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Abstract

Automatic classification is one of the basic tasks required in any pattern recognition and human

computer interaction application. In this paper we discuss training probabilistic classifiers with labeled

and unlabeled data. We provide a new analysis that shows under what conditions unlabeled data can be

used in learning to improve classification performance. We also show that if the conditions are violated,

using unlabeled data can be detrimental to classification performance. We discuss the implications

of this analysis to a specific type of probabilistic classifiers, Bayesian networks, and propose a new

structure learning algorithm that can utilize unlabeled data to improve classification. Finally, we show

how the resulting algorithms are successfully employed in two applications related to human-computer

interaction and pattern recognition; facial expression recognition and face detection.

Index Terms

Semi-supervised learning, generative models, facial expression recognition, face detection, unlabeled

data, Bayesian network classifiers.

I. I NTRODUCTION

Many pattern recognition and human computer interaction applications require the design of

classifiers. Classifiers are either designed from expert knowledge or from training data. Training

data can be either labeled or unlabeled. In many applications, obtaining fully labeled training

sets is a difficult task; labeling is usually done using human expertise, which is expensive, time

consuming and error prone. Obtaining unlabeled data is usually easier since it involves collecting

data that are known to belong to one of the classes without having to label it. For example, in

facial expression recognition, it is easy to collect videos of people displaying expressions, but it

is very tedious and difficult to label the video to the corresponding expressions. Learning with

both labeled and unlabeled data is known assemi-supervised learning.

We start with a general analysis of semi-supervised learning for probabilistic classifiers. The

goal of the analysis is to show under what conditions unlabeled data can be used to improve

the classification performance. We review maximum likelihood estimation when learning with

labeled and unlabeled data. We provide an asymptotic analysis of the value of unlabeled data

to show that unlabeled data help in reducing the estimator’s variance. We show that when the

assumed probabilistic model matches the data generating distribution, the reduction in variance

leads to an improved classification accuracy; a situation that has been analyzed before [1, 2].



However, we show that when the assumed probabilistic model does not match the true data

generating distribution, using unlabeled data can be detrimental to the classification accuracy;

a phenomenon that has been generally ignored or misinterpreted by previous researchers who

observed it empirically before [1, 3, 4]. This new result emphasizes the importance of using

correct modeling assumption when learning with unlabeled data.

We also present in this paper an analysis of semi-supervised learning for classifiers based on

Bayesian networks. While in many classification problems simple structures learned with just

labeled data have been used successfully (e.g., the Naive-Bayes classifier [5, 6]), such structures

fail when trained with both labeled and unlabeled data [7]. Bayesian networks are probabilistic

classifiers, in which the joint distribution of the features and class variables is specified using a

graphical model [8]. The graphical representation has several advantages. Among them are the

existence of algorithms for inferring the class label, the ability to intuitively represent fusion

of different modalities with the graph structure [9, 10], the ability to perform classification and

learning without complete data, and most importantly, the ability to learn with both labeled

and unlabeled data. We discuss possible strategies for choosing a good graphical structure and

argue that in many problems, it is necessary to search for such a structure. Most structure search

algorithms are driven by likelihood based cost functions, which are potentially inadequate for

classification [11, 12] due to their attempt to maximize the overall likelihood of the data, while

largely ignoring the important quantity for classification; the class a-posteriori likelihood. As

such, we propose a classification driven stochastic structure search algorithm (SSS), which

combines both labeled and unlabeled data to train the classifier and to search for a better

performing Bayesian network structure.

Following the new understanding of the limitations imposed by the properties of unlabeled

data, and equipped with an algorithm to overcome these limitations, we apply the Bayesian

network classifiers to two human-computer interaction problems: facial expression recognition

and face detection. In both of these applications, obtaining unlabeled training data is relatively

easy. However, in both cases, labeling of the data is difficult. For facial expression recognition,

accurate labeling requires expert knowledge [13] and for both applications, labeling of a large

amount of data is time consuming for the human labeler. We show that Bayesian network

classifiers trained with structure search benefit from semi-supervised learning in both of these

problems.



The remainder of the paper is organized as follows. In Section II we discuss the value

of unlabeled data and illustrate the possibility of unlabeled data to degrade the classification

performance. In Section III we propose possible solutions for Bayesian network classifiers to

benefit from unlabeled data by learning the network structure. We introduce a new stochastic

structure search algorithm and empirically show its ability to learn with both labeled and

unlabeled data using datasets from the UCI machine learning repository [14]. In Section IV-

A we describe the components of our real-time face recognition system, including the real-time

face tracking system and the features extracted for classification of facial expressions. We perform

experiments of our facial expression recognition system using two databases and show the ability

to utilize unlabeled data to enhance the classification performance, even with a small labeled

training set. Experiments of Bayesian network classifiers for face detection are given in Section

IV-B. We have concluding remarks in Section V.

II. L EARNING A CLASSIFIER FROM LABELED AND UNLABELED TRAINING DATA

The goal is to classify an incoming vector of observablesX. Each instantiation ofX is a

sample. There exists aclass variableC; the values ofC are theclasses. We want to build

classifiersthat receive a samplex and output a class. We assume 0-1 loss, and consequently

our objective is to minimize the probability of error (classification error). If we knew exactly

the joint distributionp(C,X), the optimal rule would be to choose the class value with the

maximum a-posteriori probability,p(C|x) [15]. This classification rule attains the minimum

possible classification error, called theBayes error.

We take that the probabilities of(C,X), or functions of these probabilities, are estimated from

data and then “plugged” into the optimal classification rule. We assume that a parametric model

p(C,X|θ) is adopted. An estimate ofθ is denoted byθ̂ and we denote throughout bŷθ∗ the

asymptotic value of̂θ. If the distributionp(C,X) belongs to the familyp(C,X|θ), we say the

“model is correct”; otherwise we say the “model is incorrect”. We use “estimation bias” loosely

to mean the expected difference betweenp(C,X) and the estimatedp
(
C,X|θ̂

)
.

We consider the following scenario. A sample(c,x) is generated fromp(C,X). The valuec

is then either revealed, and the sample is alabeledone; or the valuec is hidden, and the sample

is anunlabeledone. The probability that any sample is labeled, denoted byλ, is fixed, known,



and independent of the samples1. Thus, the same underlying distributionp(C,X) generates both

labeled and unlabeled data. It is worth noting that we assume the revealed label is correct and

is not corrupted by noise; the case of noisy labels has been studied in various works (such as

[17–20], chapter 2 of [21]). Extending our analysis to the noisy labeled case is beyond the scope

of this paper.

Given a set ofNl labeled samples andNu unlabeled samples, we use maximum likelihood for

estimatingθ̂. We consider distributions that decomposep(C,X|θ) as p(X|C, θ) p(C|θ), where

both p(X|C, θ) and p(C|θ) depend explicitly onθ. This is known as agenerative model. The

log-likelihood function of a generative model for a dataset with labeled and unlabeled data is:

L(θ) = Ll(θ) + Lu(θ) + log
(
λNl(1− λ)Nu

)
, (1)

whereLu(θ) =
∑Nl+Nu

j=(Nl+1) log [p(xj|θ)], andLl(θ) =
∑Nl

i=1 log
[∏

C(p(C = c′|θ) p(xi|c′, θ))I{C=c′}(ci)
]

with IA(Z) the indicator function: 1 ifZ ∈ A; 0 otherwise.Ll(θ) andLu(θ) are the likelihoods

of the labeled and unlabeled data, respectively.

Statistical intuition suggests that it is reasonable to expect an average improvement in classi-

fication performance for any increase in the number of samples (labeled or unlabeled). Indeed,

the existing literature presents several empirical and theoretical findings that do indicate positive

value in unlabeled data. Cooper and Freeman [22] were optimistic enough about unlabeled data

so as to title their work as “On the asymptotic improvement in the outcome of supervised learning

provided by additional nonsupervised learning” . Other early studies, such as [23–25] further

strengthened the assertion that unlabeled data should be used whenever available. Castelli [26]

and Ratsaby and Venkatesh [27] showed that unlabeled data are always asymptotically useful

for classification. Krishnan and Nandy [19, 20] extended the results of [25] to provide efficiency

results for discriminant and logistic-normal models for samples that are labeled stochastically. It

should be noted that such previous theoretical work makes the critical assumption thatp(C,X)

belongs to the family of modelsp(C,X|θ) (that is, the “model is correct”).

There has also been recent applied work on semi-supervised learning [1, 3–5, 28–32]. Overall,

these publications advance an optimistic view of the labeled-unlabeled data problem, where

unlabeled data can be profitably used whenever available.

1This is different from [3] and [16], whereλ is a parameter that can be set.
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Fig. 1. Naive Bayes classifier from data generated from a Naive Bayes model (a) and a TAN model (b). Each point summarizes

10 runs of each classifier on testing data; bars cover 30 to 70 percentiles.

However, a more detailed analysis of current applied results does reveal some puzzling aspects

of unlabeled data. Researchers have reported cases where the addition of unlabeled data degraded

the performance of the classifiers when compared to the case in which unlabeled data is not

used. These cases were not specific to one type of data, but for different kinds, such as sensory

data [1], computer vision [5], and text classification [3, 4].

To explain the phenomenon, we began by performing extensive experiments providing em-

pirical evidence that degradation of performance is directly related to incorrect modeling as-

sumptions [33–35]. Consider Figure 1, which shows two typical results. Here we estimated the

parameters of a Naive Bayes classifier with 10 features using the Expectation-Maximization (EM)

algorithm [36] with varying numbers of labeled and unlabeled data. Figure 1 shows classification

performance when the underlying model actually has a Naive Bayes structure (left), and when the

underlying model is not Naive Bayes (right). The result is clear: when we estimate a Naive Bayes

classifier with data generated from a Naive Bayes model, more unlabeled data help; when we

estimate a Naive Bayes classifier with data that do not come from a corresponding model, more

unlabeled data can degrade performance (even for the case of 30 labeled and 30000 unlabeled

samples!).

To provide a theoretical explanation to the empirical evidence, we derived the asymptotic prop-

erties of maximum likelihood estimators for the labeled-unlabeled case. The analysis, presented

in the remainder of this section, provides a unified explanation of the behavior of classifiers for

both cases; when the model is correct and when it is not.



A. The value of unlabeled data in maximum likelihood estimation

We base our analysis on the work of White [37] on the properties of maximum likelihood

estimators – properties that hold for the case of model correctness and model incorrectness. In

[37], Theorems 3.1, 3.2, and 3.3 showed that under suitable regularity conditions2, maximum

likelihood estimators converge to a parameter setθ∗ that minimizes the Kullback-Liebler (KL)

distance between the assumed family of distributions,p(Y |θ), and the true distribution,p(Y ).

White [37] also shows that the estimator is asymptotically Normal, i.e.,
√

N(θ̂N − θ∗) ∼
N (0, CY (θ)) asN (the number of samples) goes to infinity.CY (θ) is a covariance matrix equal

to AY (θ)−1BY (θ)AY (θ)−1, evaluated atθ∗, whereAY (θ) andBY (θ) are matrices whose(i, j)’th

element (i, j = 1, ..., d, whered is the number of parameters) is given by:

AY (θ) = E
[
∂2 log p(Y |θ) /∂θiθj

]
,

BY (θ) = E[(∂ log p(Y |θ) /∂θi)(∂ log p(Y |θ) /∂θj)] . (2)

Using these definitions and general result, we obtain:

Theorem 1:Consider supervised learning where samples are randomly labeled with proba-

bility λ. Assuming identifiability for the marginal distributions ofX, then the value ofθ∗, the

limiting value of maximum likelihood estimates, is:

arg max
θ

(λE[log p(C,X|θ)] + (1− λ)E[log p(X|θ)]) , (3)

where the expectations are with respect top(C,X). Additionally,
√

N(θ̂N − θ∗) ∼ N (0, Cλ(θ))

asN →∞, whereCλ(θ) is given by:

Cλ(θ) = Aλ(θ)
−1Bλ(θ)Aλ(θ)

−1 with, (4)

Aλ(θ) =
(
λA(C,X)(θ) + (1− λ)AX(θ)

)
and

Bλ(θ) =
(
λB(C,X)(θ) + (1− λ)BX(θ)

)
,

evaluated atθ∗, where AX(θ), A(C,X)(θ), BX(θ) and B(C,X)(θ) are theA and B defined in

Expression 2, withY replaced by(C,X) or X. 2

Proof. Denote bỹC a random variable that assumes the same values ofC plus the “unlabeled”

valueu. We havep
(
C̃ 6= u

)
= λ. The observed samples are realizations of(C̃,X), so we can

2The conditions ensure the existence of the derivatives defined below and the expectations used in Theorem 1.



write the probability distribution of a sample compactly as follows:

p̃
(
C̃ = c,X = x

)
= (λp(C = c,X = x))I{C̃ 6=u}(c) ((1− λ)p(X = x))I{C̃=u}(c) , (5)

where p(X) is a mixture density obtained fromp(C,X). Accordingly, the parametric model

adopted for(C̃,X) is:

p̃
(
C̃ = c,X = x|θ

)
= (λp(C = c,X = x|θ))I{C̃ 6=u}(c) ((1− λ)p(X = x|θ))I{C̃=u}(c) . (6)

From White’s results stated above, we know thatθ∗ maximizesE
[
log p̃

(
C̃,X|θ

)]
(expectation

with respect top̃
(
C̃,X

)
). We have:

E
[
log p̃

(
C̃,X|θ

)]
= E

[
I{C̃ 6=u}(C̃) (log λ + log p(C,X|θ)) + I{C̃=u}(C̃) (log(1− λ) + log p(X|θ))

]

= λ log λ + (1− λ) log(1− λ) +

E
[
I{C̃ 6=u}(C̃) log p(C,X|θ)

]
+ E

[
I{C̃=u}(C̃) log p(X|θ)

]
.

The first two terms of this expression are irrelevant to maximization with respect toθ. The last

two terms are equal to

λE
[
log p(C,X|θ) |C̃ 6= u

]
+ (1− λ)E

[
log p(X|θ) |C̃ = u

]
.

As we havep̃
(
C̃,X|C̃ 6= u

)
= p(C,X) and p̃

(
X|C̃ = u

)
= p(X) (Expression (5)), the last

expression is equal to

λE[log p(C,X|θ)] + (1− λ)E[log p(X|θ)] ,

where the last two expectations are now with respect top(C,X). Thus we obtain Expression (3).

Expression (4) follows directly from White’s theorem and Expression (3), replacingY by (C,X)

andX where appropriate.2

A few observations can be made from the theorem. First, Expression (3) indicates that semi-

supervised learning can be viewed asymptotically as a “convex” combination of supervised

and unsupervised learning. The objective function for semi-supervised learning is a combi-

nation of the objective function for supervised learning (E[log p(C,X|θ)]) and the objective

function for unsupervised learning (E[log p(X|θ)]). Second, because the asymptotic covariance

matrix is positive definite asBY (θ) is positive definite andAY (θ) is symmetric for anyY ,

θA(θ)−1BY (θ)A(θ)−1θT = w(θ)BY (θ)w(θ)T > 0, where w(θ) = θAY (θ)−1. We see that



asymptotically, an increase inN , the number of labeled and unlabeled samples, will lead to a

reduction in the variance of̂θ. Such a guarantee can perhaps be the basis for the optimistic view

that unlabeled data should always be used to improve classification accuracy. In the following,

we show this view is valid when the model is correct, and that it is not always valid when the

model is incorrect.

B. Model is correct

Suppose first that the family of distributionsP (C,X|θ) contains the distributionP (C,X);

that is, P (C,X|θ>) = P (C,X) for someθ>. Under this condition, the maximum likelihood

estimator is consistent, thus,θ∗λ=1 = θ∗λ=0 = θ> given identifiability. Thus,θ∗λ = θ> for any

0 ≤ λ ≤ 1.

Shahshahani and Landgrebe [1] suggested using the Taylor expansion of the classification

error aroundθ> to link the decrease in variance associated with unlabeled data to a decrease

in classification error. They show that the smaller the variance of the estimator, the smaller the

classification error, and since the variance of the estimator is smaller as the number of samples

increases (labeled or unlabeled), adding the unlabeled data would reduce classification error. A

more formal, but less general, argument is presented by Ganesalingam and McLachlan [25] as

they compare the relative efficiency of labeled and unlabeled data. Castelli [26] also derives a

Taylor expansion of the classification error, to study estimation of the mixing factors,p(C = c);

the derivation is very precise and states all the required assumptions.

C. Model is incorrect

We now study the more realistic scenario where the distributionP (C,X) does not belong to

the family of distributionsP (C,X|θ). In view of Theorem 1, it is perhaps not surprising that

unlabeled data can have the deleterious effect observed occasionally in the literature. Suppose

that θ∗u 6= θ∗l and thate(θ∗u) > e(θ∗l ), as in the example in the next section, whereθ∗l = θ∗λ=1

and θ∗u = θ∗λ=0.
3 If we observe a large number of labeled samples, the classification error is

3We have to handle a difficulty withe(θ∗u): given only unlabeled data, there is no information to decide the labels for decision

regions, and then the classification error is 1/2 [26]. Instead of defininge(θ∗u) as the error forλ = 0, we could definee(θ∗u) as

the error ofλ approaching0.



approximatelye(θ∗l ). If we then collect more samples, most of which unlabeled, we eventually

reach a point where the classification error approachese(θ∗u). So, the net result is that we started

with classification error close toe(θ∗l ), and by adding a large number of unlabeled samples,

classification performance degraded. The basic fact here is that estimation and classification bias

are affected differently by different values ofλ. Hence, a necessary condition for this kind of

performance degradation is thate(θ∗u) 6= e(θ∗l ); a sufficient condition is thate(θ∗u) > e(θ∗l ).

1) Example: Bivariate Gaussians with spurious correlation:The previous discussion alluded

to the possibility thate(θ∗u) > e(θ∗l ) when the model is incorrect. To the skeptical reader who

still may think that this will not occur in practice, or that numerical algorithms, such as EM, are

the cause of performance degradation, we analytically show how this occurs with an example

of obvious practical significance. More examples are provided in [38] and [34].

We will assume that bivariate Gaussian samples(X, Y ) are observed. The only modeling error

is an ignored dependency between observables. This type of modeling error is quite common in

practice and has been studied in the context of supervised learning [39, 40]. Is it often argued

that ignoring some dependencies can be a positive decision, as we may see a reduction in the

number of parameters to be estimated and a reduction on the variance of estimates [41].

Example 1:Consider real-valued observations(X,Y ) taken from two classesc′ and c′′. We

know thatX andY are Gaussian variables, and we know their means and variances given the

classC. The mean of(X,Y ) is (0, 3/2) conditional on{C = c′}, and (3/2, 0) conditional on

{C = c′′}. Variances forX and for Y conditional onC are equal to 1. We do not know, and

have to estimate, the mixing factorη = p(C = c′). The data is sampled from a distribution with

mixing factor equal to 3/5.

We want to obtain a Naive-Bayes classifier that can approximatep(C|X,Y ); Naive-Bayes

classifiers are based on the assumption thatX andY are independent givenC. Suppose thatX

andY are independent conditional on{C = c′} but thatX andY are dependent conditional on

{C = c′′}. This dependency is manifested by a correlation

ρ = E[(X − E[X|C = c′′])(Y − E[Y |C = c′′])|C = c′′] = 4/5

. If we knew the value ofρ, we would obtain an optimal classification boundary on the plane

X×Y . This optimal classification boundary is shown in Figure 2, and is defined by the function

y =
(
40x− 87 +

√
5265− 2160x + 576x2 + 576 log(100/81)

)
/32.



Under the incorrect assumption thatρ = 0, the classification boundary is then linear:

y = x + 2 log((1− η̂)/η̂)/3,

and consequently it is a decreasing function ofη̂. With labeled data we can easily obtain̂η

(a sequence of Bernoulli trials); thenη∗l = 3/5 and the classification boundary is given by

y = x− 0.27031.

Note that the (linear) boundary obtained with labeled data is not the best possible linear

boundary. We can in fact find the best possible linear boundary of the formy = x + γ. For any

γ, the classification errore(γ) is

3

5

∫ ∞

−∞

∫ x+γ

−∞
N





 0

3/2


 , diag[1, 1]


 dydx+

2

5

∫ ∞

−∞

∫ ∞

x+γ

N





 3/2

0


 ,


 1 4/5

4/5 1





 dydx.

By interchanging differentiation with respect toγ with integration, it is possible to obtain

de(γ)/dγ in closed form. The second derivatived2e(γ)/dγ2 is positive whenγ ∈ [−3/2, 3/2];

consequently there is a single minimum that can be found by solvingde(γ)/dγ = 0. We find the

minimizing γ to be(−9 +2
√

45/4 + log(400/81))/4 ≈ −0.45786. The liney = x− 0.45786 is

the best linear boundary for this problem. If we consider the set of lines of the formy = x + γ,

we see that the farther we go from the best line, the larger the classification error. Figure 2

shows the linear boundary obtained with labeled data and the best possible linear boundary. The

boundary from labeled data is “above” the best linear boundary.

Now consider the computation ofη∗u. Using Theorem 1 the asymptotic estimate with unlabeled

data is:

η∗u = arg max
η∈[0,1]

∫ ∞

−∞

∫ ∞

−∞
log

(
ηN([0, 3/2]T , diag[1, 1]) + (1− η)N([3/2, 0]T , diag[1, 1])

)


(3/5)N([0, 3/2]T , diag[1, 1]) + (2/5)N





 3/2

0


 ,


 1 4/5

4/5 1








 dydx.

The second derivative of this double integral is always negative (as can be seen interchanging

differentiation with integration), so the function is concave and there is a single maximum. We

can search for the zero of the derivative of the double integral with respect toη. We obtain this

value numerically,η∗u ≈ 0.54495. Using this estimate, the linear boundary from unlabeled data

is y = x− 0.12019. This line is “above” the linear boundary from labeled data, and, given the

previous discussion, leads to a larger classification error than the boundary from labeled data.
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Fig. 2. Graphs for Example 1. (a) contour plots of the mixturep(X, Y ), the optimal classification boundary (quadratic curve)

and the best possible classification boundary of the formy = x + γ. (b) the same contour plots, and the best linear boundary

(lower line), the linear boundary obtained from labeled data (middle line) and the linear boundary obtained from unlabeled data

(upper line); thus the classification error of the classifier obtained with unlabeled data is larger than that of the classifier obtained

with labeled data.

We have:e(γ) = 0.06975; e(θ∗l ) = 0.07356; e(θ∗u) = 0.08141. The boundary obtained from

unlabeled data is also shown in Figure 2.2

This example suggests the following situation. Suppose we collect a large numberNl of labeled

samples fromp(C, X), with η = 3/5 and ρ = 4/5. The labeled estimates form a sequence of

Bernoulli trials with probability3/5, so the estimates quickly approachη∗l (the variance of̂η

decreases as6/(25Nl)). If we add a very large amount of unlabeled data to our data,η̂ approaches

η∗u and the classification error increases.

D. Finite sample effects

The asymptotic analysis of semi-supervised learning suffices to show the fundamental problem

that can occur when learning with unlabeled data. The focus on asymptotics is adequate as we

want to eliminate phenomena that can vary from dataset to dataset. Ife(θ∗l ) is smaller thane(θ∗u),

then a large enough labeled dataset can be dwarfed by a much larger unlabeled dataset — the

classification error using the whole dataset can be larger than the classification error using the

labeled data only. But what occurs with finite sample size datasets? We performed extensive

experiments with real and artificial datasets of various sizes [7, 34]. Throughout our experiments

we used the EM algorithm to maximize the likelihood (Expression (1)), and we started the
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Fig. 3. (a) LU-graphs for the example with two Gaussian observables. Each sample in each graph is the average of 100 trials;

classification error was obtained by testing in 10000 labeled samples drawn from the correct model. (b) Naive Bayes classifiers

from data generated from a TAN model (introduced in Section III) with 49 observables (each variable with 2 to 4 values);

points in the graphs summarize 10 runs on testing data (bars cover 30 to 70 percentiles). (c) Same graph as (b), enlarged. Note

that unlabeled data does lead to a significant improvement in performance when added to 30 or 300 labeled samples. There is

performance degradation in the presence of 3000 labeled samples.

EM algorithm with the parameters obtained using labeled data, as these starting points can be

obtained in closed-form.

To visualize the effect of labeled and unlabeled samples, we suggest that the most profitable

strategy is to fix thepercentageof unlabeled samples (λ) among all training samples. We then

plot classification error against the number of training samples. Call such a graph aLU-graph.

Example 2:Consider a situation where we have a binary class variableC with values c′

and c′′, and p(C = c′) = 0.4017. We also have two real-valued observablesX and Y with

distributions:

p(X|c′) = N(2, 1), p(X|c′′) = N(3, 1),

p(Y |c′, x) = N(2, 1), p(Y |c′′, x) = N(1 + 2x, 1).

There is dependency betweenY and X conditional on{C = c′′}. Suppose we build a Naive

Bayes classifier for this problem. Figure 3(a) shows the LU-graphs for 0% unlabeled sam-

ples, 50% unlabeled samples and 99% unlabeled samples, averaging over a large ensemble of

classifiers. The asymptotes converge to different values. Suppose then that we started with 50

labeled samples as our training data. Our classification error would be about 7.8%, as we can



see in the LU-graph for 0% unlabeled data. Suppose we added 50 labeled samples; we would

obtain a classification error of about 7.2%. Now suppose we added 100unlabeledsamples. We

would move from the 0% LU-graph to the 50% LU-graph. Classification error would increase

to 8.2%! And if we then added 9800 unlabeled samples, we would move to the 99% LU-graph,

with classification error about 16.5% — more than twice the error we had with just 50 labeled

samples.2

It should be noted that in difficult classification problems, where LU-graphs decrease very

slowly, unlabeled data may improve classification performance for certain regions of the LU

graphs. Problems with a large number of observables and parameters should require more training

data, so we can expect that such problems benefit more consistently from unlabeled data. Figures

3(b-c) illustrate this possibility for a Naive-Bayes classifier with 49 features. Another possible

phenomenon is that the addition of a substantial number of unlabeled samples may reduce

variance and decrease classification error, but an additional, much larger, pool of unlabeled data

can eventually add enough bias so as to increase classification error. Such a situation is likely

to have happened in some of the results reported by Nigam et al [3], where classification errors

go up and down as more unlabeled samples are added.

In summary, semi-supervised learning displays an odd failure of robustness: for certain mod-

eling errors, more unlabeled data can degrade classification performance. Estimation bias is

the central factor in this phenomenon, as the level of bias depends on the ratio of labeled to

unlabeled samples. Most existing theoretical results on semi-supervised learning are based on

the assumption of no modeling error, and consequently bias has not been an issue so far.

III. SEMI-SUPERVISED LEARNING FORBAYESIAN NETWORK CLASSIFIERS

We now turn our attention to the implication of the previous analysis to Bayesian network

classifiers. As stated before, we chose Bayesian network classifiers for several reasons; classi-

fication is possible with missing data in general and unlabeled data in particular, the graphical

representation is intuitive and can be easily expanded to add different features and modalities,

and there are efficient algorithms for inference.

A Bayesian network [8] is composed of a directed acyclic graph in which every node is

associated with a variableXi and with a conditional distributionp(Xi|Πi), whereΠi denotes

the parents ofXi in the graph. The joint probability distribution is factored to the collection of



conditional probability distributions of each node in the graph as:

p(X1, ..., Xn) =
n∏

i=1

p(Xi|Πi) .

The directed acyclic graph is thestructure, and the distributionsp(Xi|Πi) represent theparam-

etersof the network. Consider now that data generated by a distributionp(C,X) are collected.

We say that the assumed structure for a network,S ′, is correct when it is possible to find a

distribution, p(C,X|S ′), that matches the data generating distributionp(C,X); otherwise, the

structure isincorrect4,5. Maximum likelihood estimation is one of the main methods to learn the

parameters of the network. When there are missing data in training set, the EM algorithm can

be used to maximize the likelihood.

As a direct consequence of the analysis in the previous section, a Bayesian network that has

the correct structure and the correct parameters is also optimal for classification because the

a-posteriori distribution of the class variable is accurately represented. Thus, there is great moti-

vation for obtaining the correct structure when conducting semi-supervised learning. Somewhat

surprisingly, the option of searching for better structures has not been proposed by researchers

who have previously witnessed the performance degradation when learning with unlabeled

data. In the following sections, we describe different strategies for learning Bayesian network

classifiers with labeled and unlabeled data.

A. Switching between simple models and structure learning

If we observe performance degradation, we may try to find the “correct” structure for our

Bayesian network classifier. Alas, learning Bayesian network structure is not a trivial task.

One attempt, perhaps the simplest, to overcome performance degradation from unlabeled data

could be to assume a very simple model (such as the Naive Bayes), which is typically not the

correct structure, and switch to a more complex model as soon as degradation is detected. One

such family of models is the Tree-Augmented Naive-Bayes (TAN) [11]. While such a strategy

has no guarantees to find the correct structure, the existence of an efficient algorithm for learning

4These definitions follow directly from the definitions of correct and incorrect models described in the previous section.

5There is not necessarily a unique correct structure, e.g., if a structure is correct (as defined above), all structures that are

from the same Markov equivalent class are also correct since causality is not an issue.



the TAN models, both in the supervised case [11] and in the semi-supervised case [7, 42], makes

switching to TAN models attractive. However, while both the Naive-Bayes and TAN classifiers

have been observed to be successful in the supervised case [41], the same success is not always

observed for the semi-supervised case (Section III-C).

When such simple strategies fail, performing unconstrained structure learning is the alternative.

There are various approaches for learning the structure of Bayesian networks, using different

criteria in an attempt to find the correct structure.

The first class of structure learning methods we consider is the class of independence-based

methods, also known as constraint-based or test-based methods. There are several such algo-

rithms [43–45], all of them can obtain the correct structure if there are fully reliable independence

tests available; however not all of them are appropriate for classification. The Cheng-Bell-Liu

algorithms (CBL1 and CBL2) seem particularly well-suited for classification, as they strive to

keep the number of edges in the Bayesian networks as small as possible and the performance of

CBL1 on labeled data only has been reported to surpass the performance of TAN [46]. Because

independence-based algorithms like CBL1 do not explicitly optimize a metric, they cannot handle

unlabeled data directly through an optimization scheme like EM. To handle unlabeled data, the

following strategy was derived (denoted as EM-CBL): Start by learning a Bayesian network with

the available labeled data; then use EM to process unlabeled data followed by independence tests

with the “probabilistic labels” generated by EM, to obtain a new structure. EM is used again in

the new structure and the cycle is repeated, until two subsequent networks are identical. It should

be noted that such a scheme, however intuitively reasonable, has no convergence guarantees; one

test even displayed oscillating behavior.

A second class of structure learning algorithms are score-based methods. At the heart of most

score based methods is the likelihood of the training data, with penalty terms to avoid overfitting.

A good comparison of the different methods is found in [47]. Most existing methods cannot, in

their present form, handle missing data in general and unlabeled data in particular. The structural

EM (SEM) algorithm [48] is one attempt to learn structure with missing data. The algorithm

attempts to maximize the Bayesian score using an EM-like scheme in the space of structures

and parameters; the method performs an always-increasing search in the space of structures, but

does not guarantee the attainment of even a local maximum. When learning the structure of a

classifier, score based structure learning approaches have been strongly criticized. The problem



is that with finite amounts of data, the a-posteriori probability of the class variable can have a

small effect on the score, that is dominated by the marginal of the observables, therefore leading

to poor classifiers [11, 12]. Friedman et al. [11] showed that TAN surpasses score-based methods

for the fully labeled case,when learning classifiers. The point is that with unlabeled data, score-

based methods, such as SEM, are likely to go astray even more than it has been reported in the

supervised case; the marginal of the observables further dominates the likelihood portion of the

score as the ratio of unlabeled data increases.

B. Classification driven stochastic structure search (SSS)

Both the score-based and independence-based methods try to find the correct structure of

the Bayesian network, but fail to do so because there is not enough data for either reliable

independence tests or for a search that yields a good classifier. Consider the following alternative.

As we are interested in finding a structure that performs well as a classifier, it would be natural

to design algorithms that use classification error as the guide for structure learning. Here we

can further leverage on the properties of semi-supervised learning: we know that unlabeled data

can indicate incorrect structure through degradation of classification performance, and we also

know that classification performance improves with the correct structure. Thus, a structure with

higher classification accuracy over another indicates an improvement towards finding the optimal

classifier.

To learn the structure using classification error, we must adopt a strategy for searching through

the space of all structures in an efficient manner while avoiding local maxima. In this section,

we propose a method that can effectively search for better structureswith an explicit focus on

classification. We essentially need to find a search strategy that can efficiently search through

the space of structures. As we have no simple closed-form expression that relates structure with

classification error, it would be difficult to design a gradient descent algorithm or a similar

iterative method. Even if we did that, a gradient search algorithm would be likely to find a local

minimum because of the size of the search space.

First we define a measure over the space of structures which we want to maximize:

Definition 1: The inverse error measurefor structureS ′ is

inve(S
′) =

1
pS′ (ĉ(X)6=C)∑
S

1
pS(ĉ(X)6=C)

, (7)



where the summation is over the space of possible structures andpS(ĉ(X) 6= C) is the probability

of error of the best classifier learned with structureS.

We use Metropolis-Hastings sampling [49] to generate samples from the inverse error measure,

without having to ever compute it for all possible structures. For constructing the Metropolis-

Hastings sampling, we define a neighborhood of a structure as the set of directed acyclic graphs

to which we can transit in the next step. Transition is done using a predefined set of possible

changes to the structure; at each transition a change consists of a single edge addition, removal

or reversal. We define the acceptance probability of a candidate structure,Snew, to replace a

previous structure,St as follows:

min

(
1,

(
inve(S

new)

inve(St)

)1/T
q(St|Snew)

q(Snew|St)

)
= min

(
1,

(
pt

error

pnew
error

)1/T
Nt

Nnew

)
, (8)

where q(S ′|S) is the transition probability fromS to S ′ and Nt and Nnew are the sizes of

the neighborhoods ofSt andSnew respectively; this choice corresponds to equal probability of

transition to each member in the neighborhood of a structure. This choice of neighborhood and

transition probability creates a Markov chain which is aperiodic and irreducible, thus satisfying

the Markov chain Monte Carlo (MCMC) conditions [50]. We summarize the algorithm, which

we name Stochastic Structure Search (SSS), in Figure 4.

We addT as a temperature factor in the acceptance probability. Roughly speaking,T close

to 1 would allow acceptance of more structures with higher probability of error than previous

structures.T close to0 mostly allows acceptance of structures that improve probability of error.

A fixed T amounts to changing the distribution being sampled by the MCMC, while a decreasing

T is a simulated annealing run, aimed at finding the maximum of the inverse error measures.

The rate of decrease of the temperature determines the rate of convergence. Asymptotically in

the number of data, a logarithmic decrease ofT guarantees convergence to a global maximum

with probability that tends to one [51].

The SSS algorithm, with a logarithmic cooling scheduleT , can find a structure that is close

to minimum probability of error. There are two caveats though. First, the logarithmic cooling

schedule is very slow. We use faster cooling schedules and a starting point which is the best

out of either the NB classifier or the TAN classifier. Second, we never have access to the true

probability of error for any given structure,pS
error. Instead, we use the empirical error over the

training data (denoted aŝpS
error).



Procedure Stochastic structure search (SSS):

• Fix the network structure to some initial structure,S0.

• Estimate the parameters of the structureS0 and compute the probability of errorp0
error.

• Set t = 0.

• Repeat, until a maximum number of iterations is reached (MaxIter),

– Sample a new structureSnew, from the neighborhood ofSt uniformly, with probability1/Nt.

– Learn the parameters of the new structure using maximum likelihood estimation. Compute the

probability of error of the new classifier,pnew
error.

– AcceptSnew with probability given in Eq.(8).

– If Snew is accepted, setSt+1 = Snew and pt+1
error = pnew

error and changeT according to the

temperature decrease schedule. OtherwiseSt+1 = St.

– t = t + 1.

• Return the structureSj, such thatj = arg min0≤j≤MaxIter(p
j
error).

Fig. 4. Stochastic structure search algorithm

To avoid the problem of overfitting several approaches are possible. The first is cross-validation;

the labeled training data is split to smaller sets and several tests are performed using the

smaller sets as test sets. However, this approach can significantly slow down the search, and

is suitable only if the labeled training set is moderately large. Another approach is to penalize

different structures according to some complexity measure. We could use the BIC or MDL

complexity measure, but we chose to use the multiplicative penalty term derived from structural

risk minimization since it is directly related to the relationship between training error and

generalization error. We define a modified error term for use in Eq. (7) and (8):

(p̂S
error)

mod =
p̂S

error

1− c ·
√

hS(log 2n
hS

+1)−log(η/4)

n

, (9)

wherehS is the Vapnik-Chervonenkis (VC) dimension of the classifier with structureS, n is the

number of training records,η andc are between0 and1.

To approximate the VC dimension, we usehS ∝ NS, where NS is the number of (free)



parameters in the Markov blanket of the class variable in the network, assuming that all variables

are discrete. We point the reader to [52], in which it was shown that the VC dimension of a Naive

Bayes classifier is linearly proportional to the number of parameters. It is possible to extend this

result to networks where the features are all descendants of the class variable. For more general

networks, features that are not in the Markov blanket of the class variable cannot effect its value

in classification (assuming there are no missing values for any feature), justifying the above

approximation. In our initial experiments, we found that the multiplicative penalty outperformed

the holdout method and the MDL and BIC complexity measures.

C. Evaluation using UCI machine learning datasets

To evaluate structure learning methods with labeled and unlabeled data, we started with an

empirical study involving simulated data. We artificially generated data to investigate: (1) whether

the SSS algorithm finds a structure that is close to the structure that generated the data, and (2)

whether the algorithm uses unlabeled data to improve the classification performance. A typical

result is as follows. We generated data from a TAN structure with 10 features. The dataset

consisted of 300 labeled and 30000 unlabeled records. We first estimated the Bayes error rate

by learning with the correct structure and with a very large fully labeled dataset. We obtained a

classification accuracy of92.49%. We learned one Naive Bayes classifier only with the labeled

records, and another with both labeled and unlabeled records; likewise, we learned a TAN

classifier only with the labeled records, and another with both labeled and unlabeled records,

using the EM-TAN algorithm; and finally, we learned a Bayesian network classifier with our SSS

algorithm using both labeled and unlabeled records. The results are presented in the first row

of Table I. With the correct structure, adding unlabeled data improves performance significantly

(columns TAN-L and EM-TAN). Note that adding unlabeled data degraded the performance

from 16% error to 40% error when we learned the Naive Bayes classifier. The structure search

algorithm comes close to the performance of the classifier learned with the correct structure.

Figure 5(a) shows the changes in the test and train error during the search process. The graph

shows the first 600 moves of the search, initialized with the Naive Bayes structure. The error

usually decreases as new structures are accepted; occasionally we see an increase in the error

allowed by Metropolis-Hastings sampling.

Next, we performed experiments with some of the UCI datasets, using relatively small labeled



TABLE I

CLASSIFICATION RESULTS(IN %) FOR NAIVE BAYES,TAN, EM-CBL1 AND STOCHASTIC STRUCTURE SEARCH. XX -L

INDICATES LEARNING ONLY WITH THE AVAILABLE LABELED DATA .

Dataset Train Test NB-L EM- TAN-L EM- EM- SSS

# lab # unlab NB TAN CBL1

TAN

artificial 300 30000 50000 83.4±0.2 59.2±0.2 90.9±0.1 91.9±0.1 N/A 91.1±0.1

Satimage 600 3835 2000 81.7±0.9 77.5±0.9 83.5±0.8 81.0±0.9 83.5±0.8 83.4±0.8

Shuttle 100 43400 14500 82.4±0.3 76.1±0.4 81.2±0.3 90.5±0.2 91.8±0.2 96.3±0.2

Adult 6000 24163 15060 83.9±0.3 73.1±0.4 84.7±0.3 80.0±0.3 82.7±0.3 85.0±0.3

Chess 150 1980 1060 79.8±1.2 62.1±1.5 87.0±1.0 71.2±1.4 81.0±1.2 76.0±1.3

sets and large unlabeled sets (Table I). The results suggest that structure learning holds the most

promise in utilizing the unlabeled data. There is no clear ’winner’ approach, although SSS yields

better results in most cases. We see performance degradation with NB for every dataset. EM-

TAN can sometimes improve performance over TAN with just labeled data (Shuttle). With the

Chess dataset, discarding the unlabeled data and using only TAN seems the best approach. We

have compared two likelihood based structure learning methods (K2 and MCMC) on the same

datasets as well [34], showing that even if we allow the algorithms to use large labeled datasets

to learn the structure, the resultant networks still suffer from performance degradation when

learned with unlabeled data.

Illustrating the iterations of the SSS algorithm, Figure 5(b) shows the changes in error for the

shuttle dataset.

IV. L EARNING BAYESIAN NETWORK CLASSIFIERS FORHCI APPLICATIONS

The experiments in the previous section discussed commonly used machine learning datasets.

In the next sections we discuss two HCI applications that could benefit from the use of unlabeled

data. We start with facial expression recognition.
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Fig. 5. Train and test error during the structure search for the artificial data (a) and shuttle data (b) for the labeled and unlabeled

data experiments.

A. Facial Expression Recognition using Bayesian Network Classifiers

Since the early 1970s, Paul Ekman and his colleagues have performed extensive studies of

human facial expressions [53] and found evidence to support universality in facial expressions.

These “universal facial expressions” are those representing happiness, sadness, anger, fear, sur-

prise, and disgust. Ekman’s work inspired many researchers to analyze facial expressions by

means of image and video processing. By tracking facial features and measuring the amount of

facial movement, they attempt to categorize different facial expressions. Recent work on facial

expression analysis and recognition has used these “basic expressions” or a subset of them.

In [54], Pantic and Rothkrantz provide an in depth review of much of the research done in

automatic facial expression recognition in recent years.

One of the challenges facing researchers attempting to design facial expression recognition

systems is the relatively small amount of available labeled data. Construction and labeling of a

good database of images or videos of facial expressions requires expertise, time, and training

of subjects. Only a few such databases are available, such as the Cohn-Kanade database [55].

However, collecting, without labeling, data of humans displaying expressions is not as difficult.

Therefore, it is beneficial to use classifiers that can be learned with a combination of some

labeled data and a large amount of unlabeled data. As such we use (generative) Bayesian network

classifiers.

We have developed a real time facial expression recognition system [56]. The system uses a

model based non-rigid face tracking algorithm [57] to extract motion features (seen in Figure 7)



that serve as input to a Bayesian network classifier used for recognizing the different facial

expressions. There are two main motivations for using Bayesian network classifiers in this

problem. The first is the ability to learn with unlabeled data and infer the class label even

when some of the features are missing (e.g., due to failure in tracking because of occlusion).

The second motivation is that it is possible to extend the system to fuse other modalities, such

as audio, in a principled way by simply adding subnetworks representing the audio features.

1) Experimental Design:We use two different databases, a database collected by Chen and

Huang [58] and the Cohn-Kanade AU code facial expression database [55]. The first is a database

of subjects that were instructed to display facial expressions corresponding to the six types of

emotions. All the tests of the algorithms are performed on a set of five people, each one displaying

six sequences of each one of the six emotions, starting and ending at the neutral expression.

The video sampling rate was 30 Hz, and a typical emotion sequence is about 70 samples long

( ∼2s). Figure 6(upper row) shows one frame of each subject.

The Cohn-Kanade database [55] consists of expression sequences of subjects, starting from a

neutral expression and ending in the peak of the facial expression. There are 104 subjects in the

database. Because for some of the subjects, not all of the six facial expressions sequences were

available to us, we used a subset of 53 subjects, for which at least four of the sequences were

available. For each subject there is at most one sequence per expression with an average of 8

frames for each expression. Figure 6(lower row) shows some examples used in the experiments. A

summary of both databases is presented in Table II. We measure the accuracy with respect to the

classification result of each frame, where each frame in the video sequence was manually labeled

to one of the expressions (including neutral). This manual labeling can introduce some ’noise’

in our classification because the boundary between neutral and the expression of a sequence

is not necessarily optimal, and frames near this boundary might cause confusion between the

expression and the neutral.

2) Experimental results with labeled data:We start with experiments using all our labeled

data. This can be viewed as an upper bound on the performance of the classifiers trained with

most of the labels removed. For the labeled only case, we also compare results with training

of an artificial Neural network (ANN) so as to test how Bayesian network classifiers compare

with a different kind of classifier for this problem. We perform person independent tests by

partitioning the data such that the sequences of some subjects are used as the test sequences



TABLE II

SUMMARY OF THE DATABASES

Overall # of sequences # of sequences per subjectaverage # of frames
Database # of Subjects per expression per expression per expression

Chen-Huang DB 5 30 6 70

Cohn-Kanade DB 53 53 1 8

Fig. 6. Examples of images from the video sequences used in the experiment. Top row shows subjects from the Chen-Huang

DB, bottom row shows subjects from the Cohn-Kanade DB (printed with permission from the researchers).

and the sequences of the remaining subjects are used as training sequences. Table III shows

the recognition rate of the test for all classifiers. The classifier learned with the SSS algorithm

outperforms both the NB and TAN classifiers, while ANN does not perform well compared to

all the others.

3) Experiments with labeled and unlabeled data:We perform person-independent experiments

with labeled and unlabeled data. We first partition the data to a training set and a test set (2/3

training, 1/3 for testing), and choose by random a portion of the training set and remove the

labels. This procedure ensures that the distribution of the labeled and the unlabeled sets are the

same.

We then train Naive Bayes and TAN classifiers, using just the labeled part of the training data

and the combination of labeled and unlabeled data. We also use the SSS and the EM-CBL1

algorithms to train a classifier using both labeled and unlabeled data (we do not search for the



TABLE III

RECOGNITION RATE (%) FOR PERSON-INDEPENDENT TEST.

NB TAN SSS ANN

Chen-Huang Database 71.78 80.31 83.62 66.44

Cohn-Kandade Database77.70 80.40 81.80 73.81
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Fig. 7. Motion units extracted from face tracking.

structure with just the labeled part because it is too small for performing a full structure search).

Table IV shows the results of the experiments. We see that with NB and TAN, when using 200

and 300 labeled samples, adding the unlabeled data degrades the performance of the classifiers,

and we would have been better off not using the unlabeled data. We also see that EM-CBL1

performs poorly in both cases. Using the SSS algorithm, we are able to improve the results and

utilize the unlabeled data to achieve performance which is higher than using just the labeled

data with NB and TAN. The fact that the performance is lower than in the case when all the

training set was labeled (about 75% compared to over 80%) implies that the relative value of

labeled data is higher than of unlabeled data, as was shown by Castelli [26]. However, had there

been more unlabeled data, the performance would be expected to improve.

B. Applying Bayesian Network Classifiers to Face Detection

We apply Bayesian network classifiers to the problem of face detection, with the purpose of

showing that using our proposed methods, semi-supervised learning can be used to learn good

face detectors. We take an appearance based approach, using the intensity of image pixels as the



TABLE IV

CLASSIFICATION RESULTS FOR FACIAL EXPRESSION RECOGNITION WITH LABELED AND UNLABELED DATA.

Dataset Train Test NB-L EM- TAN-L EM- EM- SSS

# lab # unlab NB TAN CBL1

Cohn-Kanade 200 2980 1000 72.5±1.4 69.1±1.4 72.9±1.4 69.3±1.4 66.2±1.5 74.8±1.4

Chen-Huang 300 11982 3555 71.3±0.8 58.5±0.8 72.5±0.7 62.9±0.8 65.9±0.8 75.0±0.7

features for the classifier. For learning and defining the Bayesian network classifiers, we must

look at fixed size windows and learn how a face appears in such windows, where we assume

that the face appears in most of the window’s pixels. The goal of the classifier would be to

determine if the pixels in a fixed size window are those of a face or non-face.

We note that there have been numerous appearance based approaches for face detection, many

with considerable success (see Yang et al. [59] for a detailed review on the state-of the-art in face

detection). However, there has not been any attempt, to our knowledge, to use semi-supervised

learning in face detection. While labeled databases of face images are available, a universally

robust face detector is still difficult to construct. The main challenge is that faces appear very

different under different lighting conditions, expressions, with or without glasses, facial hair,

makeup, etc. A classifier trained with some labeled images and a large number of unlabeled

images would enable incorporating many more facial variations without the need to label huge

datasets.

In our experiments we used a training set consisting of 2429 faces and 10000 non faces

obtained from the MIT CBCL Face database #1 [60]. Each face image is cropped and resampled

to a 8x8 window, thus we have a classifier with 64 features. We also randomly rotate and translate

the face images to create a training set of 10000 face images. In addition we have available

10000 non-face images. We leave out1000 images (faces and non-faces) for testing and train

the Bayesian network classifier on the remaining 19000. In all the experiments we learn a Naive

Bayes, a TAN, and two general generative Bayesian network classifiers, the latter using the

EM-CBL1 and the SSS algorithms.

To compare the results of the classifiers, we use the receiving operating characteristic (ROC)
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Fig. 8. ROC curves showing detection rates of faces compared to false detection of faces of the different (SSS, TAN and NB)

classifiers and different ratios of labeled and unlabeled data, (a) with all the data labeled (no unlabeled data), (b) with95% of

the data unlabeled, (c) with97.5% of the data unlabeled.

curves. The ROC curves show, under different classification thresholds, ranging from0 to 1,

the probability of detecting a face in a face image,PD = P (Ĉ = face|C = face), against the

probability of falsely detecting a face in a non-face image,PFD = P (Ĉ = face|C 6= face).

We first learn using all the training data being labeled. Figure 8(a) shows the resultant ROC

curve for this case. The classifier learned with the SSS algorithm outperforms both TAN and

NB classifiers, and all perform quite well, achieving about96% detection rates with a low rate

of false alarm.

Next we remove the labels of95% of the training data (leaving only 475 labeled images) and

train the classifiers. Figure 8(b) shows the resultant ROC curve for this case. We see that NB

classifier using both labeled and unlabeled data performs very poorly. The TAN based on the 475

labeled images and the TAN based on the labeled and unlabeled images are close in performance,

thus there was no significant degradation of performance when adding the unlabeled data. The

classifier using all data and the SSS outperforms the rest with an ROC curve close to the best

ROC curve in Figure 8(a). Figure 8(c) shows the ROC curve with only 250 labeled data used.

Again, NB with both labeled and unlabeled performs poorly, while SSS outperforms the other

classifiers with no great reduction of performance compared to the two other ROC curves. The

experiment shows that using structure search, the unlabeled data was utilized successfully to

achieve a classifier almost as good as if all the data was labeled.



V. SUMMARY AND DISCUSSION

Using unlabeled data to enhance the performance of classifiers trained with few labeled data

has many applications in pattern recognition, computer vision, HCII, data mining, text recognition

and more. To fully utilize the potential of unlabeled data, the abilities and limitations of existing

methods must be understood.

The main contributions of this paper can be summarized as follows:

1) We have derived and studied the asymptotic behavior of semi-supervised learning based on

maximum likelihood estimation. We presented a detailed analysis of performance degra-

dation from unlabeled data, showing that it is directly related to modeling assumptions,

regardless of numerical instabilities or finite sample effects.

2) We discussed the implications of the analysis of semi-supervised learning on Bayesian

network classifiers; namely the importance of structure when unlabeled data are used

in training. We listed the possible shortcomings of likelihood-based structural learning

algorithms when learning classifiers, especially when unlabeled data are present.

3) We introduced a classification driven structure search algorithm based on Metropolis-

Hastings sampling, and showed that it performs well both on fully labeled datasets and

on labeled and unlabeled training sets. As a note for practitioners, the SSS algorithm

appears to work well for relatively large datasets and difficult classification problems that

are represented by complex structures. Large datasets are those where there are enough

labeled data for reliable estimation of the empirical error, allowing search for complex

structures, and there are enough unlabeled data to reduce the estimation variance of

complex structures.

4) We presented our real-time facial expression recognition system using a model-based face

tracking algorithm and Bayesian network classifiers. We showed experiments using both

labeled and unlabeled data.

5) We presented the use of Bayesian network classifiers for learning to detect faces in images.

We note that while finding a good classifier is a major part of any face detection system,

there are many more components that need to be designed for such a system to work

on natural images (e.g., ability to detect at multi-scales, highly varying illumination, large

rotations of faces and partial occlusions). Our goal was to present the first step in designing



such a system and show the feasibility of the approach when training with labeled and

unlabeled data.

Our discussion of semi-supervised learning for Bayesian networks suggests the following path:

when faced with the option of learning Bayesian networks with labeled and unlabeled data, start

with Naive Bayes and TAN classifiers, learn with only labeled data and test whether the model

is correct by learning with the unlabeled data. If the result is not satisfactory, then SSS can be

used to attempt to further improve performance with enough computational resources. If none of

the methods using the unlabeled data improve performance over the supervised TAN (or Naive

Bayes), either discard the unlabeled data or try to label more data, using active learning for

example.

Following our investigation of semi-supervised learning, there are several important open

theoretical questions and research directions:

• Is it possible to find necessary and sufficient conditions for performance degradation to

occur? Finding such conditions are of great practical significance. Knowing these conditions

can lead to the design of new useful tests that will indicate when unlabeled can be used or

when they should be discarded, or if a different model should be chosen.

• An important question is whether other semi-supervised learning methods, such as transduc-

tive SVM [61] or co-training [62], will exhibit the phenomenon of performance degradation?

While no extensive studies have been performed, a few results from the literature suggest

that it is a realistic conjecture. Zhang and Oles [2] demonstrated that transductive SVM can

cause degradation of performance when unlabeled data are added. Ghani [63] described

experiments where the same phenomenon occurred with co-training. If the causes of per-

formance degradation are similar for different algorithms, it should be possible to present

a unified theory for semi-supervised learning.

• Are there performance guarantees for semi-supervised learning with finite amounts of data,

labeled and unlabeled? In supervised learning such guarantees are studied extensively. PAC

and risk minimization bounds help in determining the minimum amount of (labeled) data

necessary to learn a classifier with good generalization performance. However, there are no

existing bounds on the classification performance when training with labeled and unlabeled

data. Finding such bounds can be derived using principles in estimation theory, based on



asymptotic covariance properties of the estimator. Other bounds can be derived using PAC

theoretical approaches. Existence of such bounds can immediately lead to new algorithms

and approaches, better utilizing unlabeled data.

• Can we use the fact that unlabeled data indicate model incorrectness to actively learn

better models? The use of active learning seems promising whenever possible, and it might

be possible to extend active learning to learn better models, not just enhancement of the

parameter estimation.

In closing, this work should be viewed as a combination of three main components. The theory

showing the limitations of unlabeled data is used to motivate the design of algorithms to search

for better performing structures of Bayesian networks and finally, the successful application to

the real-world problems we were interested in solving by learning with labeled and unlabeled

data.
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