.A cost
matrix that is not simple will be called acomplex classification cost matrix.5 When we have
a simple cost matrix and test costs are zero (equivalently, test costs are ignored), minimizing
cost is exactly equivalent to maximizing accuracy.

It follows from this that an algorithm that is sensitive to misclassification error costs but
ignores test costs (Breimanet al., 1984; Friedman & Stuetzle, 1981; Hermanset al., 1974;
Gordon & Perlis, 1989; Pazzaniet al., 1994; Provost, 1994; Provost & Buchanan, in press;
Knoll et al., 1994) will only be interesting when we have a complex cost matrix. If we have
a simple cost matrix, an algorithm such as CART (Breimanet al., 1984) that is sensitive to
misclassification error cost has no advantage over an algorithm such as C4.5 (Quinlan, 1992)
that maximizes accuracy (assuming other differences between these two algorithms are neg-
ligible). Most of the experiments in this paper use a simple cost matrix (the only exception is
Section 4.2.3). Therefore we focus on comparison of ICET with algorithms that are sensitive
to test cost (IDX, CS-ID3, and EG2). In future work, we will examine complex cost matrices
and compare ICET with algorithms that are sensitive to misclassification error cost.

It is difficult to find information on the costs of misclassification errors in medical prac-
tice, but it seems likely that a complex cost matrix is more appropriate than a simple cost
matrix for most medical applications. This paper focuses on simple cost matrices because, as
a research strategy, it seems wise to start with the simple cases before we attempt the com-
plex cases.

Provost (Provost, 1994; Provost & Buchanan, in press) combines accuracy and classifi-
cation error cost using the following formula:

(1)

In this formula,A andB are arbitrary weights that the user can set for a particular applica-
tion. Both “accuracy” and “cost”, as defined by Provost (Provost, 1994; Provost & Bucha-
nan, in press), can be represented using classification cost matrices. We can represent
“accuracy” using any simple cost matrix. In interesting applications, “cost” will be repre-
sented by a complex cost matrix. Thus “score” is a weighted sum of two classification cost
matrices, which means that “score” is itself a classification cost matrix. This shows that
equation (1) can be handled as a special case of the method presented here. There is no loss
of information in this translation of Provost’s formula into a cost matrix. This does not mean
that all criteria can be represented as costs. An example of a criterion that cannot be repre-
sented as a cost isstability (Turney, in press).

3. Algorithms

This section discusses the algorithms used in this paper: C4.5 (Quinlan, 1992), EG2 (Núñez,
1991), CS-ID3 (Tan & Schlimmer, 1989, 1990; Tan, 1993), IDX (Norton, 1989), and ICET.

5. We will occasionally say “simple cost matrix” or “complex cost matrix”. This should not cause confusion,
since test costs are not represented with a matrix.

100 1 p–( )

Ci i, x= i j≠( ) Ci j, y=( )→ x y<

score A accuracy⋅ B cost⋅–=
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3.1 C4.5

C4.5 (Quinlan, 1992) builds a decision tree using the standard TDIDT (top-down induction
of decision trees) approach, recursively partitioning the data into smaller subsets, based on
the value of an attribute. At each step in the construction of the decision tree, C4.5 selects
the attribute that maximizes the information gain ratio. The induced decision tree is pruned
using pessimistic error estimation (Quinlan, 1992). There are several parameters that can be
adjusted to alter the behavior of C4.5. In our experiments with C4.5, we used the default set-
tings for all parameters. We used the C4.5 source code that is distributed with (Quinlan,
1992).

3.2 EG2

EG2 (Núñez, 1991) is a TDIDT algorithm that uses the Information Cost Function (ICF)
(Núñez, 1991) for selection of attributes. ICF selects attributes based on both their informa-
tion gain and their cost. We implemented EG2 by modifying the C4.5 source code so that
ICF was used instead of information gain ratio.

ICF for thei-th attribute, , is defined as follows:6

(2)

In this equation,  is the information gain associated with thei-th attribute at a given stage
in the construction of the decision tree and  is the cost of measuring thei-th attribute. C4.5
selects the attribute that maximizes the information gain ratio, which is a function of the
information gain . We modified C4.5 so that it selects the attribute that maximizes .

The parameter  adjusts the strength of the bias towards lower cost attributes. When
, cost is ignored and selection by  is equivalent to selection by . When
,  is strongly biased by cost. Ideally,  would be selected in a way that is sensi-

tive to classification error cost (this is done in ICET — see Section 3.5). Núñez (1991) does
not suggest a principled way of setting . In our experiments with EG2,  was set to 1. In
other words, we used the following selection measure:

(3)

In addition to its sensitivity to the cost of tests, EG2 generalizes attributes by using an ISA
tree (a generalization hierarchy). We did not implement this aspect of EG2, since it was not
relevant for the experiments reported here.

3.3 CS-ID3

CS-ID3 (Tan & Schlimmer, 1989, 1990; Tan, 1993) is a TDIDT algorithm that selects the
attribute that maximizes the following heuristic function:

(4)

6. This is the inverse of ICF, as defined by Núñez (1991). Núñezminimizes his criterion. To facilitate comparison
with the other algorithms, we use equation (2). This criterion is intended to bemaximized.

ICFi

ICFi
2
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We implemented CS-ID3 by modifying C4.5 so that it selects the attribute that maximizes
(4).

CS-ID3 uses a lazy evaluation strategy. It only constructs the part of the decision tree
that classifies the current case. We did not implement this aspect of CS-ID3, since it was not
relevant for the experiments reported here.

3.4 IDX

IDX (Norton, 1989) is a TDIDT algorithm that selects the attribute that maximizes the fol-
lowing heuristic function:

(5)

We implemented IDX by modifying C4.5 so that it selects the attribute that maximizes (5).
C4.5 uses agreedy search strategy that chooses at each step the attribute with the highest

information gain ratio. IDX uses a lookahead strategy that looksn tests ahead, wheren is a
parameter that may be set by the user. We did not implement this aspect of IDX. The looka-
head strategy would perhaps make IDX more competitive with ICET, but it would also com-
plicate comparison of the heuristic function (5) with the heuristics (3) and (4) used by EG2
and CS-ID3.

3.5 ICET

ICET is a hybrid of a genetic algorithm and a decision tree induction algorithm. The genetic
algorithm evolves a population of biases for the decision tree induction algorithm. The
genetic algorithm we use is GENESIS (Grefenstette, 1986).7 The decision tree induction
algorithm is C4.5 (Quinlan, 1992), modified to use ICF. That is, the decision tree induction
algorithm is EG2, implemented as described in Section 3.2.

ICET uses a two-tiered search strategy. On the bottom tier, EG2 performs a greedy
search through the space of decision trees, using the standard TDIDT strategy. On the top
tier, GENESIS performs a genetic search through a space of biases. The biases are used to
modify the behavior of EG2. In other words, GENESIS controls EG2’s preference for one
type of decision tree over another.

ICET does not use EG2 the way it was designed to be used. Then costs, , used in
EG2’s attribute selection function, are treated by ICET as bias parameters, not as costs. That
is, ICET manipulates the bias of EG2 by adjusting the parameters, . In ICET, the values of
the bias parameters, , have no direct connection to the actual costs of the tests.

Genetic algorithms are inspired by biological evolution. The individuals that are evolved
by GENESIS are strings of bits. GENESIS begins with a population of randomly generated
individuals (bit strings) and then it measures the “fitness” of each individual. In ICET, an
individual (a bit string) represents a bias for EG2. An individual is evaluated by running EG2
on the data, using the bias of the given individual. The “fitness” of the individual is the aver-
age cost of classification of the decision tree that is generated by EG2. In the next genera-
tion, the population is replaced with new individuals. The new individuals are generated
from the previous generation, using mutation and crossover (sex). The fittest individuals in
the first generation have the most offspring in the second generation. After a fixed number of

7. We used GENESIS Version 5.0, which is available at URL ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/gene-
sis.tar.Z or ftp://alife.santafe.edu/pub/USER-AREA/EC/GA/src/gensis-5.0.tar.gz.
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generations, ICET halts and its output is the decision tree determined by the fittest individ-
ual. Figure 2 gives a sketch of the ICET algorithm.

GENESIS has several parameters that can be used to alter its performance. The parame-
ters we used are listed in Table 4. These are essentially the default parameter settings
(Grefenstette, 1986). We used a population size of 50 individuals and 1,000 trials, which
results in 20 generations. An individual in the population consists of a string of  num-
bers, wheren is the number of attributes (tests) in the given dataset. The  numbers are
represented in binary format, using a Gray code.8 This binary string is used as a bias for
EG2. The firstn numbers in the string are treated as if they were then costs, , used in ICF
(equation (2)). The firstn numbers range from 1 to 10,000 and are coded with 12 binary dig-
its each. The last two numbers in the string are used to set  and CF. The parameter  is
used in ICF. The parameter CF is used in C4.5 to control the level of pruning of the decision
tree. The last two numbers are coded with 8 binary digits each.  ranges from 0 (cost is
ignored) to 1 (maximum sensitivity to cost) and CF ranges from 1 (high pruning) to 100 (low
pruning). Thus an individual is a string of  bits.

Each trial of an individual consists of running EG2 (implemented as a modification to
C4.5) on a given training dataset, using the numbers specified in the binary string to set
( ), , and CF. The training dataset is randomly split into two equal-sized subsets
(  for odd-sized training sets), a sub-training set and a sub-testing set. A different random
split is used for each trial, so the outcome of a trial is stochastic. We cannot assume that
identical individuals yield identical outcomes, so every individual must be evaluated. This
means that there will be duplicate individuals in the population, with slightly different fitness
scores. The measure of fitness of an individual is the average cost of classification on the
sub-testing set, using the decision tree that was generated on the sub-training set. The aver-

8. A Gray code is a binary code that is designed to avoid “Hamming cliffs”. In the standard binary code, 7 is rep-
resented as 0111 and 8 is represented as 1000. These numbers are adjacent, yet the Hamming distance from
0111 to 1000 is large. In a Gray code, adjacent numbers are represented with binary codes that have small
Hamming distances. This tends to improve the performance of a genetic algorithm (Grefenstette, 1986).

GENESIS

genetic algorithm

population of

biases

EG2

classifier

EG2

classifier

EG2

classifier

data

decision tree

decision tree

decision tree

fitness

function

fittest

decision tree

Figure 2: A sketch of the ICET algorithm.
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age cost is measured as described in Section 2.2. After 1,000 trials, the most fit (lowest cost)
individual is then used as a bias for EG2 with the whole training set as input. The resulting
decision tree is the output of ICET for the given training dataset.9

Then costs (bias parameters), , used in ICF, are not directly related to the true costs of
the attributes. The 50 individuals in the first generation are generated randomly, so the initial
values of  have no relation to the true costs. After 20 generations, the values of  may
have some relation to the true costs, but it will not be a simple relationship. These values of

 are more appropriately thought of asbiases than costs. Thus GENESIS is searching
through a bias space for biases for C4.5 that result in decision trees with low average cost.

The biases  range from 1 to 10,000. When a bias  is greater than 9,000, thei-th
attribute is ignored. That is, thei-th attribute is not available for C4.5 to include in the deci-
sion tree, even if it might maximize . This threshold of 9,000 was arbitrarily chosen.
There was no attempt to optimize this value by experimentation.

We chose to use EG2 in ICET, rather than IDX or CS-ID3, because EG2 has the parame-
ter , which gives GENESIS greater control over the bias of EG2.  is partly based on
the data (via the information gain, ) and it is partly based on the bias (via the “pseudo-

9. The 50/50 partition of sub-training and sub-testing sets could mean that ICET may not work well on small
datasets. The smallest dataset of the five we examine here is the Hepatitis dataset, which has 155 cases. The
training sets had 103 cases and the testing sets had 52 cases. The sub-training and sub-testing sets had 51 or 52
cases. We can see from Figure 3 that ICET performed slightly better than the other algorithms on this dataset
(the difference is not significant).

Table 4: Parameter settings for GENESIS.

Parameter Setting

Experiments  1

Total Trials  1000

Population Size  50

Structure Length  12n + 16

Crossover Rate  0.6

Mutation Rate  0.001

Generation Gap  1.0

Scaling Window  5

Report Interval  100

Structures Saved  1

Max Gens w/o Eval  2

Dump Interval  0

Dumps Saved  0

Options  acefgl

Random Seed  123456789

Rank Min  0.75
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cost”, ). The exact mix of data and bias can be controlled by varying . Otherwise, there
is no reason to prefer EG2 to IDX or CS-ID3, which could easily be used instead of EG2.

The treatment of delayed tests and conditional test costs is not “hard-wired” into EG2. It
is built into the fitness function used by GENESIS, the average cost of classification (mea-
sured as described in Section 2). This makes it relatively simple to extend ICET to handle
other pragmatic constraints on the decision trees.

In effect, GENESIS “lies” to EG2 about the costs of the tests. How can lies improve the
performance of EG2? EG2 is a hill-climbing algorithm that can get trapped at a local opti-
mum. It is a greedy algorithm that looks only one test ahead as it builds a decision tree.
Because it looks only one step ahead, EG2 suffers from thehorizon effect. This term is taken
from the literature on chess playing programs. Suppose that a chess playing program has a
fixed three-move lookahead depth and it finds that it will loose its queen in three moves, if it
follows a certain branch of the game tree. There may be an alternate branch where the pro-
gram first sacrifices a pawn and then loses its queen in four moves. Because the loss of the
queen is over its three-movehorizon, the program may foolishly decide to sacrifice its pawn.
One move later, it is again faced with the loss of its queen. Analogously, EG2 may try to
avoid a certain expensive test by selecting a less expensive test. One test later, it is again
faced with the more expensive test. After it has exhausted all the cheaper tests, it may be
forced to do the expensive test, in spite of its efforts to avoid the test. GENESIS can prevent
this short-sighted behavior by telling lies to EG2. GENESIS can exaggerate the cost of the
cheap tests or it can understate the cost of the expensive test. Based on past trials, GENESIS
can find the lies that yield the best performance from EG2.

In ICET, learning (local search in EG2) and evolution (in GENESIS) interact. A common
form of hybrid genetic algorithm uses local search to improve the individuals in a population
(Schafferet al., 1992). The improvements are then coded into the strings that represent the
individuals. This is a form ofLamarckian evolution. In ICET, the improvements due to EG2
arenot coded into the strings. However, the improvements can accelerate evolution by alter-
ing the fitness landscape. This phenomenon (and other phenomena that result from this form
of hybrid) is known as theBaldwin effect (Baldwin, 1896; Morgan, 1896; Waddington, 1942;
Maynard Smith, 1987; Hinton & Nowlan, 1987; Ackley & Littman, 1991; Whitley & Gruau,
1993; Whitleyet al., 1994; Anderson, in press). The Baldwin effect may explain much of the
success of ICET.

4. Experiments

This section describes experiments that were performed on five datasets, taken from the Irv-
ine collection (Murphy & Aha, 1994). The five datasets are described in detail in
Appendix A. All five datasets involve medical problems. The test costs are based on infor-
mation from the Ontario Ministry of Health (1992). The main purpose of the experiments is
to gain insight into the behavior of ICET. The other cost-sensitive algorithms, EG2, CS-ID3,
and IDX, are included mainly as benchmarks for evaluating ICET. C4.5 is also included as a
benchmark, to illustrate the behavior of an algorithm that makes no use of cost information.
The main conclusion of these experiments is that ICET performs significantly better than its
competitors, under a wide range of conditions. With access to the Irvine collection and the
information in Appendix A, it should be possible for other researchers to duplicate the
results reported here.

Medical datasets frequently have missing values.10 We conjecture that many missing val-
ues in medical datasets are missing because the doctor involved in generating the dataset

Ci ω
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decided that a particular test was not economically justified for a particular patient. Thus
there may be information content in the fact that a certain value is missing. There may be
many reasons for missing values other than the cost of the tests. For example, perhaps the
doctor forgot to order the test or perhaps the patient failed to show up for the test. However,
it seems likely that there is often information content in the fact that a value is missing. For
our experiments, this information content should be hidden from the learning algorithms,
since using it (at least in the testing sets) would be a form of cheating. Two of the five
datasets we selected had some missing data. To avoid accusations of cheating, we decided to
preprocess the datasets so that the data presented to the algorithms had no missing values.
This preprocessing is described in Appendices A.2 and A.3.

Note that ICET is capable of handling missing values without preprocessing — it inher-
its this ability from its C4.5 component. We preprocessed the data only to avoid accusations
of cheating, not because ICET requires preprocessed data.

For the experiments, each dataset was randomly split into 10 pairs of training and testing
sets. Each training set consisted of two thirds of the dataset and each testing set consisted of
the remaining one third. The same 10 pairs were used in all experiments, in order to facilitate
comparison of results across experiments.

There are three groups of experiments. The first group of experiments examines the base-
line performance of the algorithms. The second group considers how robust ICET is under a
variety of conditions. The final group looks at how ICET searches bias space.

4.1 Baseline Performance

This section examines the baseline performance of the algorithms. In Section 4.1.1, we look
at the average cost of classification of the five algorithms on the five datasets. Averaged
across the five datasets, ICET has the lowest average cost. In Section 4.1.2, we study test
expenditures and error rates as functions of the penalty for misclassification errors. Of the
five algorithms studied here, only ICET adjusts its test expenditures and error rates as func-
tions of the penalty for misclassification errors. The other four algorithms ignore the penalty
for misclassification errors. ICET behaves as one would expect, increasing test expenditures
and decreasing error rates as the penalty for misclassification errors rises. In Section 4.1.3,
we examine the execution time of the algorithms. ICET requires 23 minutes on average on a
single-processor Sparc 10. Since ICET is inherently parallel, there is significant room for
speed increase on a parallel machine.

4.1.1 AVERAGE COST OFCLASSIFICATION

The experiment presented here establishes the baseline performance of the five algorithms.
The hypothesis was that ICET will, on average, perform better than the other four algo-
rithms. The classification cost matrix was set to a positive constant valuek when the guess
classi does not equal the actual classj, but it was set to $0.00 wheni equalsj. We experi-
mented with seven settings fork, $10, $50, $100, $500, $1000, $5000, and $10000.

Initially, we used the average cost of classification as the performance measure, but we
found that there are three problems with using the average cost of classification to compare
the five algorithms. First, the differences in costs among the algorithms become relatively

10. A survey of 54 datasets from the Irvine collection (URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
SUMMARY-TABLE) indicates that 85% of the medical datasets (17 out of 20) have missing values, while only
24% (8 out of 34) of the non-medical datasets have missing values.
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small as the penalty for classification errors increases. This makes it difficult to see which
algorithm is best. Second, it is difficult to combine the results for the five datasets in a fair
manner.11 It is not fair to average the five datasets together, since their test costs have differ-
ent scales (see Appendix A). The test costs in the Heart Disease dataset, for example, are
substantially larger than the test costs in the other four datasets. Third, it is difficult to com-
bine average costs for different values ofk in a fair manner, since more weight will be given
to the situations wherek is large than to the situations where it is small.

To address these concerns, we decided to normalize the average cost of classification. We
normalized the average cost by dividing it by thestandard cost. Let  be the fre-
quency of classi in the given dataset. That is,  is the fraction of the cases in the dataset that
belong in classi. We calculate  using the entire dataset, not just the training set. Let  be
the cost of guessing that a case belongs in classi, when it actually belongs in classj. Let
be the total cost of doing all of the possible tests. Thestandard cost is defined as follows:

(6)

We can decompose formula (6) into three components:

(7)

(8)

(9)

We may think of (7) as an upper bound on test expenditures, (8) as an upper bound on error
rate, and (9) as an upper bound on the penalty for errors. The standard cost is always less
than the maximum possible cost, which is given by the following formula:

(10)

The point is that (8) is not really an upper bound on error rate, since it is possible to be
wrong with every guess. However, our experiments suggest that the standard cost is better
for normalization, since it is a more realistic (tighter) upper bound on the average cost. In
our experiments, the average cost never went above the standard cost, although it occasion-
ally came very close.

Figure 3 shows the result of using formula (6) to normalize the average cost of classifica-
tion. In the plots, thex axis is the value ofk and they axis is the average cost of classification
as a percentage of the standard cost of classification. We see that, on average (the sixth plot
in Figure 3), ICET has the lowest classification cost. The one dataset where ICET does not
perform particularly well is the Heart Disease dataset (we discuss this later, in Sections 4.3.2
and 4.3.3).

To come up with a single number that characterizes the performance of each algorithm,
we averaged the numbers in the sixth plot in Figure 3.12 We calculated 95% confidence
regions for the averages, using the standard deviations across the 10 random splits of the

11. We want to combine the results in order to summarize the performance of the algorithms on the five datasets.
This is analogous to comparing students by calculating the GPA (Grade Point Average), where students are to
courses as algorithms are to datasets.

12. Like the GPA, all datasets (courses) have the same weight. However, unlike the GPA, all algorithms (stu-
dents) are applied to the same datasets (have taken the same courses). Thus our approach is perhaps more fair
to the algorithms than GPA is to students.
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datasets. The result is shown in Table 5.
Table 5 shows the averages for the first three misclassification error costs alone ($10,

$50, and $100), in addition to showing the averages for all seven misclassification error costs
($10 to $10000). We have two averages (the two columns in Table 5), based on two groups of
data, to address the following argument: As the penalty for misclassification errors increases,
the cost of the tests becomes relatively insignificant. With very high misclassification error
cost, the test cost is effectively zero, so the task becomes simply to maximize accuracy. As

ICET:

EG2:

CS-ID3:

IDX:

C4.5:

Figure 3: Average cost of classification as a percentage of the standard cost of
classification for the baseline experiment.
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we see in Figure 3, the gap between C4.5 (which maximizes accuracy) and the other algo-
rithms becomes smaller as the cost of misclassification error increases. Therefore the benefit
of sensitivity to test cost decreases as the cost of misclassification error increases. It could be
argued that one would only bother with an algorithm that is sensitive to test cost when tests
are relatively expensive, compared to the cost of misclassification errors. Thus the most real-
istic measure of performance is to examine the average cost of classification when the cost of
tests is the same order of magnitude as the cost of misclassification errors ($10 to $100).
This is why Table 5 shows both averages.

Our conclusion, based on Table 5, is that ICET performs significantly better than the
other four algorithms when the cost of tests is the same order of magnitude as the cost of
misclassification errors ($10, $50, and $100). When the cost of misclassification errors dom-
inates the test costs, ICET still performs better than the competition, but the difference is less
significant. The other three cost-sensitive algorithms (EG2, CS-ID3, and IDX) perform sig-
nificantly better than C4.5 (which ignores cost). The performance of EG2 and IDX is indis-
tinguishable, but CS-ID3 appears to be consistently more costly than EG2 and IDX.

4.1.2 TESTEXPENDITURES ANDERRORRATES ASFUNCTIONS OF THEPENALTY FOR ERRORS

We argued in Section 2 that expenditures on tests should be conditional on the penalty for
misclassification errors. Therefore ICET is designed to be sensitive to both the cost of tests
and the cost of classification errors. This leads us to the hypothesis that ICET tends to spend
more on tests as the penalty for misclassification errors increases. We also expect that the
error rate of ICET should decrease as test expenditures increase. These two hypotheses are
confirmed in Figure 4. In the plots, thex axis is the value ofk and they axis is (1) the aver-
age expenditure on tests, expressed as a percentage of the maximum possible expenditure on
tests, , and (2) the average percent error rate. On average (the sixth plot in Figure 4), test
expenditures rise and error rate falls as the penalty for classification errors increases. There
are some minor deviations from this trend, since ICET can only guess at the value of a test
(in terms of reduced error rate), based on what it sees in the training dataset. The testing
dataset may not always support that guess. Note that plots for the other four algorithms, cor-
responding to the plots for ICET in Figure 4, would be straight horizontal lines, since all four
algorithms ignore the cost of misclassification error. They generate the same decision trees
for every possible misclassification error cost.

Table 5: Average percentage of standard cost for the baseline experiment.

Algorithm
Average Classification Cost as Percentage of Standard
± 95% Confidence

Misclassification Error Costs
from 10.00 to 10,000.00

Misclassification Error Costs
from 10.00 to 100.00

ICET 49 ± 7 29± 7

EG2 58± 5 43 ± 3

CS-ID3 61± 6 49± 4

IDX 58 ± 5 43± 3

C4.5 77± 5 82± 4

T
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4.1.3 EXECUTION TIME

In essence, ICET works by invoking C4.5 1000 times (Section 3.5). Fortunately, Quinlan’s
(1992) implementation of C4.5 is quite fast. Table 6 shows the run-times for the algorithms,
using a single-processor Sun Sparc 10. One full experiment takes about one week (roughly
23 minutes for an average run, multiplied by 5 datasets, multiplied by 10 random splits, mul-
tiplied by 7 misclassification error costs equals about one week). Since genetic algorithms
can easily be executed in parallel, there is substantial room for speed increase with a parallel
machine. Each generation consists of 50 individuals, which could be evaluated in parallel,
reducing the average run-time to about half a minute.

4.2 Robustness of ICET

This group of experiments considers how robust ICET is under a variety of conditions. Each
section considers a different variation on the operating environment of ICET. The ICET

Figure 4: Average test expenditures and average error rate
as a function of misclassification error cost.
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algorithm itself is not modified. In Section 4.2.1, we alter the environment by labelling all
tests as immediate. In Section 4.2.2, we do not recognize shared costs, so there is no discount
for a group of tests with a common cost. In Section 4.2.3, we experiment with complex clas-
sification cost matrices, where different types of errors have different costs. In Section 4.2.4,
we examine what happens when ICET is trained with a certain penalty for misclassification
errors, then tested with a different penalty. In all four experiments, we find that ICET contin-
ues to perform well.

4.2.1 ALL TESTSIMMEDIATE

A critic might object that the previous experiments do not show that ICET is superior to the
other algorithms due to its sensitivity to both test costs and classification error costs. Perhaps
ICET is superior simply because it can handle delayed tests, while the other algorithms treat
all tests as immediate.13 That is, the method of estimating the average classification cost
(Section 2.2) is biased in favor of ICET (since ICET uses the method in its fitness function)
and against the other algorithms. In this experiment, we labelled all tests as immediate. Oth-
erwise, nothing changed from the baseline experiments. Table 7 summarizes the results of
the experiment. ICET still performs well, although its advantage over the other algorithms
has decreased slightly. Sensitivity to delayed tests is part of the explanation of ICET’s per-
formance, but it is not the whole story.

4.2.2 NO GROUPDISCOUNTS

Another hypothesis is that ICET is superior simply because it can handle groups of tests that
share a common cost. In this experiment, we eliminated group discounts for tests that share a
common cost. That is, test costs were not conditional on prior tests. Otherwise, nothing
changed from the baseline experiments. Table 8 summarizes the results of the experiment.
ICET maintains its advantage over the other algorithms.

4.2.3 COMPLEX CLASSIFICATION COSTMATRICES

So far, we have only used simple classification cost matrices, where the penalty for a classi-
fication error is the same for all types of error. This assumption is not inherent in ICET. Each

13. While the other algorithms cannot currently handle delayed tests, it should be possible to alter them in some
way, so that they can handle delayed tests. This comment also extends to groups of tests that share a common
cost. ICET might be viewed as an alteration of EG2 that enables EG2 to handle delayed tests and common
costs.

Table 6: Elapsed run-time for the five algorithms.

Algorithm Average Elapsed Run-Time for Each Dataset — Minutes:Seconds

BUPA Heart Hepatitis Pima Thyroid Average

ICET 15:43 13:14 10:29 28:19 45:25 22:38

EG2 0:1 0:1 0:1 0:3 0:3 0:2

CS-ID3 0:1 0:1 0:1 0:3 0:3 0:2

IDX 0:1 0:1 0:1 0:3 0:3 0:2

C4.5 0:2 0:1 0:1 0:4 0:3 0:2
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element in the classification cost matrix can have a different value. In this experiment, we
explore ICET’s behavior when the classification cost matrix is complex.

We use the term “positive error” to refer to a false positive diagnosis, which occurs when
a patient is diagnosed as being sick, but the patient is actually healthy. Conversely, the term
“negative error” refers to a false negative diagnosis, which occurs when a patient is diag-
nosed as being healthy, but is actually sick. The term “positive error cost” is the cost that is
assigned to positive errors, while “negative error cost” is the cost that is assigned to negative
errors. See Appendix A for examples. We were interested in ICET’s behavior as the ratio of
negative to positive error cost was varied. Table 9 shows the ratios that we examined.
Figure 5 shows the performance of the five algorithms at each ratio.

Our hypothesis was that the difference in performance between ICET and the other algo-
rithms would increase as we move away from the middles of the plots, where the ratio is 1.0,
since the other algorithms have no mechanism to deal with complex classification cost; they
were designed under the implicit assumption of simple classification cost matrices. In fact,
Figure 5 shows that the difference tends todecrease as we move away from the middles.
This is most pronounced on the right-hand sides of the plots. When the ratio is 8.0 (the
extreme right-hand sides of the plots), there is no advantage to using ICET. When the ratio is
0.125 (the extreme left-hand sides of the plots), there is still some advantage to using ICET.

Table 7: Average percentage of standard cost for the no-delay experiment.

Algorithm
Average Classification Cost as Percentage of Standard
± 95% Confidence

Misclassification Error Costs
from 10.00 to 10,000.00

Misclassification Error Costs
from 10.00 to 100.00

ICET 47 ± 6 28± 4

EG2 54± 4 36± 2

CS-ID3 54± 5 39± 3

IDX 54 ± 4 36± 2

C4.5 64± 6 59± 4

Table 8: Average percentage of standard cost for the no-discount experiment.

Algorithm
Average Classification Cost as Percentage of Standard
± 95% Confidence

Misclassification Error Costs
from 10.00 to 10,000.00

Misclassification Error Costs
from 10.00 to 100.00

ICET 46 ± 6 25± 5

EG2 56± 5 42± 3

CS-ID3 59± 5 48± 4

IDX 56 ± 5 42± 3

C4.5 75 ± 5 80 ± 4
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The interpretation of these plots is complicated by the fact that the gap between the algo-
rithms tends to decrease as the penalty for classification errors increases (as we can see in
Figure 3 — in retrospect, we should have held the sum of the negative error cost and the pos-
itive error cost at a constant value, as we varied their ratio). However, there is clearly an
asymmetry in the plots, which we expected to be symmetrical about a vertical line centered
on 1.0 on thex axis. The plots are close to symmetrical for the other algorithms, but they are
asymmetrical for ICET. This is also apparent in Table 10, which focuses on a comparison of
the performance of ICET and EG2, averaged across all five datasets (see the sixth plot in
Figure 5). This suggests that it is more difficult to reduce negative errors (on the right-hand
sides of the plots, negative errors have more weight) than it is to reduce positive errors (on

ICET:

EG2:

CS-ID3:

IDX:

C4.5:

Figure 5: Average cost of classification as a percentage of the standard cost of
classification, with complex classification cost matrices.
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the left-hand sides, positive errors have more weight). That is, it is easier to avoid false pos-
itive diagnoses (a patient is diagnosed as being sick, but the patient is actually healthy) than
it is to avoid false negative diagnoses (a patient is diagnosed as being healthy, but is actually
sick). This is unfortunate, since false negative diagnoses usually carry a heavier penalty, in
real-life. Preliminary investigation suggests that false negative diagnoses are harder to avoid
because the “sick” class is usually less frequent than the “healthy” class, which makes the
“sick” class harder to learn.

4.2.4 POORLY ESTIMATED CLASSIFICATION COST

We believe that it is an advantage of ICET that it is sensitive to both test costs and classifica-
tion error costs. However, it might be argued that it is difficult to calculate the cost of classi-
fication errors in many real-world applications. Thus it is possible that an algorithm that
ignores the cost of classification errors (e.g., EG2, CS-ID3, IDX) may be more robust and
useful than an algorithm that is sensitive to classification errors (e.g., ICET). To address this
possibility, we examine what happens when ICET is trained with a certain penalty for classi-
fication errors, then tested with a different penalty.

Our hypothesis was that ICET would be robust to reasonable differences between the
penalty during training and the penalty during testing. Table 11 shows what happens when
ICET is trained with a penalty of $100 for classification errors, then tested with penalties of

Table 9: Actual error costs for each ratio of negative to positive error cost.

Ratio of Negative to
Positive Error Cost

Negative
Error Cost

Positive
Error Cost

0.125 50 400

0.25 50 200

0.5 50 100

1.0 50 50

2.0 100 50

4.0 200 50

8.0 400 50

Table 10: Comparison of ICET and EG2
with various ratios of negative to positive error cost.

Algorithm
Average Classification Cost as Percentage of Standard
± 95% Confidence, as the Ratio of
Negative to Positive Error Cost is Varied

0.125 0.25 0.5 1.0 2.0 4.0 8.0

ICET 25 ± 10 25± 8 29± 6 29± 4 34± 6 39± 6 39± 6

EG2 39± 5 40± 4 41± 4 44± 3 42± 3 41± 4 40± 5

ICET/EG2 (as %) 64 63 71 66 81 95 98
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$50, $100, and $500. We see that ICET has the best performance of the five algorithms,
although its edge is quite slight in the case where the penalty is $500 during testing.

We also examined what happens (1) when ICET is trained with a penalty of $500 and
tested with penalties of $100, $500, and $1,000 and (2) when ICET is trained with a penalty
of $1,000 and tested with penalties of $500, $1,000, and $5,000. The results show essentially
the same pattern as in Table 11: ICET is relatively robust to differences between the training
and testing penalties, at least when the penalties have the same order of magnitude. This sug-
gests that ICET is applicable even in those situations where the reliability of the estimate of
the cost of classification errors is dubious.

When the penalty for errors on the testing set is $100, ICET works best when the penalty
for errors on the training set is also $100. When the penalty for errors on the testing set is
$500, ICET works best when the penalty for errors on the training set is also $500. When the
penalty for errors on the testing set is $1,000, ICET works best when the penalty for errors
on the training set is $500. This suggests that there might be an advantage in some situations
to underestimating the penalty for errors during training. In other, words ICET may have a
tendency to overestimate the benefits of tests (this is likely due to overfitting the training
data).

4.3 Searching Bias Space

The final group of experiments analyzes ICET’s method for searching in bias space. Section
4.3.1 studies the roles of the mutation and crossover operators. It appears that crossover is
mildly beneficial, compared to pure mutation. Section 4.3.2 considers what happens when
ICET is constrained to search in a binary bias space, instead of a real bias space. This con-
straint actually improves the performance of ICET. We hypothesized that the improvement
was due to a hidden advantage of searching in binary bias space: When searching in binary
bias space, ICET has direct access to the true costs of the tests. However, this advantage can
be available when searching in real bias space, if the initial population of biases is seeded
with the true costs of the tests. Section 4.3.3 shows that this seeding improves the perfor-
mance of ICET.

4.3.1 CROSSOVERVERSUSMUTATION

Past work has shown that a genetic algorithm with crossover performs better than a genetic
algorithm with mutation alone (Grefenstetteet al., 1990; Wilson, 1987). This section

Table 11: Performance when training set classification error cost is $100.

Algorithm
Average Classification Cost as Percentage of
Standard± 95% Confidence, for Testing Set
Classification Error Cost of:

$50 $100 $500

ICET 33 ± 10 41± 10 62± 9

EG2 44± 3 49± 4 63± 6

CS-ID3 49± 5 54± 6 65± 7

IDX 43 ± 3 49± 4 63± 6

C4.5 82± 5 82± 5 78± 7
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attempts to test the hypothesis that crossover improves the performance of ICET. To test this
hypothesis, it is not sufficient to merely set the crossover rate to zero. Since crossover has a
randomizing effect, similar to mutation, we must also increase the mutation rate, to compen-
sate for the loss of crossover (Wilson, 1987; Spears, 1992).

It is very difficult to analytically calculate the increase in mutation rate that is required to
compensate for the loss of crossover (Spears, 1992). Therefore we experimentally tested
three different mutation settings.14 The results are summarized in Table 12. When the cross-
over rate was set to zero, the best mutation rate was 0.10. For misclassification error costs
from $10 to $10,000, the performance of ICET without crossover was not as good as the per-
formance of ICET with crossover, but the difference is not statistically significant. However,
this comparison is not entirely fair to crossover, since we made no attempt to optimize the
crossover rate (we simply used the default value). The results suggest that crossover is
mildly beneficial, but do not prove that pure mutation is inferior.

4.3.2 SEARCH IN BINARY SPACE

ICET searches for biases in a space of  real numbers. Inspired by Aha and Bankert
(1994), we decided to see what would happen when ICET was restricted to a space ofn
binary numbers and 2 real numbers. We modified ICET so that EG2 was given the true cost
of each test, instead of a “pseudo-cost” or bias. For conditional test costs, we used the no-
discount cost (see Section 4.2.2). Then binary digits were used to exclude or include a test.
EG2 was not allowed to use excluded tests in the decision trees that it generated.

To be more precise, let  ben binary numbers and let  ben real num-
bers. For this experiment, we set  to the true cost of thei-th test. In this experiment, GEN-
ESIS does not change . That is,  is constant for a given test in a given dataset. Instead,
GENESIS manipulates the value of  for eachi. The binary number  is used to determine
whether EG2 is allowed to use a test in its decision tree. If , then EG2 is not allowed
to use thei-th test (thei-th attribute). Otherwise, if , EG2 is allowed to use thei-th
test. EG2 uses the ICF equation as usual, with the true costs . Thus this modified version
of ICET is searching through a binary bias space instead of a real bias space.

Our hypothesis was that ICET would perform better when searching in real bias space

14. Each of these three experiments took one week on a Sparc 10, which is why we only tried three settings for
the mutation rate.

Table 12: Average percentage of standard cost for mutation experiment.

ICET
Average Classification Cost as Percentage of
Standard ± 95% Confidence

Crossover
Rate

Mutation
Rate

Misclassification
Error Costs
from 10.00 to 10,000.00

Misclassification
Error Costs
from 10.00 to 100.00

0.6 0.001 49± 7 29± 7

0.0 0.05 51± 8 32± 9

0.0 0.10 50± 8 29± 8

0.0 0.15 51± 8 30± 9

n 2+

B1 … Bn, , C1 … Cn, ,
Ci

Ci Ci
Bi Bi

Bi 0=
Bi 1=

Ci
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than when searching in binary bias space. Table 13 shows that this hypothesis was not con-
firmed. It appears to be better to search in binary bias space, rather than real bias space.
However, the differences are not statistically significant.

When we searched in binary space, we set  to the true cost of thei-th test. GENESIS
manipulated  instead of . When we searched in real space, GENESIS set  to whatever
value it found useful in its attempt to optimize fitness. We hypothesized that this gives an
advantage to binary space search over real space search. Binary space search has direct
access to the true costs of the tests, but real space search only learns about the true costs of
the tests indirectly, by the feedback it gets from the fitness function.

When we examined the experiment in detail, we found that ICET did well on the Heart
Disease dataset when it was searching in binary bias space, although it did poorly when it
was searching in real bias space (see Section 4.1.1). We hypothesized that ICET, when
searching in real space, suffered most from the lack of direct access to the true costs when it
was applied to the Heart Disease dataset. These hypotheses were tested by the next experi-
ment.

4.3.3 SEEDEDPOPULATION

In this experiment, we returned to searching in real bias space, but we seeded the initial pop-
ulation of biases with the true test costs. This gave ICET direct access to the true test costs.
For conditional test costs, we used the no-discount cost (see Section 4.2.2). In the baseline
experiment (Section 4.1), the initial population consists of 50 randomly generated strings,
representing  real numbers. In this experiment, the initial population consists of 49 ran-
domly generated strings and one manually generated string. In the manually generated
string, the firstn numbers are the true test costs. The last two numbers were set to 1.0 (for

) and 25 (for CF). This string is exactly the bias of EG2, as implemented here (Section
3.2).

Our hypotheses were (1) that ICET would perform better (on average) when the initial
population is seeded than when it is purely random, (2) that ICET would perform better (on
average) searching in real space with a seeded population than when searching in binary
space,15 and (3) that ICET would perform better on the Heart Disease dataset when the ini-

Table 13: Average percentage of standard cost for the binary search experiment.

Algorithm
Average Classification Cost as Percentage of
Standard± 95% Confidence

Misclassification
Error Costs
from 10.00 to 10,000.00

Misclassification
Error Costs
from 10.00 to 100.00

ICET — Binary Space 48± 6 26± 5

ICET — Real Space 49± 7 29± 7

EG2 58± 5 43± 3

CS-ID3 61± 6 49± 4

IDX 58 ± 5 43± 3

C4.5 77± 5 82± 4

Ci
Bi Ci Ci

n 2+

ω
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tial population is seeded than when it is purely random. Table 14 appears to support the first
two hypotheses. Figure 6 appears to support the third hypothesis. However, the results are
not statistically significant.16

This experiment raises some interesting questions: Should seeding the population be
built into the ICET algorithm? Should we seed the whole population with the true costs, per-
turbed by some random noise? Perhaps this is the right approach, but we prefer to modify

 (equation (2)), the device by which GENESIS controls the decision tree induction. We
could alter this equation so that it contains both the true costs and some bias parameters.17

This seems to make more sense than our current approach, which deprives EG2 of direct
access to the true costs. We discuss some other ideas for modifying the equation in
Section 5.2.

Incidentally, this experiment lets us answer the following question: Does the genetic
search in bias space do anything useful? If we start with the true costs of the tests and rea-
sonable values for the parameters  and CF, how much improvement do we get from the
genetic search? In this experiment, we seeded the population with an individual that repre-
sents exactly the bias of EG2 (the firstn numbers are the true test costs and the last two num-
bers are 1.0 for  and 25 for CF). Therefore we can determine the value of genetic search by
comparing EG2 with ICET. ICET starts with the bias of EG2 (as a seed in the first genera-

15. Note that it does not make sense to seed the binary space search, since it already has direct access to the true
costs.

16. We would need to go from the current 10 trials (10 random splits of the data) to about 40 trials to make the
results significant. The experiments reported here took a total of 63 days of continuous computation on a Sun
Sparc 10, so 40 trials would require about six more months.

17. This idea was suggested in conversation by K. De Jong.

Table 14: Average percentage of standard cost for the seeded population
experiment.

Algorithm
Average Classification Cost as Percentage of
Standard± 95% Confidence

Misclassification
Error Costs
from 10.00 to 10,000.00

Misclassification
Error Costs
from 10.00 to 100.00

ICET — Seeded
Search in Real Space

46 ± 6 25± 5

ICET — Unseeded
Search in Real Space

49 ± 7 29± 7

ICET — Unseeded
Search in Binary Space

48 ± 6 26± 5

EG2 58± 5 43± 3

CS-ID3 61± 6 49± 4

IDX 58 ± 5 43± 3

C4.5 77± 5 82± 4

ICFi

ω

ω
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tion) and attempts to improve the bias. The score of EG2 in Table 14 shows the value of the
bias built into EG2. The score of ICET in Table 14 shows how genetic search in bias space
can improve the built-in bias of EG2. When the cost of misclassification errors has the same
order of magnitude as the test costs ($10 to $100), EG2 averages 43% of the standard cost,
while ICET averages 25% of the standard cost. When the cost of misclassification errors
ranges from $10 to $10,000, EG2 averages 58% of the standard cost, while ICET averages
46% of the standard cost. Both of these differences are significant with more than 95% con-
fidence. This makes it clear that genetic search is adding value.
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Figure 6: Average cost of classification as a percentage of the standard cost of
classification for the seeded population experiment.
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5. Discussion

This section compares ICET to related work and outlines some possibilities for future work.

5.1 Related Work

There are several other algorithms that are sensitive to test costs (Núñez, 1988, 1991; Tan &
Schlimmer, 1989, 1990; Tan, 1993; Norton, 1989). As we have discussed, the main limita-
tion of these algorithms is that they do not consider the cost of classification errors. We can-
not rationally determine whether a test should be performed until we know both the cost of
the test and the cost of classification errors.

There are also several algorithms that are sensitive to classification error costs (Breiman
et al., 1984; Friedman & Stuetzle, 1981; Hermanset al., 1974; Gordon & Perlis, 1989; Paz-
zani et al., 1994; Provost, 1994; Provost & Buchanan, in press; Knollet al., 1994). None of
these algorithms consider the cost of tests. Therefore they all focus on complex classification
cost matrices, since, when tests have no cost and the classification error matrix is simple, the
problem reduces to maximizing accuracy.

The FIS system (Pipitoneet al., 1991) attempts to find a decision tree that minimizes the
average total cost of the tests required to achieve a certain level of accuracy. This approach
could be implemented in ICET by altering the fitness function. The main distinction between
FIS (Pipitoneet al., 1991) and ICET is that FIS does not learn from data. The information
gain of a test is estimated using aqualitative causal model, instead of training cases. Quali-
tative causal models are elicited from domain experts, using a special knowledge acquisition
tool. When training data are available, ICET can be used to avoid the need for knowledge
acquisition. Otherwise, ICET is not applicable and the FIS approach is suitable.

Another feature of ICET is that it does not perform purely greedy search. Several other
authors have proposed non-greedy classification algorithms (Tchenget al., 1989; Ragavan &
Rendell, 1993; Norton, 1989; Schaffer, 1993; Rymon, 1993; Seshu, 1989). In general, these
results show that there can be an advantage to more sophisticated search procedures. ICET is
different from these algorithms in that it uses a genetic algorithm and it is applied to mini-
mizing both test costs and classification error costs.

ICET uses a two-tiered search strategy. At the bottom tier, EG2 performs a greedy search
through the space of classifiers. On the second tier, GENESIS performs a non-greedy search
through a space of biases. The idea of a two-tiered search strategy (where the first tier is
search in classifier space and the second tier is search in bias space) also appears in (Provost,
1994; Provost & Buchanan, in press; Aha & Bankert, 1994; Schaffer, 1993). Our work goes
beyond Aha and Bankert (1994) by considering search in a real bias space, rather than search
in a binary space. Our work fits in the general framework of Provost and Buchanan (in
press), but differs in many details. For example, their method of calculating cost is a special
case of ours (Section 2.3).

Other researchers have applied genetic algorithms to classification problems. For exam-
ple, Frey and Slate (1991) applied a genetic algorithm (in particular, a learning classifier sys-
tem (LCS)) to letter recognition. However, Fogarty (1992) obtained higher accuracy using a
simple nearest neighbor algorithm. More recent applications of genetic algorithms to classi-
fication have been more successful (De Jonget al., 1993). However, the work described here
is the first application of genetic algorithms to the problem of cost-sensitive classification.

We mentioned in Section 2.1 that decision theory may be used to define the optimal solu-
tion to the problem of cost-sensitive classification. However, searching for the optimal solu-
tion is computationally infeasible (Pearl, 1988). We attempted to take a decision theoretic



COST-SENSITIVE CLASSIFICATION: EMPIRICAL EVALUATION

397

approach to this problem by implementing the AO* algorithm (Pearl, 1984) and designing a
heuristic evaluation function to speed up the AO* search (Lirov & Yue, 1991). We were
unable to make this approach execute fast enough to be practical.

We also attempted to apply genetic programming (Koza, 1993) to the problem of cost-
sensitive classification. Again, we were unable to make this approach execute fast enough to
be practical, although it was faster than the AO* approach.

The cost-sensitive classification problem, as we have treated it here, is essentially a
problem in reinforcement learning (Sutton, 1992; Karakoulas, in preparation). The average
cost of classification, measured as described in Section 2.2, is a reward/punishment signal
that could be optimized using reinforcement learning techniques. This is something that
might be explored as an alternative approach.

5.2 Future Work

This paper discusses two types of costs, the cost of tests and the cost of misclassification
errors. These two costs have been treated together in decision theory, but ICET is the first
machine learning system that handles both costs together. The experiments in this paper have
compared ICET to other machine learning systems that can handle test costs (Núñez, 1988,
1991; Tan & Schlimmer, 1989, 1990; Tan, 1993; Norton, 1989), but we have not compared
ICET to other machine learning systems that can handle classification error costs (Breiman
et al., 1984; Friedman & Stuetzle, 1981; Hermanset al., 1974; Gordon & Perlis, 1989; Paz-
zaniet al., 1994; Provost, 1994; Provost & Buchanan, in press; Knollet al., 1994). In future
work, we plan to address this omission. A proper treatment of this issue would make this
paper too long.

The absence of comparison with machine learning systems that can handle classification
error costs has no impact on most of the experiments reported here. The experiments in this
paper focussed on simple classification cost matrices (except for Section 4.2.3). When the
classification cost matrix is simple and the cost of tests is ignored, minimizing cost is exactly
equivalent to maximizing accuracy (see Section 2.3). Therefore, C4.5 (which is designed to
maximize accuracy) is a suitable surrogate for any of the systems that can handle classifica-
tion error costs.

We also did not experiment with setting the test costs to zero. However, the behavior of
ICET when the penalty for misclassification errors is very high (the extreme right-hand sides
of the plots in Figure 3) is necessarily the same as its behavior when the cost of tests is very
low, since ICET is sensitive to the relative differences between test costs and error costs, not
the absolute costs. Therefore (given the behavior we can observe in the extreme right-hand
sides of the plots in Figure 3) we can expect that the performance of ICET will tend to con-
verge with the performance of the other algorithms as the cost of tests approaches zero.

One natural addition to ICET would be the ability to output an “I don’t know” class. This
is easily handled by the GENESIS component, by extending the classification cost matrix so
that a cost is assigned to classifying a case as “unknown”. We need to also make a small
modification to the EG2 component, so that it can generate decision trees with leaves
labelled “unknown”. One way to do this would be to introduce a parameter that defines a
confidence threshold. Whenever the confidence in a certain leaf drops below the confidence
threshold, that leaf would be labelled “unknown”. This confidence parameter would be made
accessible to the GENESIS component, so that it could be tuned to minimize average classi-
fication cost.

The mechanism in ICET for handling conditional test costs has some limitations. As it is
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currently implemented, it does not handle the cost of attributes that are calculated from other
attributes. For example, in the Thyroid dataset (Appendix A.5), the FTI test is calculated
based on the results of the TT4 and T4U tests. If the FTI test is selected, we must pay for the
TT4 and T4U tests. If the TT4 and T4U tests have already been selected, the FTI test is free
(since the calculation is trivial). The ability to deal with calculated test results could be
added to ICET with relatively little effort.

ICET, as currently implemented, only handles two classes of test results: tests with
“immediate” results and tests with “delayed” results. Clearly there can be a continuous range
of delays, from seconds to years. We have chosen to treat delays as distinct from test costs,
but it could be argued that a delay is simply another type of test cost. For example, we could
say that a group of blood tests shares the common cost of a one-day wait for results. The cost
of one of the blood tests is conditional on whether we are prepared to commit ourselves to
doing one or more of the other tests in the group, before we see the results of the first test.
One difficultly with this approach to handling delays is the problem of assigning a cost to the
delay. How much does it cost to bring a patient in for two blood samples, instead of one? Do
we include the disruption to the patient’s life in our estimate of the cost? To avoid these
questions, we have not treated delays as another type of test cost, but our approach does not
readily handle a continuous range of delays.

The cost of a test can be a function of several things: (1) It can be a function of the prior
tests that have been selected. (2) It can be a function of the actual class of the case. (3) It can
be a function of other aspects of the case, where information about these other aspects may
be available through other tests. (4) It can be a function of the test result. This list seems
comprehensive, but there may be some possibilities we have overlooked. Let us consider
each of these four possibilities.

First, the cost of a test can be a function of the prior tests that have been selected. ICET
handles a special case of this, where a group of tests shares a common cost. As it is currently
implemented, ICET does not handle the general case. However, we could easily add this
capability to ICET by modifying the fitness function.

Second, the cost of a test can be a function of the actual class of the case. For example, a
test for heart disease might involve heavy exercise (Appendix A.2). If the patient actually
has heart disease, the exercise might trigger a heart attack. This risk should be included in
the cost of this particular test. Thus the cost of this test should vary, depending on whether
the patient actually has heart disease. We have not implemented this, although it could easily
be added to ICET by modifying the fitness function.

Third, the cost of a test can be a function of the results of other tests. For example, draw-
ing blood from a newborn is more costly than drawing blood from an adult. To assign a cost
to a blood test, we need to know the age of the patient. The age of the patient can be repre-
sented as the result of another test — the “patient-age” test. This is slightly more complex
than the preceding cases, because we must now insure that the blood test is always accompa-
nied with the patient-age test. We have not implemented this, although it could be added to
ICET.

Fourth, the cost of a test can be a function of the test result. For example, injecting a
radio-opaque die for an X-ray might cause an allergic reaction in the patient. This risk should
be added to the cost of the test. This makes the cost of the test a function of one of the possi-
ble outcomes of the test. In a situation like this, it may be wise to precede the injection of the
die with a screening test for allergies. This could be as simple as asking a question to the
patient. This question may have no relevance at all for determining the correct diagnosis of
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the patient, but it may serve to reduce the average cost of classification. This case is similar
to the third case, above. Again, we have not implemented this, although it could be added to
ICET.

Attribute selection in EG2, CS-ID3, and IDX shares a common form. We may view
attribute selection as a function from  to , which takes as inputn information
gain values  (one for each attribute) and generates as output the index of one of
the attributes. We may view  and  as parameters in the attribute selection func-
tion. These parameters may be used to control the bias of the attribute selection procedure. In
this view, ICET uses GENESIS to tune the parameters of EG2’s attribute selection function.
In the future, we would like to investigate more general attribute selection functions. For
example, we might use a neural network to implement a function from  to .
GENESIS would then be used to tune the weights in the neural network.18 The attribute
selection function might also benefit from the addition of an input that specifies the depth of
the decision tree at the current node, where the information gain values are measured. This
would enable the bias for a test to vary, depending on how many tests have already been
selected.

Another area for future work is to explore the parameter settings that control GENESIS
(Table 4). There are many parameters that could be adjusted in GENESIS. We think it is sig-
nificant that ICET works well with the default parameter settings in GENESIS, since it
shows that ICET is robust with respect to the parameters. However, it might be possible to
substantially improve the performance of ICET by tuning some of these parameters. A recent
trend in genetic algorithm research is to let the genetic algorithm adjust some of its own
parameters, such as mutation rate and crossover rate (Whitleyet al., 1993). Another possibil-
ity is to stop breeding when the fitness levels stop improving, instead of stopping after a
fixed number of generations. Provost and Buchanan (in press) use a goodness measure as a
stopping condition for the bias space search.

6. Conclusions

The central problem investigated here is the problem of minimizing the cost of classification
when the tests are expensive. We argued that this requires assigning a cost to classification
errors. We also argued that a decision tree is the natural form of knowledge representation
for this type of problem. We then presented a general method for calculating the average cost
of classification for a decision tree, given a decision tree, information on the calculation of
test costs, a classification cost matrix, and a set of testing data. This method is applicable to
standard classification decision trees, without regard to how the decision tree is generated.
The method is sensitive to test costs, sensitive to classification error costs, capable of han-
dling conditional test costs, and capable of handling delayed tests.

We introduced ICET, a hybrid genetic decision tree induction algorithm. ICET uses a
genetic algorithm to evolve a population of biases for a decision tree induction algorithm.
Each individual in the population represents one set of biases. The fitness of an individual is
determined by using it to generate a decision tree with a training dataset, then calculating the
average cost of classification for the decision tree with a testing dataset.

We analyzed the behavior of ICET in a series of experiments, using five real-world med-
ical datasets. Three groups of experiments were performed. The first group looked at the
baseline performance of the five algorithms on the five datasets. ICET was found to have sig-

18. This idea was suggested in conversation by M. Brooks.
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nificantly lower costs than the other algorithms. Although it executes more slowly, an aver-
age time of 23 minutes (for a typical dataset) is acceptable for many applications, and there
is the possibility of much greater speed on a parallel machine. The second group of experi-
ments studied the robustness of ICET under a variety of modifications to its input. The
results show that ICET is robust. The third group of experiments examined ICET’s search in
bias space. We discovered that the search could be improved by seeding the initial popula-
tion of biases.

In general, our research is concerned with pragmatic constraints on classification prob-
lems (Provost & Buchanan, in press). We believe that many real-world classification prob-
lems involve more than merely maximizing accuracy (Turney, in press). The results
presented here indicate that, in certain applications, a decision tree that merely maximizes
accuracy (e.g., trees generated by C4.5) may be far from the performance that is possible
with an algorithm that considers such realistic constraints as test costs, classification error
costs, conditional test costs, and delayed test results. These are just a few of the pragmatic
constraints that are faced in real-world classification problems.
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Appendix A. Five Medical Datasets

This appendix presents the test costs for five medical datasets, taken from the Irvine collec-
tion (Murphy & Aha, 1994). The costs are based on information from the Ontario Ministry of
Health (1992). Although none of the medical data were gathered in Ontario, it is reasonable
to assume that other areas have similar relative test costs. For our purposes, the relative costs
are important, not the absolute costs.

A.1 BUPA Liver Disorders

The BUPA Liver Disorders dataset was created by BUPA Medical Research Ltd. and it was
donated to the Irvine collection by Richard Forsyth.19 Table 15 shows the test costs for the
BUPA Liver Disorders dataset. The tests in group A are blood tests that are thought to be
sensitive to liver disorders that might arise from excessive alcohol consumption. These tests
share the common cost of $2.10 for collecting blood. The target concept was defined using
the sixth column: Class 0 was defined as “drinks < 3” and class 1 was defined as “drinks≥
3”. Table 16 shows the general form of the classification cost matrix that was used in the
experiments in Section 4. For most of the experiments, the classification error cost equals the
positive error cost equals the negative error cost. The exception is in Section 4.2.3, for the
experiments with complex classification cost matrices. The terms “positive error cost” and
“negative error cost” are explained in Section 4.2.3. There are 345 cases in this dataset, with
no missing values. Column seven was originally used to split the data into training and test-

19. The BUPA Liver Disorders dataset has the URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liver-
disorders/bupa.data.
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ing sets. We did not use this column, since we required ten different random splits of the
data. In our ten random splits, the ten training sets all had 230 cases and the ten testing sets
all had 115 cases.

A.2 Heart Disease

The Heart Disease dataset was donated to the Irvine collection by David Aha.20 The princi-
pal medical investigator was Robert Detrano, of the Cleveland Clinic Foundation. Table 17
shows the test costs for the Heart Disease dataset. A nominal cost of $1.00 was assigned to
the first four tests. The tests in group A are blood tests that are thought to be relevant for
heart disease. These tests share the common cost of $2.10 for collecting blood. The tests in
groups B and C involve measurements of the heart during exercise. A nominal cost of $1.00
was assigned for tests after the first test in each of these groups. The class variable has the
values “buff” (healthy) and “sick”. There was a fifteenth column, which specified the class
variable as “H” (healthy), “S1”, “S2”, “S3”, or “S4” (four different types of “sick”), but we
deleted this column. Table 18 shows the classification cost matrix. There are 303 cases in

20. The Heart Disease dataset has the URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/heart-disease/
cleve.mod.

Table 15: Test costs for the BUPA Liver Disorders dataset.

Test Description Group Cost Delayed

1 mcv mean corpuscular volume A $7.27 if first test in group A,
$5.17 otherwise

yes

2 alkphos alkaline phosphotase A $7.27 if first test in group A,
$5.17 otherwise

yes

3 sgpt alamine aminotransferase A $7.27 if first test in group A,
$5.17 otherwise

yes

4 sgot aspartate aminotransferase A $7.27 if first test in group A,
$5.17 otherwise

yes

5 gammagt gamma-glutamyl transpeptidase A $9.86 if first test in group A,
$7.76 otherwise

yes

6 drinks number of half-pint equivalents of
alcoholic beverages drunk per day

diagnostic class: “drinks < 3”
or “drinks ≥ 3”

-

7 selector field used to split data into two sets not used -

Table 16: Classification costs for the BUPA Liver Disorders dataset.

Actual Class Guess Class Cost

0 (drinks < 3) 0 (drinks < 3) $0.00

0 (drinks < 3) 1 (drinks ≥ 3) Positive Error Cost

1 (drinks ≥ 3) 0 (drinks < 3) Negative Error Cost

1 (drinks ≥ 3) 1 (drinks ≥ 3) $0.00
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this dataset. We deleted all cases for which there were missing values. This reduced the
dataset to 296 cases. In our ten random splits, the training sets had 197 cases and the testing
sets had 99 cases.

A.3 Hepatitis Prognosis

The Hepatitis Prognosis dataset was donated by Gail Gong.21 Table 19  shows the test costs
for the Hepatitis dataset. Unlike the other four datasets, this dataset deals with prognosis, not
diagnosis. With prognosis, the diagnosis is known, and the problem is to determine the likely

Table 17: Test costs for the Heart Disease dataset.

Test Description Group Cost Delayed

1 age age in years $1.00 no

2 sex patient’s gender $1.00 no

3 cp chest pain type $1.00 no

4 trestbps resting blood pressure $1.00 no

5 chol serum cholesterol A $7.27 if first test in group A,
$5.17 otherwise

yes

6 fbs fasting blood sugar A $5.20 if first test in group A,
$3.10 otherwise

yes

7 restecg resting electrocardiograph $15.50 yes

8 thalach maximum heart rate
achieved

B $102.90 if first test in group B,
$1.00 otherwise

yes

9 exang exercise induced angina C $87.30 if first test in group C,
$1.00 otherwise

yes

10 oldpeak ST depression induced by
exercise relative to rest

C $87.30 if first test in group C,
$1.00 otherwise

yes

11 slope slope of peak exercise ST
segment

C $87.30 if first test in group C,
$1.00 otherwise

yes

12 ca number of major vessels
coloured by fluoroscopy

$100.90 yes

13 thal 3 = normal; 6 = fixed defect;
7 = reversible defect

B $102.90 if first test in group B,
$1.00 otherwise

yes

14 num diagnosis of heart disease diagnostic class -

Table 18: Classification costs for the Heart Disease dataset.

Actual Class Guess Class Cost

buff buff $0.00

buff sick Positive Error Cost

sick buff Negative Error Cost

sick sick $0.00
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outcome of the disease. The tests that were assigned a nominal cost of $1.00 either involve
asking a question to the patient or performing a basic physical examination on the patient.
The tests in group A share the cost of $2.10 for collecting blood. Note that, although per-
forming a histological examination of the liver costs $81.64, asking the patient whether a
histology was performed only costs $1.00. Thus the prognosis can exploit the information
conveyed by a decision (to perform a histological examination) that was made during the
diagnosis. The class variable has the values 1 (die) and 2 (live). Table 20 shows the classifi-
cation costs. The dataset contains 155 cases, with many missing values. In our ten random
splits, the training sets had 103 cases and the testing sets had 52 cases. We filled in the miss-
ing values, using a simple single nearest neighbor algorithm (Ahaet al., 1991). The missing
values were filled in using the whole dataset, before the dataset was split into training and

21. The Hepatitis Prognosis dataset has the URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/hepatitis/
hepatitis.data.

Table 19: Test costs for the Hepatitis Prognosis dataset.

Test Description Group Cost Delayed

1 class prognosis of hepatitis prognostic class: live or die -

2 age age in years $1.00 no

3 sex gender $1.00 no

4 steroid patient on steroids $1.00 no

5 antiviral patient on antiviral $1.00 no

6 fatigue patient reports fatigue $1.00 no

7 malaise patient reports malaise $1.00 no

8 anorexia patient anorexic $1.00 no

9 liver big liver big on physical exam $1.00 no

10 liver firm liver firm on physical exam $1.00 no

11 spleen palpable spleen palpable on physical $1.00 no

12 spiders spider veins visible $1.00 no

13 ascites ascites visible $1.00 no

14 varices varices visible $1.00 no

15 bilirubin bilirubin — blood test A $7.27 if first test in group A,
$5.17 otherwise

yes

16 alk phosphate alkaline phosphotase A $7.27 if first test in group A,
$5.17 otherwise

yes

17 sgot aspartate aminotransferase A $7.27 if first test in group A,
$5.17 otherwise

yes

18 albumin albumin — blood test A $7.27 if first test in group A,
$5.17 otherwise

yes

19 protime protime — blood test A $8.30 if first test in group A,
$6.20 otherwise

yes

20 histology was histology performed? $1.00 no
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testing sets. For the nearest neighbor algorithm, the data were normalized so that the mini-
mum value of a feature was 0 and the maximum value was 1. The distance measure used was
the sum of the absolute values of the differences. The difference between two values was
defined to be 1 if one or both of the two values was missing.

A.4 Pima Indians Diabetes

The Pima Indians Diabetes dataset was donated by Vincent Sigillito.22 The data were col-
lected by the National Institute of Diabetes and Digestive and Kidney Diseases. Table 21
shows the test costs for the Pima Indians Diabetes dataset. The tests in group A share the
cost of $2.10 for collecting blood. The remaining tests were assigned a nominal cost of
$1.00. All of the patients were females at least 21 years old of Pima Indian heritage. The
class variable has the values 0 (healthy) and 1 (diabetes). Table 22 shows classification costs.
The dataset includes 768 cases, with no missing values. In our ten random splits, the training
sets had 512 cases and the testing sets had 256 cases.

22. The Pima Indians Diabetes dataset has the URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pima-
indians-diabetes/pima-indians-diabetes.data.

Table 20: Classification costs for the Hepatitis Prognosis dataset.

Actual Class Guess Class Cost

1 (die) 1 (die) $0.00

1 (die) 2 (live) Negative Error Cost

2 (live) 1 (die) Positive Error Cost

2 (live) 2 (live) $0.00

Table 21: Test costs for the Pima Indians Diabetes dataset.

Test Description Group Cost Delayed

1 times pregnant number of times pregnant $1.00 no

2 glucose tol glucose tolerance test A $17.61 if first test in group A,
$15.51 otherwise

yes

3 diastolic bp diastolic blood pressure $1.00 no

4 triceps triceps skin fold thickness $1.00 no

5 insulin serum insulin test A $22.78 if first test in group A,
$20.68 otherwise

yes

6 mass index body mass index $1.00 no

7 pedigree diabetes pedigree function $1.00 no

8 age age in years $1.00 no

9 class diagnostic class diagnostic class -
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A.5 Thyroid Disease

The Thyroid Disease dataset was created by the Garavan Institute, Sydney, Australia. The
file was donated by Randolf Werner, obtained from Daimler-Benz. Daimler-Benz obtained
the data from J.R. Quinlan.23 Table 23 shows the test costs for the Thyroid Disease dataset.
A nominal cost of $1.00 was assigned to the first 16 tests. The tests in group A share the cost
of $2.10 for collecting blood. The FTI test involves a calculation based on the results of the
TT4 and T4U tests. This complicates the calculation of the costs of these three tests, so we
chose not to use the FTI test in our experiments. The class variable has the values 1
(hypothyroid), 2 (hyperthyroid), and 3 (normal). Table 24 shows the classification costs.
There are 3772 cases in this dataset, with no missing values. In our ten random splits, the
training sets had 2515 cases and the testing sets had 1257 cases.

23. The Thyroid Disease dataset has the URL ftp://ftp.ics.uci.edu/pub/machine-learning-databases/thyroid-dis-
ease/ann-train.data.

Table 22: Classification costs for the Pima Indians Diabetes dataset.

Actual Class Guess Class Cost

0 (healthy) 0 (healthy) $0.00

0 (healthy) 1 (diabetes) Positive Error Cost

1 (diabetes) 0 (healthy) Negative Error Cost

1 (diabetes) 1 (diabetes) $0.00

Table 23: Test costs for the Thyroid Disease dataset.

Test Description Group Cost Delayed

1 age age in years $1.00 no

2 sex gender $1.00 no

3 on thyroxine patient on thyroxine $1.00 no

4 query thyroxine maybe on thyroxine $1.00 no

5 on antithyroid on antithyroid medication $1.00 no

6 sick patient reports malaise $1.00 no

7 pregnant patient pregnant $1.00 no

8 thyroid surgery history of thyroid surgery $1.00 no

9 I131 treatment patient on I131 treatment $1.00 no

10 query hypothyroid maybe hypothyroid $1.00 no

11 query hyperthyroid maybe hyperthyroid $1.00 no

12 lithium patient on lithium $1.00 no

13 goitre patient has goitre $1.00 no

14 tumour patient has tumour $1.00 no

15 hypopituitary patient hypopituitary $1.00 no
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