
National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Types of Cost in Inductive Concept Learning*

P. Turney
July 2000

Copyright 2001 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

*published in Proceedings of the Cost-Sensitive Learning Workshop at the
17th ICML-2000 Conference, Stanford, CA. July 2, 2000 NRC 43671.





Types of Cost in Inductive Concept Learning

Peter Turney PETER.TURNEY@NRC.CA

Institute for Information Technology, National Research Council of Canada, M-50 Montreal Road, Ottawa, Ontario,
Canada, K1A 0R6

Abstract

Inductive concept learning is the task of learning
to assign cases to a discrete set of classes. In
real-world applications of concept learning, there
are many different types of cost involved. The
majority of the machine learning literature
ignores all types of cost (unless accuracy is
interpreted as a type of cost measure). A few
papers have investigated the cost of
misclassification errors. Very few papers have
examined the many other types of cost. In this
paper, we attempt to create a taxonomy of the
different types of cost that are involved in
inductive concept learning. This taxonomy may
help to organize the literature on cost-sensitive
learning. We hope that it will inspire researchers
to investigate all types of cost in inductive
concept learning in more depth.

1.  Introduction

This paper is an attempt to list the different costs that may
be involved in inductive concept learning. The paper
assumes the standard inductive concept learning scenario.
We have a set of cases (i.e., examples, vectors,
observations) represented as vectors in an abstract space
of features (i.e., tests, measurements, sensor values,
attribute values). Each case belongs to a class (i.e., the
feature space is partitioned into a finite set of distinct
subsets; there is a function mapping from feature space
into a finite set of symbols). The learning algorithm
generates hypotheses that may be used to predict the class
of  new cases.

In the following, “cost” should be interpreted in its most
abstract sense. Cost may be measured in many different
units, such as monetary units (dollars), temporal units
(seconds), or abstract units of utility (utils). In medical
diagnosis, cost may include such things as the quality of
life of the patient, in so far as such things can be
(approximately) measured. In image recognition, cost
might be measured in terms of the CPU time required for
certain computations. We take “benefit” to be equivalent
to negative cost.

Often we are uncertain about costs. We can represent this
uncertainty with a probability distribution over a range of
possible costs. This applies to all of the following costs.
In this paper, for ease of exposition, we will assume that
we are certain about costs.

2.  Cost of Misclassification Errors

Suppose there are C classes. In general, we may have a
C x C matrix, where the element in row i and column j
specifies the cost of assigning a case to class i, when it
actually belongs in class j. Typically (but not necessarily)
the cost is zero when i equals j. In a minor variation on
this approach, we may have a rectangular matrix, where
there is an extra row for the cost of assigning a case to the
unknown (or “too-difficult-for-this-learner”) class.

2.1  Constant Error Cost

The cost of a certain type of error (the value of a cell in
the cost matrix) may be a constant (the same value for all
cases). This is the most commonly investigated type of
cost; for example, see Breiman et al. (1984) or Hermans
et al. (1974).

If the cost is zero if  i equals j and one otherwise, then our
cost measure is the familiar error-rate measure. If the cost
is one if i equals j and zero otherwise, then our cost
measure (in this case, our “benefit measure”) is the
familiar accuracy measure.

2.2  Conditional Error Cost

The cost of a certain type of error may be conditional on
the circumstances.

2.2.1  ERROR COST CONDITIONAL ON INDIVIDUAL CASE

The cost of a classification error may depend on the
nature of the particular case. For example, in detection of
fraud, the cost of missing a particular case of fraud will
depend on the amount of money involved in that
particular case (Fawcett and Provost, 1996, 1997).
Similarly, the cost of a certain kind of mistaken medical
diagnosis may be conditional on the particular patient
who is misdiagnosed. For example, the misdiagnosis may
be more costly in elderly patients.
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It may be possible to represent this situation with a
constant error cost by distinguishing sub-classes. For
example, instead of two classes, “sick” and “healthy”,
there could be three classes, “sick-and-young”, “sick-and-
elderly”, and “healthy”. This is an imperfect solution
when the cost varies continuously, rather than discretely.

2.2.2  ERROR COST CONDITIONAL ON TIME OF
CLASSIFICATION

In a time-series application, the cost of a classification
error may depend on the timing. Consider a classifier that
monitors sensors that measure a complex system, such as
a manufacturing process or a medical device. Suppose
that the classifier is intended to signal an alarm if a
problem has occurred or will soon occur. The sensor
readings must be classified as either “alarm” or “no-
alarm”. The cost of the classification depends on whether
the classification is correct and also on the timeliness of
the classification. The alarm is not useful unless there is
sufficient time for an adequate response to the alarm
(Fawcett and Provost, 1996, 1997, 1999).

Again, it may be possible to represent this situation with a
constant error cost by distinguishing sub-classes. Instead
of two classes, “alarm” and “no-alarm”, there could be
“alarm-with-lots-of-time”, “alarm-with-a-little-time”,
“alarm-with-no-time”, and “no-alarm”. Again, this is an
imperfect solution when the cost varies continuously as a
function of the timeliness of the alarm.

2.2.3  ERROR COST CONDITIONAL ON CLASSIFICATION OF
OTHER CASES

In some applications, the cost of making a classification
error with one case may depend on whether errors have
been made with other cases. The familiar precision and
recall measures, widely used in the information retrieval
literature, may be seen as cost measures of this type (van
Rijsbergen, 1979). For example, consider an information
retrieval task, where we are searching for a document on a
certain topic. Suppose that we would be happy if we
could find even one document on this topic. If we are
given a collection of documents to classify as “relevant”
or “not-relevant” for the given topic, then the cost of
mistakenly assigning a relevant document to the not-
relevant class depends on whether there are any other
relevant documents that we have correctly classified.

As another example, in activity monitoring, if you issue
an alarm twice in succession for the same problem, the
benefit of the second alarm is less than the benefit of the
first alarm, assuming both alarms are correct
classifications (Fawcett and Provost, 1999). This is
related to Section 2.2.2.

2.2.4  ERROR COST CONDITIONAL ON FEATURE VALUE

The cost of making a classification error with a particular
case may depend on the value of one or more features of
the case.

3.  Cost of Tests

Each test (i.e., attribute, measurement, feature) may have
an associated cost. For example, in medical diagnosis, a
blood test has a cost.

Turney (1995a) points out that we can only rationally
determine whether it is worthwhile to pay the cost of a
test when we know the cost of misclassification errors. If
the cost of misclassification errors is much greater than
the cost of tests, then it is rational to purchase all tests that
seem to have some predictive value. If the cost of
misclassification errors is much less than the cost of tests,
then it is not rational to purchase any tests.

3.1  Constant Test Cost

The cost of performing a certain test may be a constant.
Each test has a different cost, but the cost of a given test is
the same for all cases (Núñez, 1988, 1991; Tan, 1991a,
1991b, 1993).

3.2  Conditional Test Cost

The cost of performing a certain test may be conditional
on the circumstances surrounding the test.

3.2.1  TEST COST CONDITIONAL ON PRIOR TEST
SELECTION

The cost of performing a certain test on a given patient
may be conditional on the previous tests that have been
chosen for the patient. For example, a group of blood tests
ordered together may be cheaper than the sum of the costs
of each test considered by itself, since the tests share
common costs, such as the cost of collecting blood from
the patient (Turney, 1995a).

3.2.2  TEST COST CONDITIONAL ON PRIOR TEST RESULTS

The cost of performing a certain test on a patient may be
conditional on the results of previous tests. For example,
the cost of a blood test is conditional on the patient's age.
Thus a blood test must be  preceded by a “patient-age”
test, which determines the cost of the blood test.

3.2.3  TEST COST CONDITIONAL ON TRUE CLASS OF CASE

The cost of performing a certain test on a patient may be
conditional on the correct diagnosis of the patient. For
example, the cost of an exercise stress test on a patient
may be conditional on whether the patient has heart
disease. The stress test could cause heart failure, which
adds to the total cost of the test.

3.2.4  TEST COST CONDITIONAL ON TEST SIDE-EFFECTS

The cost of performing a certain test on a patient may be
conditional on possible side-effects of the test. For
example, some patients are allergic to the dies that are
used in certain radiological procedures. One side-effect of
such a radiological test is an allergic reaction, which may
increase the cost of the test.



3

3.2.5  TEST COST CONDITIONAL ON INDIVIDUAL CASE

The cost of performing a certain test may depend on
idiosyncratic properties of the individual case.

3.2.6  TEST COST CONDITIONAL ON TIME OF TEST

The cost of performing a certain test may depend on the
timing of the test.

4.  Cost of Teacher

Suppose we have a practically unlimited supply of
unclassified examples (i.e., cases, feature vectors), but it
is expensive to determine the correct class of an example.
For example, every human is a potential case for medical
diagnosis, but we require a physician to determine the
correct diagnosis for each person. A learning algorithm
could seek to reduce the cost of teaching by actively
selecting cases for the teacher. A wise learner would
classify the easy cases by itself and reserve the difficult
cases for its teacher.

If a learner has no choice in the cases that it must classify,
then it can only rationally determine whether it should
pay the cost of a teacher when it knows the cost of
misclassification errors. A rational learner would, for each
new case, calculate the expected cost of classifying the
case by itself versus the cost of asking a teacher to
classify the case. This scenario can be handled by using a
rectangular cost matrix, as we discussed in Section 2.

In a more interesting scenario, the learner can explore a
(possibly infinite) set of unclassified (unlabelled)
examples and select examples to ask the teacher to
classify. This kind of learning problem is known as active
learning. In this scenario, we can rationally seek to
minimize the cost of the teacher even when we do not
know the cost of misclassification errors, if we assume
that asking the teacher costs more than a correct
classification (otherwise you would always ask the
teacher) but less than an incorrect classification
(otherwise you would never ask the teacher). However,
we may be able to make better decisions if we have more
information about the cost of misclassification errors.

4.1  Constant Teacher Cost

In the simplest situation, the cost of asking a teacher to
classify a case is assumed to be the same for all cases.
This is the usual assumption in the active learning
literature (Cohn et al., 1995, 1996; Krogh and Vedelsby,
1995; Hasenjager and Ritter, 1998).

4.2  Conditional Teacher Cost

In a more complex situation, the cost of asking a teacher
to classify a case may vary with the circumstances of the
case. For example, the cost may increase with the
complexity of the case. On the other hand, the teacher

may choose to penalize the student for asking the class of
a trivial case.

5.  Cost of Intervention

Suppose we have data from a manufacturing process.
Each feature might be a measurement of an aspect of the
process, while the classes might be different types of
products. A learning algorithm could induce rules that
predict the type of product, given the corresponding
features. Suppose we wish to intervene in the
manufacturing process, to make more of one type of
product. We could give the induced rules a causal
interpretation.

For example, assume that we have a continuous process,
such as petroleum distillation. Suppose a rule says, “If
sensor A has a value greater than B, then the yield of
product type C will increase.”  If this rule has causal
significance, then we may be able to increase the amount
of product type C by intervening in the process so that
sensor A consistently has a value greater than B. There
may be a cost associated with this intervention. Each
feature may have a corresponding cost, where the cost
represents the effort required to intervene in the
manufacturing process at the particular point represented
by the feature (Verdenius, 1991).

This is somewhat different from the idea of assigning a
cost to a feature based on the effort required to measure
the feature. Instead, the cost represents the effort required
to manipulate the process in order to alter the feature's
value.

5.1  Constant Intervention Cost

In the simplest scenario, the cost of intervention for a
given feature is the same for all cases (Verdenius, 1991).

5.2  Conditional Intervention Cost

In a more complex scenario, the cost of intervention for a
feature may depend on the particular case (for a
continuous process, “observation” may be a more
appropriate term than “case”). For example, if a sensor is
observed to be near its average value, it may be relatively
easy to manipulate the process in order to move the
average up or down slightly. However, if the sensor is
observed to be far from its average value, it may be quite
difficult to move it even further from its average value
(van Someren et al., 1997).

6.  Cost of Unwanted Achievements

When we are dealing with the scenario described in
Section 5, where induced rules are used to intervene in a
causal process, the nature of misclassification error cost
changes. Suppose a rule says, “If sensor A has a value
greater than B, then the yield of product type C will
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increase.” If we are using this rule to make predictions,
then there is a misclassification error cost associated with
incorrect predictions. If we are using this rule to intervene
in a manufacturing process, then there is a similar cost
associated with “unwanted achievements” (van Someren
et al., 1997).

Suppose that the rule makes successful predictions for
90% of the cases for which the antecedent of the
condition (“sensor A has a value greater than B”) is
satisfied. If we can give the rule a causal interpretation,
then we may expect that, if we manipulate the process so
that sensor A is always greater than B, then the yield of
product type C will increase 90% of the time. The
remaining 10%, where our manipulation fails to increase
the yield of product type C, are a cost of using this rule.
These 10% are “unwanted achievements” of the rule (van
Someren et al., 1997). (The terminology “unwanted
achievements” seems somewhat odd, but this is the
terminology used in van Someren et al., 1997, and we are
reluctant to confuse the issue by introducing new
terminology.)

6.1  Constant Unwanted Achievement Cost

If the cost of unwanted achievements is constant, then we
can use a cost matrix, as with the cost of misclassification
errors (Section 2).

6.2  Conditional Unwanted Achievement Cost

The cost of unwanted achievements may vary with factors
such as the market demand for the unwanted
achievement, the cost of disposing of the unwanted
achievement, the cost of repairing or refining the
unwanted achievement, or the quantity of the unwanted
achievement.

7.  Cost of Computation

Computers are a limited resource, so it is meaningful to
consider the cost of computation. The various types of
computational complexity are essentially different forms
of cost that we may wish to take into account.

We may distinguish the cost of computation by whether it
is static or dynamic, or by whether it is incurred during
training or during testing.

7.1  Static Complexity

A computer program, considered as a static object, has a
measurable complexity.

7.1.1  SIZE COMPLEXITY

The size complexity of a computer program may be
measured in several ways, such as the number of lines of
code, or the number of bytes. Since the code takes up

memory space in the computer, there is clearly a
corresponding cost.

Turney (1995b) shows how it is possible, under certain
circumstances, to treat size complexity as a kind of test
cost (Section 3). In this case, each feature that is to be
measured corresponds to a block of code that computes
the feature.  The cost of measuring a feature is
proportional to the size of the corresponding block of
code. The goal is to minimize the total size of the code,
which is approximately the same as minimizing the total
cost of the features. (It is only approximate, because
blocks of code can combine in non-additive ways.)

7.1.2  STRUCTURAL COMPLEXITY

The structural complexity of a computer program might
be measured by the number of loops in the program, the
depth of nesting of the loops, or the number of recursive
function calls. Structural complexity has a cost; for
example, software with high structural complexity is more
difficult for software engineers to maintain.

7.2  Dynamic Complexity

The dynamic complexity of a program is the execution
time or memory space consumed by the program. Unlike
static complexity, dynamic complexity is a function of the
input to the program.

7.2.1  TIME COMPLEXITY

Time complexity may be measured in many different
ways. Even with a specific architecture, there are many
possible choices. For example, the time complexity of a
Turing machine might be measured by the number of
movements of the read/write head, by the number of
direction changes of the read/write head, or by the number
of state transitions of the finite state machine.

For example, a learning algorithm that discovers new
features may take into account the time complexity of
calculating the new features (Fawcett, 1993). In this
example, time complexity is a kind of test cost
(Section 3).

7.2.2  SPACE COMPLEXITY

The space complexity of a program is the amount of
memory it requires for execution with a given input.
Clearly memory has a cost. There are well-known (in the
theory of computational complexity) trade-offs between
time complexity and space complexity.

7.3  Training Complexity

The cost of computational complexity may be incurred
during training, when the algorithm is learning to classify.

7.4  Testing Complexity

The cost of computational complexity may be incurred
during testing, when the algorithm is making predictions.
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Case-based reasoning, for example, typically has a low
dynamic complexity during training, but a high dynamic
complexity during testing. On the other hand, neural
networks typically have a high dynamic complexity
during training, but a low dynamic complexity during
testing.

8.  Cost of Cases

There is often a cost associated with acquiring cases (i.e.,
examples, feature vectors). Typically a machine learning
researcher is given a small set of cases, and acquiring
further cases is either very expensive or practically
impossible. This is why many papers are concerned with
the “learning curve” (performance as a function of the
sample size) of a machine learning algorithm.

8.1  Cost of Cases for a Batch Learner

Suppose that we plan to use a batch learning algorithm to
build a model that will be embedded in a certain software
system. The model will be built once, using a set of
training data. The software system will perform some
task, using the embedded model,  a certain number of
times over the operational lifetime of the system.

For a given learning algorithm, if we can estimate (1) the
learning curve (the relation between training set size and
misclassification error rate), (2) the expected number of
classifications that the learned model will make when
embedded in the operational system, over the lifetime of
the system, (3) the cost of misclassification errors, and (4)
the cost of acquiring cases for training data, then we can
calculate the combined cost of training (building the
model) and operating (using the model) as a function of
training set size. We can then optimize the size of the
training set to minimize this combined cost (Provost et
al., 1999).

Alternatively, an adaptive learning system, given (1) the
expected number of classifications that the learned model
will make when embedded in the operational system, (2)
the cost of misclassification errors, and (3) the cost of
acquiring cases for training data, could adjust its learning
curve (fast but naïve versus slow but sophisticated) and
training set size to optimize the combined cost of training
and operating.

8.2  Cost of Cases for an Incremental Learner

 Suppose that we plan to use an incremental learning
algorithm to build a model that will be embedded in a
certain software system. Unlike the batch learning
scenario, the model will be continuously refined over the
operational lifetime of the system. However, it is likely
that the software system cannot be operationally deployed
without any training. We must decide how many training
cases we should give to the incremental learner before it
becomes sufficiently reliable to deploy the software

system. To make this decision rationally, we need to
assign a cost to acquiring cases for training data. The
situation is similar to the batch learning situation, except
that we suppose that the misclassification error rate will
continue to decrease after the software system is
deployed.

9.  Human-Computer Interaction Cost

There is a human cost to using inductive learning
software. This cost includes finding the right features for
describing the cases, finding the right parameters for
optimizing the performance of the learning algorithm,
converting the data to the format required by the learning
algorithm, analyzing the output of the learning algorithm,
and incorporating domain knowledge into the learning
algorithm or the learned model.

9.1  HCI Cost of Data Engineering

By “data engineering”, we mean the steps required to
prepare the data so that they are suitable for a standard
inductive concept learning algorithm. This includes
finding the right features and converting the data to the
required format. Although there has been some discussion
of the issues involved in data engineering (Turney et al.,
1995), we are not aware of any attempt to measure the
HCI costs involved in data engineering.

9.2  HCI Cost of Parameter Setting

Most learning algorithms have a number of parameters
that effect their performance, often by adjusting their bias.
There is a cost involved in determining the best parameter
settings. Often cross-validation is used to set the
parameters (Breiman et al., 1984). Again, we are not
aware of any attempt to measure the HCI costs of
parameter setting.

9.3  HCI Cost of Analysis of Learned Models

There is a human cost associated with understanding
induced models, which is particularly important when the
aim of inductive concept learning is to gain insight into
the physical process that generated the data, rather than to
predict the class of future cases. This is often discussed in
the decision tree induction literature, where it is (crudely)
measured by the number of nodes in the induced decision
tree (Mingers, 1989).

9.4  HCI Cost of Incorporating Domain Knowledge

Several researchers have examined ways of embedding
domain knowledge in a learning algorithm (Opitz and
Shavlik, 1997).  It has often been observed, in the context
of expert system construction, that acquiring domain
knowledge from a domain expert is a major bottleneck.
We suppose that it would also be a bottleneck in the
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context of inductive concept learning, but we are not
aware of any attempt to measure the cost.

10.  Cost of Instability

When an induced model is used to gain understanding of
the underlying process that generated the data, it is
important that the model should be stable (Turney, 1995c;
Domingos, 1998). By stability, we mean that, if two
batches of data are generated from the same physical
process, then the two corresponding induced models
should be similar. If the two models are dissimilar, the
learning algorithm is unstable. This is related to the
scientific principle that experiments should be repeatable.
Stability may be seen as a benefit and instability as a cost.

Stability may be increased by acquiring more data (using
a larger training set) or by increasing the bias of the
learning algorithm (Turney, 1995c). Acquiring more data
can be costly (Section 8). Increasing the bias of an
algorithm can increase the misclassification error rate
(Section 2), unless the bias is suitable for the given
learning task. Domingos (1998) presents a meta-learning
algorithm, CMM, that can be used to trade off accuracy
(Section 2), comprehensibility (Section 9.3), and stability.

11.  Conclusion

In this paper, we have presented a taxonomy of types of
cost in inductive concept learning. It is our hope that this
taxonomy may serve to organize the literature on cost-
sensitive learning and to inspire research into under-
investigated types of cost.

We do not claim that this taxonomy is complete or
unique. No doubt we have omitted important types of
cost, and certainly other researches would prefer other
taxonomies.

As we worked on this paper, it gradually became clear to
us that the cost of misclassification errors occupies a
unique position in the taxonomy. All of the other costs
that we have discussed here can only be rationally
evaluated in the context of the misclassification error cost
(for the cost of intervention, the unwanted achievement
cost is analogous to the misclassification error cost).

In decision theory (Pearl, 1988) and in the uncertainty in
artificial intelligence literature (Pipitone et al., 1991), test
costs are generally considered in conjunction with
misclassification error costs. However, in the inductive
concept learning literature, it is striking that this has
largely been overlooked. For example, before Turney
(1995a), all of the papers on inductive concept learning
with test costs did not consider test costs in the context of
misclassification error costs (Núñez, 1988, 1991; Tan,
1991a, 1991b, 1993). Yet, if all test costs are greater than
the misclassification error cost, then it is never rational to
do any tests; and if the misclassification error cost is
much greater than the cost of any test, then it is rational to

do all of the tests, unless you are certain that they are
irrelevant.

Similarly, as far as we know, none of the papers on active
learning (Cohn et al., 1995, 1996; Krogh and Vedelsby,
1995, Hasenjager and Ritter, 1998) consider the
misclassification error cost, although we must know
something about the misclassification error cost in order
to rationally determine whether to pay the cost of the
teacher.
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