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Abstract
Machine learning strongly relies on the covering test to assess whether a candidate hypothesis cov-
ers training examples. The present paper investigates learning relational concepts from examples,
termedrelational learningor inductive logic programming. In particular, it investigates the chances
of success and the computational cost of relational learning, which appears to be severely affected
by the presence of a phase transition in the covering test. To this aim, three up-to-date relational
learners have been applied to a wide range of artificial, fully relational learning problems. A first
experimental observation is that the phase transition behaves as an attractor for relational learn-
ing; no matter which region the learning problem belongs to, all three learners produce hypotheses
lying within or close to the phase transition region. Second, afailure regionappears. All three
learners fail to learn any accurate hypothesis in this region. Quite surprisingly, the probability of
failure does not systematically increase with the size of the underlying target concept: under some
circumstances, longer concepts may be easier to accurately approximate than shorter ones. Some
interpretations for these findings are proposed and discussed.

1. Introduction

In a seminal paper, Mitchell (1982) characterized machine learning (ML) as a search problem.
Indeed, every learner basically explores some solution space until it finds a (nearly) optimal or
sufficiently good solution. Since then much attention has been devoted to every component of a
search problem: the search space, the search goal, and the search engine.

The search space reflects the language chosen to express the target knowledge, called thehy-
pothesis language. Although most works in ML consider attribute-value languages (Mitchell, 1982;
Quinlan, 1986), first-order logic languages, or a subset thereof (Michalski, 1983), are required to
deal with structured application domains such as chemistry or natural language processing. This
paper focuses on learning in first-order logic languages, referred to asrelational learning(Quinlan,
1990) orinductive logic programming(Muggleton and De Raedt, 1994). This task has been tack-
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led by many authors since the early 1990s, following Bergadano et al. (1991), Pazzani and Kibler
(1992) and Muggleton and Feng (1992).

1.1 Relational Learning Complexity

In machine learning, assessing the quality of any hypothesis relies heavily on thecovering test,
which verifies whether a given hypothesish is satisfied by an exampleE. In the logic-based approach
to learning taken by inductive logic programming (ILP), the covering test most commonly used is
θ-subsumption (Plotkin, 1970; Muggleton, 1992; Nienhuys-Cheng and de Wolf, 1997), which has
been proved to be an NP-hard problem (Nienhuys-Cheng and de Wolf, 1997). Then, a major con-
cern facing relational learning is computational complexity. Most studies in computational learning
are rooted in the PAC-learning framework proposed by Valiant (1984)1, and the literature offers
many results regarding the worst-case and average-case complexity of learning various classes of
relational concepts (Cohen, 1993; D˘zeroski et al., 1992; Kietz and Morik, 1994; Khardon, 1998).

However, another emerging framework offers a more detailed perspective on complexity than
just worst- and average-case analysis. This framework, initially developed in relation to search
problems, is referred to as thephase transition (PT) framework(Hogg et al., 1996a), and it consid-
ers computational complexity as a random variable that depends on someorder parametersof the
problem class at hand. Computational complexity is thus modeled as a distribution over problem
instances (statistical complexity).

The advantage of the statistical complexity paradigm is twofold. First, it accounts for the fact
that, despite the exponential worst-case complexity of an NP-hard class of problems, most problem
instances are actually easy to solve; second, it shows that many very hard problem instances con-
centrate in a narrow region, termed themushyregion (Hogg et al., 1996a). Most problem instances,
in fact, are either under-constrained (they admit many solutions, and finding one of them is easy), or
over-constrained (to such an extent that it is easy to show that no solution exists). Thus, the compu-
tational complexity landscape of a problem class appears to be divided into three regions: the “YES”
region, including the under-constrained problem instances, where the probability of any of them be-
ing solvable is close to one; the “NO” region, including the over-constrained problem instances,
where the probability of any of them being solvable is close to zero; and the narrow mushy region in
between, across which the probability of a random problem instance being solvable abruptly drops
from almost one to almost zero. The mushy region includes the phase transition, defined as the
locus, in the parameter space, where the probability for a random problem instance being solvable
is 0.5. Interestingly enough, it has been observed that a large peak in computational complexity
usually appears in correspondence to the phase transition (Cheeseman et al., 1991; Williams and
Hogg, 1994; Hogg et al., 1996b; Walsh, 1998).2

To sum up, the phase transition region is, on average, the hardest part of the parameter space.
This fact has many theoretical and practical implications. One such implication is that any complex-
ity analysis should try to locate the PT region; to this aim, one must identify the order parameters for
the problem class at hand, and the critical values for these parameters corresponding to the location
of the phase transition. Second, any new algorithm must be evaluated on problem instances lying
in the PT region. Complexity results obtained on problem instances belonging to the YES or NO

1. For a detailed presentation see Kearns and Vazirani (1994).
2. In this paper we will use the terms “mushy region” and “PT region” as synonyms.
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regions are likely to be irrelevant for characterizing the class complexity, as pointed out by Hogg
et al. (1996a).

1.2 Phase Transition and Relational Learning

Previous experiments (Botta, Giordana, and Saitta, 1999; Botta, Giordana, Saitta, and Sebag, 2000;
Giordana and Saitta, 2000) have shown the presence of a phase transition in the covering test, both
in artificial and real-world learning problems. Starting from the obtained results, this paper offers
a deeper insight into the observed effects of the phase transition on the quality and complexity
of learning. The initial focus in the work by Botta, Giordana, and Saitta (1999); Botta, Giordana,
Saitta, and Sebag (2000) and by Giordana and Saitta (2000) was on complexity issues, especially on
finding ways around the dramatic complexity increase. However, this paper shows that the existence
of a phase transition in the covering test has much deeper and far reaching effects on the feasibility
of relational learning than just this increase in computational cost. Preliminary results in this new
direction have been presented by Giordana, Saitta, Sebag, and Botta (2000). The emergence of a
phase transition impacts machine learning in at least three respects:

• A region of significant size around the phase transition appears to contain extremely difficult
learning problems.

• Popular search heuristics in machine learning, such asinformation gain(Quinlan, 1990) or
minimum description length(Rissanen, 1978; Muggleton, 1995) are not reliable in the early
stages of top-down hypothesis generation. These heuristics, in fact, provide reliable informa-
tion only when the search enters the phase transition region.

• A low generalization error of a learned hypothesis does not imply that the “true” target con-
cept has been captured. This is particularly important for automated knowledge discovery,
where a major issue is to provide experts with new relevant insights into the domain under
analysis. As a matter of fact, good approximations of a complex concept can only be found
near the phase transition, irrespectively of the location of the concept. Then, discovering the
“true” concept is extremely unlikely if it lies outside the phase transition region.

The above mentioned experiments have been performed using a problem generator originally
designed to check the existence of a phase transition (Botta et al., 2000; Giordana and Saitta, 2000),
and later extended to generate artificial, fully relational learning problemswith known target con-
cept. A suite of some five hundred problems has been constructed, sampling the YES, NO and PT
regions. A popular relational learner, FOIL 6.4 (Quinlan, 1990), has been systematically applied
to these problems. Moreover, two other learners, SMART+ (Botta and Giordana, 1993) and G-Net
(Anglano et al., 1998), have been independently applied on a subset of the problems, selected in
order provide a comparison with different search strategies.

These systematic experiments shed some light on the behavior, capabilities and limitations of
existing relational learners. First of all, for all three relational learners considered, the PT region
is actually an attractor in the sense that whatever the location of the learning problem, with respect
to the phase transition, in most cases the learners conclude their search in the PT region. Second,
a failure regionappears, where all three learners fail to discover either the target concept, or any
acceptable approximation thereof. The failure region largely overlaps the PT region; learning prob-
lems close to the phase transition appear to be much harder than others. Unexpectedly, very long
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concepts happen to be easier to learn than shorter ones under some circumstances. Interpretations
for these findings are proposed, and their implications regarding relational learning are discussed.

The rest of the paper is organized as follows. To be self-contained, Section 2 summarizes pre-
vious results regarding the existence and location of the phase transition for the covering test (the
reader is referred to Giordana and Saitta, 2000, for a detailed presentation). Section 3 describes
the experimental setting used to estimate the impact of the phase transition on relational learning:
learning problems sampling the three regions (under-constrained or YES-region, PT or mushy re-
gion, over-constrained or NO-region) are constructed. Section 4 describes the empirical results
obtained on these problems by FOIL (Quinlan, 1990), SMART+ (Botta and Giordana, 1993) and
G-Net (Anglano et al., 1998). Some interpretations for these results are proposed in Section 5. Sec-
tion 6 discusses the extent to which these findings lead to the reconsideration of the current biases
and search strategies for relational learning, and the paper ends with some suggestions for further
research.

2. Phase Transition in Matching Problems

Machine learning proceeds by repeatedly generating and testing hypotheses; these hypotheses are
rated according to (among other criteria) their coverage of training examples (Mitchell, 1997). In
this paper, we will consider the simplest setting used in relational learning, where concepts are
described by sets of clauses in a restricted Datalog language (Date, 1995) having the form:

c : − h(X1,X2, . . . ,Xn). (1)

In (1) c is a classname3 andh a conjunction of literals that may contain variables or constants,
but no function symbols; negation is allowed, but only on single literals on the right hand side.
The variables occurring inh, if any, areX1,X2, . . . ,Xn As a matter of fact, Datalog is a hypothesis
language largely used in relational learning (Muggleton and De Raedt, 1994; Nienhuys-Cheng and
de Wolf, 1997), and concept descriptions in the form (1) have been used in many applications, since
the early approach by Michalski (1983).

In several learning approaches, notably in data mining, an exampleE is described as a set of
tables; each table corresponds to a basic predicater(X1,X2, . . . ,Xs) of the language, and each row
in the table is associated to a tuple of objects〈a1,a2, . . . ,as〉 in E such thatr(a1,a2, ...,as) is true.
Figure 1 shows an example for the sake of illustration.

Alternatively, in the logical approach taken by ILP (Muggleton, 1992), examples are repre-
sented as conjunctions of a possibly large number of ground facts (ground literals). The transfor-
mation between tabular representation and ground literal representation is immediate: every row
〈a1,a2, ...,as〉 in the table associated to a predicater is transformed into an equivalent ground literal
r(a1,a2, ...,as). For instance, the exampleE in Figure 1 can be represented as follows:

E : on(a,b), on(c,d), le f t(a,c), le f t(a,d), le f t(b,c), le f t(b,d). (2)

All three learning algorithms used in this paper, namely FOIL (Quinlan, 1990), SMART+ (Botta
and Giordana, 1993) and G-Net (Anglano et al., 1998), use the tabular representation of the exam-
ples, at least as the internal representation, and have been applied to the task of learning concepts in
form (1).

3. We consider the simple case in which the head of the clause does not have variables.

434



LEARNING IN A CRITICAL REGION

b
d

a

c

(a)

E X Y

a b

c d

on(X,Y)

X Y

a c

a d

left(X,Y)

b c

b d

(b)

X

a c

b c

left(X,Y),on(Y,Z)

d

d

Y Z

(c)

Figure 1: Tabular representation of structured examples of the block world. (a) Block world in-
stanceE composed of four objects,a, b, c, andd. (b) Tables describingE, assuming that
the description language contains only two predicates, namelyon(X,Y) and le f t(X,Y).
(c) Two substitutions forX,Y,Z that satisfy the hypothesish = le f t(X,Y),on(Y,Z). In
particular,h(a,c,d) = le f t(a,c),on(c,d) is true inE.

More precisely, given a description (an inductive hypothesis)h(X1,X2, . . . ,Xn) and an example
E described by the finite setR = {r1, r2, ...., rm} of tables, letA be the set of all constants occurring
in the tables ofR. Let us consider a substitutionθ = (X1/a1,X2/a2, ....Xn/an). Let ri(Xi1, ..,Xik) be
a literal occurring inh and built on predicate symbolri . Let, moreover,(Xi1/ai1, ...,Xik/aik) be the
substitution defined byθ for the variables〈Xi1, ..,Xik〉. If hθ is true inE (i.e.,h coversE) the tuple
〈ai1, ...,aik〉 must occur in the table ri associated to predicateri . An analogous condition must hold
for each literal inh. Then, when concept descriptions have form (1), thecovering testconsists in
checking if the formula∃X1,X2,...,Xn.h(X1,X2, . . . ,Xn) is true in a given exampleE. This means to find
a substitutionθ = (X1/a1,X2/a2, ....Xn/an) such thath(a1,a2, ...,an) is true.

It is easy to observe (see Giordana and Saitta, 2000, for details) that this covering test (or
matching problem) is equivalent to a constraint satisfaction problem (CSP) (Prosser, 1996): the
setX = {X1,X2, . . . ,Xn} of variables occurring inh corresponds to the CSP’s variable set, the setA
of constants inE corresponds to the domain(s) over which the variables may range4, and the setR
of tables inE corresponds to CSP’s set of constraints. Clearly, the hypothesish is the formula that
must be satisfied in the corresponding CSP.

Let us notice that a learning algorithm shall solve a number of matching problems (h, E) equal
to the number of training examples multiplied by the number of generated hypotheses. This product
can easily grow to the hundreds of thousands.

2.1 Order Parameters in the Constraint Satisfaction Problem

As the covering test is equivalent to a CSP, the theory developed for CSPs can be applied to the
matching problem. In this paper, we are interested only in predicates (constraints) with arity not
greater than two; thus, binary CSPs are the only ones of interest. In this paper, as well as in previous
experiments (Giordana and Saitta, 2000; Botta et al., 1999), we have adopted the standard treatment

4. Each variableXi may take values in a specific setA i . Then,A is the union ofA i ’s.
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of binary CSP provided by Smith and Dyer (1996) and Prosser (1996). Hence, we will just recall
here a few basic notions in order to make this paper as self-contained as possible. A binary CSP can
be represented as a graph, whose vertices correspond to the variables inX; an edge between two
vertices denotes the presence of a constraint on the corresponding variable pair.

Two parameters have been defined to characterize a CSP instance:constraint density p1, and
constraint tightness p2 (Smith and Dyer, 1996; Prosser, 1996). Letγ denote the number of edges in
the constraint graph; the constraint densityp1 can be defined as:

p1 =
γ

n(n−1)
2

=
2γ

n(n−1)
(3)

(We remind the reader thatn is the number of variables in formulah.) The tightness,p2, of a
constraint is defined as the fraction of value pairs ruled out by the constraint. IfN is the size of table
r(Xi ,Xj) (i.e., the number of literals built on the predicate symbolr, in ILP terminology), andL is
the size of the variable domain (assuming that all variables range over the same domain), constraint
tightnessp2 is defined as:

p2 = 1− N
L2 (4)

Studies on CSPs are based on stochastic models. For instance, Smith and Dyer (1996) propose
Model B, where the numbern of variables, the table sizeN, and the constraint densityp1 are kept
constant, and the constraint tightnessp2 varies from 0 to 1. A constraintr(Xi ,Xj) is constructed by
choosing the predicate symbolr and by uniformly selecting without replacement pairs of variables
〈Xi,Xj〉. Tables are then constructed by uniformly extracting, without replacement,N pairs〈ak,al 〉
of constants fromA×A.

In the standard CSP model,p1 is kept constant andp2 varies in[0,1] (Williams and Hogg, 1994).
Accordingly, the probabilityPsol that the current CSP instance to be satisfiable abruptly drops from
0.99 to 0.01 in the narrow “mushy” region. It has been observed that the complexity of either finding
a solution or proving that none exists shows a marked peak forPsol = 0.5, which is also called the
crossover point(Crawford and Auton, 1996; Smith and Dyer, 1996). Thep2 value corresponding
to the crossover point,p2,cr, is called thecritical value. It is conjectured that the critical value cor-
responds to an expected number of solutions close to 1 (Williams and Hogg, 1994; Smith and Dyer,
1996; Prosser, 1996; Gent and Walsh, 1996); experimentally, unsatisfiable instances (admitting no
solution) are computationally much more expensive, on average, than satisfiable ones.

Some limitations of Model B (Smith and Dyer, 1996), regarding the asymptotic complexity,
have been pointed out by Mitchell et al. (1992) and Achlioptas et al. (1997). However, this model
can be considered adequate for the limited problem ranges considered in this paper and in relational
learning in general.

2.2 The Phase Transition in Matching Problems

Let us briefly describe the framework used by Botta et al. (1999) and Giordana and Saitta (2000) to
investigate the presence of a phase transition in matching.

An instance of the covering test is a pair (h, E) of (hypothesis - example). As previously defined,
X is the set of variables inh, A is the set of constants inE, andR is the set of tables inE. The
problem is to check whetherh can be verified inE, i.e., h coversE. A number of simplifying
assumptions have been considered:
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− all predicates in the language are binary,

− the hypothesish is conjunctive and contains only one occurrence of each ofm predicate
symbols,

− the constraint graph is connected, so that the corresponding CSP cannot be decomposed into
independent smaller ones,

− every tabler in R contains the same numberN of tuples, and

− all variables range over the same domainA = {a1, . . . ,aL}.

The emergence of a phase transition in matching has been experimentally studied by constructing a
large number of matching problem instances. Each instance (h, E) can be characterized by a 4-tuple
(n,N,m,L), where:

− n is the number of distinct variables inh,

− m is the number of distinct predicate symbols occurring inh,

− L is the total number of constants occurring inE, and

− N is the number of rows in each table inE.

The standard binary CSP order parametersp1 andp2 can be expressed in terms ofn, m, N and
L (Botta et al., 1999). However, we prefer to directly usen, m, N andL, because, unlikep1 andp2,
they have a natural interpretation in relational learning.

A systematic analysis of the form and location of the phase transition in the 4-dimensional space
(n,N,m,L) would have been practically impossible. Thes we have selectedm andL as principal
order parameters for running systematic experiments, whereasn and N have been considered as
secondary parameters. The reason for this choice is thatm andL are directly linked to hypothesis
and example complexity, respectively.

Nevertheless, it is worth noticing that most works on phase transitions consider just one order
parameter, a choice that makes both the analysis and the visualization of the results much easier.
In our case, however, the elimination of one of the two chosen parameters would lose fundamental
information; in fact, both the hypothesis and the example contribute in an essential way to the
phenomenon. Even a combined parameter, such as Walsh’sκ parameter (Walsh, 1998), could not
retain all the relevant information.

The artificial problem generator, used for the experiments, is inspired by Model B proposed by
Smith and Dyer (1996). For any 4-tuple(n,N,m,L) with m≥ n−1, a thousand matching problems
(h, E) have been stochastically constructed as follows:

• We first constructh such that it is connected5 (first part in the right-hand side), and then the
remaining (m−n+1) literals are added:

h(X1 . . .Xn) =
n−1∧
i=1

ri(Xi ,Xi+1)∧
m∧

j=n

r j(Xi j ,Xkj ) (5)

5. The goal is to prevent the equivalent CSP from being decomposable into independent, smaller subproblems involving
disjoint sets of variables. Such decomposability, referred to ask-locality, greatly reduces the complexity of matching
(Kietz and Morik, 1994).
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h contains exactlyn variables andm literals, all built on distinct predicate symbols. The same
pair of variables may appear in more than one literal.

• For each predicate symbolr, a corresponding table is built up, by uniformly selectingN
elements without replacement from the set of all value pairs〈ai ,aj〉 from the setA×A. This
ensures that the table will not contain duplicate tuples.

Figures 2, 3 and 4 summarize the results obtained by Botta et al. (1999) and Giordana and
Saitta (2000). The experiments have been done using a simple variant of a classical back-tracking
algorithm (see Giordana and Saitta, 2000, for details). For each tuple(n,N,m,L) one thousand
problems have been generated and the percentage of successPsol has been recorded. When plotted
in the plan(m,L) (Figure 2), it shows the existence of a very steep phase transition even for a small
numbern of variables.

Figure 2: ProbabilityPsol that a random hypothesis covers a random example, averaged over one
thousand pairs(h,E) for each(m,L) point. A hypothesish containsn = 10 variables and
is associated tom tables, each one containingN = 100 rows involvingL constants. On the
horizontal plane, the contour plots corresponding toPsol values in the interval[0.1,0.9]
have been projected.

As the numbern of variables increases, the phase transition moves away from the axes and the
average search complexity correspondingly increases; a similar effect occurs when the table sizeN
increases (see Figure 3).

Figure 4 shows the average computational cost of the covering test, measured in seconds, on a
Sparc Enterprise 450. The average complexity grows, and the phase transition becomes narrower
as the numbern of variables increases. As mentioned above, the matching algorithm was a basic
one. Using more sophisticated CSP algorithms, the height of the peaks could be somewhat reduced
(Maloberti and Sebag, 2001), but the peaks are still clearly noticeable (Hogg et al., 1996b).
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(a)n = 4, 6, 10, 14, withN = 100 (b)N = 50, 80, 100, 130, withn = 10

Figure 3: Location of the phase transition (contour plot corresponding toPsol = 0.5) in the(m,L)
plane for various values ofn (left) andN (right).

3. Goals and Experimental Setting

This section describes the problems used to investigate the impact of the presence of a phase tran-
sition on relational learning. Surprisingly, this impact is not limited to the obvious increase in
computational complexity when the search for hypotheses enters the mushy region; it also deeply
affects both the quality and the meaningfulness of the learned knowledge.

3.1 Generating Artificial Learning Problems

A relational learning problemΠ is a triple (h,EL,ET), whereh is a target concept description
that has to be discovered by a learning algorithm, andEL and ET are the learning and test sets,
respectively. Every exampleE belonging toEL or ET is represented as a set ofm tables, each one
identified by a different predicate symbolr from a setR.

For the sake of simplicity, we consider binary predicates (tables) only, as previously done by
Giordana and Saitta (2000) (see Section 2.2). Moreover, we assume that all positive examples inEL

and inET are perfectly discriminated by a single clause of type (1), where the right hand side

h(X1,X2, ...,Xn) = r1(X11,X12), . . . , rm(Xm1,Xm2) (6)

is a connected conjunction of literals, constructed as explained in Section 2.2. Finally, as we require
that every predicate defined in the examples occurs exactly once in description (6), all the predicates
in the description language are equally relevant. A complementary set of experiments (not reported
in this paper) shows that this restriction does not affect the results to a significant extent.

As said above, in order to keep the computational cost within reasonable limits, the numbern
of variables is fixed at four (n = 4) in all target concepts.6 Each exampleE has been generated

6. Note that up-to-date relational learners deal with similar restrictions. For instance, in the Mutagenesis domain (King
et al., 1995), the maximum number of chemical atoms considered in a hypothesis, corresponding here to the number
of distinct variables, varies from 3 to 5.
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(a)n = 4 (b) n = 6

(c) n = 10 (d)n = 14

Figure 4: Computational cost for a single covering test (measured in seconds on a Sparc Enterprise
450) for various values of the numbern of variables. Each point is the average on 1000
matching problems, as in Figure 2. Figure (a) corresponds to the case considered in the
paper (n = 4).

following the procedure described in Section 2.2. Again, for computational reasons, the numberN
of literals is fixed at 100 (N = 100).7

In order to visit as uniformly as possible the YES, NO and mushy regions, while avoiding an
exhaustive exploration, 451 pairs(m,L) have been uniformly selected without replacement, where
m ranges in[5,30] andL ranges in[12,40].

For each selected pair(m,L) an artificial learning problemΠm,L is constructed; the target con-
cept description is constructed as described in Section 2.2. The training and test examples are
constructed as in Section 2.2, as well, and then stochastically modified to address the following
problem. If(m,L) lies in the YES region (on the left of the phase transition), by construction the
concept description will almost surely cover any stochastically constructed example. In other words,
the training and test sets would contain a large majority of positive examples (the ratio of negative

7. Given the large number of possible arguments (2×m×N = 200m), it seldom happens that an example involves less
thanL constants. The only effect of small variations ofL from example to example is a (very) slight increase on the
apparent width of the phase transition region. A similar argument can be put forward for the uniformity of theN
value in all tables.
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versuspositive examples is 1 to 106 or higher). Symmetrically, if(m,L) lies in the NO-region (on
the right of the phase transition), the training and test sets would contain a large majority of negative
examples.

However, it is widely acknowledged that ill-balanced datasets make learning considerably more
difficult. As this additional difficulty might blur the results and their analysis, we construct balanced
training and test sets, each consisting of 100 positive and 100 negative examples. The example
generator is then modified; a repair mechanism is added to ensure the fair distribution of the training
and test sets for learning problems lying outside the phase transition region. As a consequence, the
generation of the examples proceeds as follows.

Function Problem Generation(m,L)

Construct a descriptionh with m literals of conceptc.
EL = DataGeneration(m,L,h).
ET = DataGeneration(m,L,h).
ReturnΠ = (h,EL,ET).

Function Data Generation(m,L,h)

nb positive = 0, nbnegative = 0
Let E = /0
while nb positive< 100 or nbnegative< 100do

Generate a random exampleE

if E is covered byh then
if nb positive= 100 then

E = ChangeToNegative(h, E)
Set label = NEG

elseSet label = POS
else

if negative= 100 then
E = ChangeToPositive(h, E)
Set label = POS

elseSet label = NEG
E = E ∪{ (E,label) }
if label = POSthen nb positive = nbpositive + 1

elsenb negative = nbnegative + 1
end
ReturnE .

Function ProblemGeneration first constructs a descriptionh of the target conceptc; then, the
training and test sets are built by the function DataGeneration. The latter accumulates examples
constructed with the stochastic procedure described in Section 2. When the maximum number
of positive (respectively, negative) examples is reached, further examples are repaired using the
ChangeToNegative (respectively, ChangeToPositive) function, to ensure that the training and test
sets are well balanced. Function ChangeToPositive turns a negative exampleE into a positive one,
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by inserting into its tables a proper set of tuples, satisfying the conditions set inh, randomly selected
in the spaceA4.

Function ChangeToPositive(h, E)

Uniformly select four constants,a1,a2,a3,a4, from A.
Let θ denote the substitutionθ = {X1/a1, X2/a2, X3/a3, X4/a4}
for each literal rk(Xi,Xj) in h, do

if tuple〈ai ,aj〉 does not already occur in tablerk of E then
select randomly and uniformly a tuple occurring in tablerk

and replace it by〈ai ,aj〉
end
ReturnE.

Conversely, function ChangeToNegative modifiesE in order to prevent it from being covered
by h. Let θ = {X1/a1, X2/a2, X3/a3, X4/a4} be a substitution verifyingh in an exampleE. Let
(Xj/aj) (2≤ j ≤ 3)8 be the j-th element ofθ, and letrk(Xi,Xj) be one of the literals inh. In order
to falsify h(a1,a2,a3,a4) in E it is sufficient to delete tuple〈ai ,aj〉, from the table associated tork.
Unfortunately, this would decrease the numberN of tuples in a table. To avoid this problem it is
sufficient to add a new tuple (in substitution of〈ai ,aj〉) that is guaranteed not to satisfyh. This is
done in either one of two alternative ways. First, we search for a constanta′j that does not occur in
the left column of the tables associated to the literals where variableXj occurs on the left hand side.
If such construct exists, tuple〈ai ,aj〉 is replaced with〈ai ,a′j〉. Otherwise,〈ai ,aj〉, is replaced with a
tuple already existing in the table ofrk but selected among the ones that do not contribute to satisfy
h.9

Function ChangeToNegative(h, E)

Build the setΘ of all substitutions{X1/a1, X2/a2, X3/a3, X4/a4} such that〈a1,a2,a3,a4〉
satisfiesh
while Θ is not emptydo
Randomly select an atomrk(Xj ,Xi) in h
Replace〈aj ,ai〉 in tablerk with a new tuple〈a′j ,a′i〉

such that the number of alternative ways in whichh is satisfied decreases
RecomputeΘ
end
ReturnE.

3.2 The Learners

Three learning strategies have been considered: a top-down depth-first search, a top-down beam
search, and a genetic algorithm based search.

Most learning experiments presented in this paper have been done using the top-down learner
FOIL (Quinlan, 1990), which outputs a disjunction of conjunctive partial hypotheses. FOIL starts

8. As the constants are associated to “chained” variables, in order to falsifyh(a1,a2,a3,a4), it is sufficient to consider
the variables internal to the chain.

9. Notice that, in this case, the tuple distribution in the tables may be modified. However, this happens very rarely and
only whenL is small, so that the influence on the results is irrelevant.
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with the most general hypothesis, and iteratively specializes the current hypothesisht by adding to
its body the “best” conjunctrk(Xi,Xj), according to some evaluation criterion, such as Information
gain (Quinlan, 1990, 1986) or minimum description length (MDL) (Rissanen, 1978). When any
specialization able to improveht can be found, the latter is retained, all positive examples covered
by ht are removed from the training set, and the search is restarted, unless the training set is empty.
The final hypothesiŝh returned by FOIL is the disjunction of all the partial hypothesesht .

Another top-down learner, SMART+ (Botta and Giordana, 1993), has also been used. The main
difference between FOIL and SMART+ resides in their search strategies; FOIL basically uses a
hill-climbing search strategy, whereas SMART+ uses a beam search strategy with a user-supplied
beam width.

m

L

3
L

2L

1L

m m m1 2 3

Inductive search path

tc
1

)ε
1

, L
( ε

1
,

T

tc
2

)ε
2

, L( ε
2

, T

tc
3

)ε
3

, L
( ε

3
,

T

Figure 5: Location of the learning problems in the(m,L) plane. Top-down learners visit candidate
hypotheses from left to right.

The search space visited by FOIL or SMART+ can be visualized as a path in the plane(m,L)
(see Figure 5). Both learners navigate in the plane moving from left to right, as the number of
literals in the current hypothesis is incremented at each step.

A third learner, named G-Net (Anglano et al., 1998) and based on genetic search, was also
considered. G-Net starts with an initial population of candidate hypotheses; these correspond to
problems randomly distributed on a segment of the horizontal lineL = |A| in the(m,L) plane. The
learner navigates on this straight line, moving to the right or to the left, since genetic operators
allow candidate hypotheses to be either specialized or generalized. As usual with evolutionary
computation-based search, the computational cost of G-Net is significantly higher than that of the
other two learners. Only a reduced number of experiments have therefore been performed with G-
Net, just to see whether a mixed top-down/bottom-up strategy would show any significant change
in the results of learning.

Other experiments also considered the relational learners PROGOL (Muggleton, 1995) and
STILL (Sebag and Rouveirol, 2000). In preliminary tests, PROGOL was never able to learn any hy-
pothesis in acceptable time. In a similar way, STILL systematically failed. STILL uses a bottom-up
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approach, based on the stochastic (uniform or biased) sampling of the matchings between a hypoth-
esis and the examples. Its failure is due to the uniform construction of the examples and the lack of
any domain bias.

3.3 Discussion

Let us summarize here all simplifications and assumptions. Some of them should facilitate the
search (legend+), while others rather hinder relational learning (legend−):

+ There are no constants in the target concept and no variables in the examples.

+ The training and test sets are equally distributed (100 positive and 100 negative examples),
without any noise.

+ All target concepts are conjunctive: a single hypothesish covers all positive examples and
rejects all negative ones.

+ Both target concept and examples are single definite clauses.

+ All predicates in the examples are relevant: they all appear in the target concept. No other
background knowledge is given to the learner.

+ variables in the description of the target concept are chained.

− All examples have the same size (N times the number of predicate symbols in the target
concept).

− All tables (predicate definitions) have the same number of rows in every example.

− All predicates are binary.

− All predicate arguments have the same domain of values.

Let us notice that, even if the structure of the target concept (m literals involvingn= 4 variables)
were known by the learners (which is obviously not the case), the size of the search space (42m)
prevents the solution being discovered by chance. Moreover, given the descriptionh of c, the
learning task amounts to finding the right bindings among the 2×m arguments involved in the
mbinary predicates, i.e., partitioning the 2m arguments into four subsets.

3.4 Goal of the Experiments

In order to investigate the impact of the phase transition on relational learning, our goal is to assess
the behavior of all considered learners depending on the position of learning problems with respect
to the phase transition. The behavior of each learner is examined with regards to three specific
criteria:

• Predictive accuracy. The accuracy is commonly measured by the percentage of test exam-
ples correctly classified by the hypothesisĥ produced by the learner.10 The accuracy is con-
sidered satisfactory if and only if it is greater than 80% (the issue of choosing this threshold
value will be discussed later).

10. The predictive accuracy was not evaluated according to the usual cross-validation procedure for two reasons. First of
all, the training and test sets are drawn from the same distribution; it is thus equivalent to doubling the experiments
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• Concept identification. It must be emphasized that a high predictive accuracy doesnot
imply that the learner has discovered the true target concept. The two issues must therefore
be distinguished. The identification is considered satisfactory if and only if the structure ofĥ
is close to that of the true target concept, i.e., ifĥ is conjunctive with the same size ash.

• Computational cost. The computational cost reflects both the total number of candidate
hypotheses considered by the learner, and the cost of assessing each of them on the training
set. Typically, the more candidate hypotheses in the phase transition region, the higher the
computational cost.

4. Results

This section reports the results obtained by FOIL, SMART+ and G-Net on the artificial relational
learning problems constructed as previously described.

4.1 Predictive Accuracy

Figure 6 summarizes the results obtained by FOIL with respect to predictive accuracy. As mentioned
earlier, 451 pairs(m,L) have been chosen in order to explore significant parts of the YES, mushy,
and NO regions. For each selected pair(m,L) a learning problemΠm,L = (h, EL, ET) has been
constructed, wherem is the number of literals inh andL the number of constants in the training/test
examples.

On each problem, FOIL either succeeds (legend “+”, indicating that the predictive accuracy on
the test set is greater than 80%), or fails (legend “·”).

Let us first comment on the significance of these results, with respect to the success threshold
and the learning strategy. First, the shape of the failure region (the “blind spot”) is almost inde-
pendent of the threshold used to define a failure case (predictive accuracy on the test set lower
than 80%). In a vast majority of cases, the hypothesesĥ learned by FOIL are either very accurate
(predictive accuracy close to 100%), or comparable to a random guess (predictive accuracy close to
50%). The threshold could thus be any value between 95% and 60%, without making any significant
difference in the shape of the blind spot.

Regarding the mere learning performances, it appears that FOIL succeeds mainly in two cases:
either when the target concept is simple (for low values ofm), or when the learning problem is far
(to the right) from the phase transition region.

The first case is hardly surprising; the simpler the target concept, the easier learning should be.
Much more unexpected is the fact that learning problems far to the right of the phase transition
appear to be easier to solve. In particular, the fact that increasing the number of constants11 in
the application domainfacilitatesrelational learning (everything else being equal, i.e., for the same
target concept size), is counter-intuitive. Along the same lines, it is counter-intuitive that increasing
the sizem of the target concept might facilitate relational learning (everything else being equal

and taking the average result, or performing a twofold cross-validation (Dietterich, 1998). We did not double the
experiments because of the huge total computational cost. Moreover, though the learning result obtained for(m,L)
is based on a single trial, it might be considered significant to the extent that other trials done in the same area give
the same result.

11. Note that form> 6 the learning problem moves away from the phase transition asL increases.
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Figure 6: FOIL’s competence map:successandfailure regions, forn = 4 andN = 100. The phase
transition region is indicated by the dashed curves, corresponding to the contour plots for
Psol = 0.9, Psol = 0.5, andPsol = 0.1, respectively, as determined by Giordana and Saitta
(2000)).

again, i.e., for the same number of constants). These remarks will be commented upon further in
Section 5.

4.2 Concept Identification

But what is it that really happens when FOIL succeeds or fails? Table 1 reports the characteristics
of the final hypothesiŝh produced by FOIL for a few representative learning problems.

The first column indicates the region the learning problem belongs to. The second one reports
the identifier of the problem, which will be referred to in the discussion. Columns 3 and 4 show
the parameters of the learning problem, i.e., the sizem of the target concept descriptionh, and the
numberL of constants in the examples. Columns 5 and 6 describe the hypothesisĥ learned by FOIL;
ĥ involves one or several conjunctive hypothesesht , iteratively produced by FOIL. The number of
suchht , noted|ĥ|, is given in Column 5. It should be remembered that the true target concepth is
conjunctive, i.e., a correct identification ofh implies |ĥ| = 1. The maximum, minimum and average
size of the conjunctive hypothesesht learned by FOIL are displayed in column 6 (legendm(ht )).
These are to be compared to the true sizem of the target concept description (column 3).
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The last three columns report the predictive accuracy ofĥ on the training and test set, and the
total CPU time required by FOIL to complete the learning task, measured in seconds on a Sparc
Enterprise 450. The learning problems in Table 1 can be grouped into three categories:

• Easyproblems, which are correctly solved; FOIL finds a conjunctive hypothesisĥ that accu-
rately classifies (almost) all training and test examples. Furthermore,ĥ is identical to the true
concept descriptionh, or differs by at most one literal. Problems of this type areΠ0 to Π5,
Π7, Π10, Π11, Π27 andΠ31. Most easy problems lie in the YES region; some others lie in
the mushy region for low values ofm (m≈ 6).

• Feasibleproblems, which are efficiently solved, even though the correct target concept de-
scription is not found. More precisely, FOIL learns a concept descriptionĥ which (a) is
predictively accurate (nearly all training and test examples are correctly classified), (b) con-
sists of a single conjunctive hypothesis, as the original target concept descriptionh, and (c)
shares many literals withh. However,ĥ is significantly shorter thanh (e.g., ĥ involves 9
literals versus 29 inh for problemΠ26); in many cases,̂h largely over-generalizesh. Most
feasible problems lie in the NO-region, rather far away from the phase transition. Problems
of this kind areΠ13, Π15, Π17, Π18, Π21, Π22, Π24 to Π26, Π33 andΠ35.

• Hard problems, which are not solved by FOIL. The learned concept descriptionĥ is the
disjunction of many conjunctive hypothesesht (between 6 and 15) of various sizes, and each
ht covers only a few training examples. From a learning perspective, over-fitting has occurred
(eachht behaves well on the training set, but its accuracy on the test set is comparable to that
of random guessing), related to an apparentsmall disjunctsproblem (Holte et al., 1989). Hard
problems lie in the PT region or in the NO region, but, in contrast to feasible problems, close
to the phase transition.

These results confirm that predictive accuracy may be related only loosely to the discovery of the
true concept.

It is clear that in real-world problems there is no way distinguishing between feasible and easy
problems, since the true concept is unknown. Again, we shall return to this point later on. A
summary of the average results obtained in the YES, NO and PT regions (Table 2) shows that most
hard problems are located in the mushy region; conversely, most problems in the PT region are hard.

A second remark concerns the location of the hypothesesht learned by FOIL. It is observed
that for all learning problems, except the easy ones located in the YES region,all hypotheses ht lie
inside the phase transition region(see Figure 7). This is the case no matter whether FOIL discovers
one or several conjunctive hypothesesht , and whatever the location of the learning problem, lying
in the mushy or in the NO region. More precisely:

– when the target concept lies in the mushy region and the problem is easy, FOIL correctly
discovers the true concept;

– for feasible learning problems, FOIL discovers a generalization of the true concept, which lies
in the mushy region; and

– for hard problems, FOIL retains several seemingly randomht ’s, most of which belong to the
mushy region.

As previously noted by Giordana and Saitta (2000), the phase transition does behave as an
attractor for the learning search. Interpretations of this finding will be discussed in Section 5.
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Accuracy [%] CPU Time
Region Problem m L |ĥ| m(ht) EL ET [sec]

Y Π0 5 15 1 3.00 100 100 10.3
E Π1 6 20 1 5.00 100 99.5 21.4
S Π2 7 19 1 7.00 100 100 52.3
- Π3 8 16 1 8.00 100 100 106.2
r Π4 9 15 1 9.00 100 100 69.1
e Π5 10 13 1 14.00 100 99 144.2
g Π6 10 16 8 < 10−13> 11.75 88 48.5 783.5
i Π7 11 13 1 11.00 100 100 92.2
o Π8 11 15 6 < 11−16> 13.50 85 53.5 986.2
n Π9 12 13 3 < 13−15> 14.00 98.5 83 516.4

Π10 13 13 1 13.00 100 100 455.9
Π11 14 12 1 13.00 100 98.5 297.0
Π12 13 31 13 < 1−8> 4.77 90.5 49.5 1317.3

N Π13 15 29 1 6.00 100 100 185.3
O Π14 15 35 2 < 5−7> 6.00 97.5 84.5 894.6
- Π15 15 38 1 6.00 100 99.5 101.5
r Π16 16 38 3 < 5−8> 6.33 97.5 90 1170.6
e Π17 18 24 1 10.00 100 100 196.4
g Π18 18 35 1 6.00 100 100 201.0
i Π19 19 26 2 < 1−8> 4.50 100 98.5 298.4
o Π20 21 18 8 < 1−10> 4.13 81.5 58 1394.9
n Π21 24 20 1 10.00 100 99.5 252.3

Π22 25 24 1 6.00 100 99 135.9
Π23 27 18 10 < 1−13> 5.60 94 72.5 1639.6
Π24 29 17 1 12.00 100 99.5 144.9
Π25 29 23 1 10.00 100 99.5 720.5
Π26 29 24 1 9.00 100 99 618.8
Π27 6 26 1 6.00 100 100 82.5
Π28 6 28 12 < 5−11> 8.08 91.5 50.5 815.4

P Π29 7 27 11 < 5−11> 8.27 92 53 1237.0
T Π30 7 28 11 < 1−10> 7.64 91.5 60.5 1034.2
- Π31 8 27 1 7.00 100 100 58.8
r Π32 11 22 5 < 1−12> 3.20 71.5 70.5 851.0
e Π33 11 27 1 8.00 99 98.5 250.4
g Π34 13 21 10 < 1−11> 4.10 85.5 63 1648.2
i Π35 13 26 1 9.00 100 99 476.8
o Π36 14 20 5 < 1−11> 4.80 94 88 722.7
n Π37 14 24 3 < 7−9> 7.67 99 92.5 774.0

Π38 17 14 8 < 13−17> 15.00 93 46 294.6
Π39 17 15 9 < 1−13> 5.00 78.5 66 916.8
Π40 18 16 8 < 1−15> 8.87 91 58.5 404.0
Π41 19 16 7 < 1−12> 8.14 83.5 60.5 1268.5
Π42 26 12 3 < 24−25> 24.33 80 58 361.4

Table 1: Hypotheses produced by FOIL for some representative learning problems.
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Region Nb of Pbs Percentage of Average nb of hyp. Avg on solved pbs
pbs solved pbs solved pbs unsolved Test acc. CPU time

YES 46 88.1% (37) 1 6.33 99.61 74.05
NO 195 72.8% (142) 1.27 8.28 99.61 385.43
PT 210 28.1% (59) 1.10 8.18 99.12 238.25

Total 451 52.8% (238) 1.12 7.60 99.45 232.58

Table 2: Summary of the experiments. Easy and feasible learning problems (Solved Pbs) are dis-
tinguished from hard problems (Unsolved Pbs).

Figure 7: Location distribution of conjunctive hypothesesht learned by FOIL, centered on the phase
transition region.

4.3 Computational Complexity

The computational complexity of FOIL’s search depends mostly on two factors: the number of
generated hypotheses, and the average number of their models12 in the examples.

For easy problems, one single hypothesisht (ĥ ≈ h) is constructed; the computational cost
remains low, even though it increases, as expected, when the average number of models ofht tends
to one.

For feasible problems, one single hypothesisht (ĥ most often overgeneralizesh) is constructed,
as well. In most cases, the computational cost is very low, and the average number of models is very
high.13

Finally, in the case of hard problems, many hypothesesht are constructed and the computational
cost is always very high. This might be explained as mostht lie in the phase transition region, and
some of them admit just one single model in the examples.

12. “Models” correspond to “alternative ways” of satisfying a hypothesis in an example.
13. A single exception can be seen in Table 1: for the learning problemΠ25, the average number of models is one, and

the computational cost is high.
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Everything else being equal, the learning cost is higher for problems in the NO region. One for
this higher complexity is the size of the hypothesis space, which exponentially increases with the
numberm of literals in h; this causes many more hypotheses to be considered and tested in each
learning step. Another cause is that the NO region includes many hard problems (see Figure 6); on
such problems, the PT region is visited again and again because many hypotheses are tried.

4.4 Comparison to other Learning Algorithms

The results presented so far have been obtained by FOIL. A natural question arises about the bias
of the specific learner employed.

In order to explore this issue, SMART+ and G-Net have been tested on the learning problems
reported in Figure 6. SMART+ uses a beam search strategy so that the system runs slower than
FOIL in proportion to the size of the beam. G-Net uses an elitist genetic algorithm, which repeats
a cyclic procedure that, at every iteration, explores a new inductive hypothesis, until it converges
to a stable solution. On the considered set of learning problems, a stable solution is reached only
after many thousands of iterations. As each iteration requires testing the newly created hypothesis
on the whole learning set, G-Net’s computational time is heavily affected by the presence of the
complexity peak in the mushy region. In the present experiments, the number of iterations has been
fixed to 50,000 for all runs. With this setting, the CPU time may range from several hours to several
days for a single problem.

Thus, due to the high computational cost, the comparison has been restricted to the subset of
problems reported in Table 1. The results are reported in Table 3. It appears that FOIL and SMART+
are discordant on 7 problems out of 43, in the sense that the same problem has been solved by one
of the algorithms but not by the other. Nevertheless, such problems appear to be on the border of
the blind spot (see Figure 6), where FOIL itself alternates successes and failures.

On all the other cases, there is a substantial agreement. In all runs the beam width of SMART+
has been fixed to 5. Increasing the width of the beam and granting very large computational re-
sources, SMART+ can solve a few more problems. However, it is unrealistic to use this approach
systematically. On the other hand, G-Net solved fewer problems than the other two systems. In
fact, G-net would need a higher number of iterations in order to converge, but this was prohibitive
because of the computational complexity. Tuning G-Net control parameters did not bring any sig-
nificant improvement.

SMART+ has also been applied to other problems (about 100) sampled randomly inside and
outside the blind spot, but far from the borders; in all cases successes and failures have been in
agreement with FOIL.

5. Interpretation

This section proposes an interpretation of the results reported so far. The discussion focuses on
three main questions: why is the learning search captured by the PT region? When and why does
relational learning miss the true target concept? When and why should relational learning fail to
find any accurate approximation of the target concept?
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SMART+ G-NET
Accuracy [%] CPU Time Accuracy [%]

Region Problem m L |ĥ| m(ht ) EL ET [sec] |ĥ| m(ht ) EL ET
Y Π0 5 15 1 3 100 99 130 1 3 100 99
E Π1 6 20 1 6 100 99.5 429 1 5 100 99.5
S Π2 7 19 1 7 99.5 100 667 21 9 100 73.5
- Π3 8 16 1 8 100 100 218 14 12 100 74
r Π4 9 15 1 9 100 100 99 13 16 100 67
e Π5 10 13 1 10 100 100 609 1 16 100 98
g Π6 10 16 - - - - 1305 21 12 100 58.5
i Π7 11 13 1 11 100 100 509 2 12 100 94.5
o Π8 11 15 - - - - 592 22 18 100 50.5
n Π9 12 13 - - - - 418 1 10 100 95

Π10 13 13 1 13 100 100 3368 24 12 100 48.5
Π11 14 12 1 14 100 100 1935 1 13 100 98.5
Π12 13 31 1 8 96.5 98 626 1 7 100 100

N Π13 15 29 1 7 99.5 100 1081 34 6 100 55.5
O Π14 15 35 4 7 100 97.5 743 29 6 100 68
- Π15 15 38 11 8 100 98 882 36 6 100 60
r Π16 16 38 2 7 98.5 100 514 1 6 100 99
e Π17 18 24 1 9 100 99.5 1555 28 8 100 54.5
g Π18 18 35 1 7 96 99 590 1 6 99.5 98.5
i Π19 19 26 8 8 100 99.5 1410 33 7 100 53
o Π20 21 18 1 12 100 99.5 2396 22 10 100 47.5
n Π21 24 20 10 10 99 93 2034 27 8 100 52

Π22 25 24 1 8 99 99.5 2331 30 6 99.5 57.5
Π23 27 18 1 10 100 97 3289 26 13 96.5 50.5
Π24 29 17 24 12 97.5 75 7004 27 11 100 53
Π25 29 23 1 9 100 99.5 2241 35 8 100 46.5
Π26 29 24 2 9 100 100 2887 30 8 97 51
Π27 6 26 - - - - - 17 9 99 86
Π28 6 28 1 6 97.5 100 932 34 8 100 51.5

P Π29 7 27 - - - - - 42 7 100 50.5
T Π30 7 28 1 7 98.5 100 396 32 8 100 57
- Π31 8 27 5 8 99 93.5 640 19 8 100 81.5
r Π32 11 22 - - - - - 30 8 100 50
e Π33 11 27 - - - - - 37 7 100 54.5
g Π34 13 21 - - - - - 33 7 99 49.5
i Π35 13 26 1 8 98.5 98 864 1 7 100 100
o Π36 14 20 - - - - - 29 9 100 44.5
n Π37 14 24 - - - - - 32 8 100 59

Π38 17 14 - - - - 4371 24 15 100 47.5
Π39 17 15 - - - - - 21 15 97 56
Π40 18 16 25 14 96 53 24172 24 13 100 46
Π41 19 16 - - - - - 21 13 100 52.5
Π42 26 12 - - - - 14273 29 10 99.5 47

Table 3: Hypotheses produced by SMART+ and G-Net for the same learning problems reported in
Table 1. Smart+ uses beam search, and the beam width was set to 5. Symbol ’-’, means
that the learning process reached the maximum allowed time of 6 hours, without finding a
solution. G-Net always run for a number of iterations fixed to 50,000.

5.1 Why the Phase Transition Attracts the Learning Search

Being a top-down learner, FOIL constructs a series of increasingly specific candidate hypotheses,
h1, . . . ,ht . The earlier hypotheses in the series belong to the YES region by construction.

If the most specific hypothesishi built up in the YES region is not satisfactory according to the
stop criterion (see below), FOIL moves into the PT region, andhi+1 belongs to it. It might also
happen that the most specific hypothesishj ( j > i) in the PT region is not satisfactory either; FOIL
then comes to visit the NO region.

Let us consider the stop criterion used in FOIL. The search is stopped when the current hypoth-
esis issufficiently correct, covering no or few negative examples; on the other hand, at each step, the
current hypothesis is required to besufficiently complete, covering asufficient numberof positive
examples. The implications of these criteria are discussed, depending on the location of the target
concept descriptionh with respect to the phase transition.
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Case 1: h belongs to the PT region.
By construction, the target concept descriptionh covers with probability close to 0.5 any random
example (Section 2.2); therefore, the repair mechanism that ensures the dataset is balanced is not
employed (Section 3.1). It follows that:

• Since any hypothesis in the YES region almost surely covers any random example, it almost
surely covers all training examples, both positive and negative. Therefore the searchcannot
stopin the YES region, but must proceed to visit the PT region.

• Symmetrically, any hypothesis in the NO region almost surely rejects (does not cover) any
random example; then, almost surely, it will cover no training examples at all. Although these
hypotheses are correct, they are too incomplete to be acceptable. Therefore, the search must
stop before reaching the NO region. As a consequence, FOIL is bound to produce hypotheses
ht lying in the PT region.

Case 2: h belongs to the NO region.
In this case, randomly constructed examples are almost surely negative (see Section 3.1). It follows
that any hypothesis in the YES region will almost surely cover the negative examples; this implies
that the search cannot stop in the YES region. On the other hand, any hypothesis in the NO region
will almost surely be correct (covering no negative examples); therefore, there is no need for FOIL
to go deeply into the NO region. Hence, FOIL is bound to produce hypothesesht lying in the PT
region, or on the verge of the NO region.

Case 3: h belongs to the YES region.
The situation is different here, since there exist correct hypotheses in the YES region, namely the
target concept itself and possibly many other hypotheses more specific than it. Should these hy-
potheses be discovered (the chances for such a discovery are discussed in the next subsection), the
search could stop immediately. But in all cases, the search must stop before reaching the NO re-
gion, for the following reason. Ash belongs to the YES region, randomly constructed examples are
almost surely positive examples (see Section 3.1). This implies that any hypothesis in the NO re-
gion will almost surely reject the positive examples, and will therefore be considered insufficiently
complete. In this case again, FOIL is bound to produce hypothesesht in the YES region or in the
PT region.

In conclusion, FOIL is unlikely to produce hypotheses in the NO region, whatever the location
of the target concept descriptionh is, at least when the negative examples are uniformly distributed.
Most often, FOIL will produce hypotheses belonging to the PT region, but it might produce a
hypothesis in the YES region ifh itself belongs to it. It is worth noting that such a behavior has also
been detected in several real-world learning problems (see Giordana and Saitta, 2000).

Analogous considerations hold for SMART+, and, more generally, for any top-down learner:
as maximally general hypotheses are preferred, provided that they are sufficiently discriminating,
searching in the NO region does not bring any benefit. It follows that the phase transitionbehaves
as an attractor for any top-down relational learner.

The experiments done with G-Net indicate that the same conclusion also holds for GA-based
learning, notwithstanding the strong difference between its search strategy and the top-down one.
The explanation offered for this finding is the following. The starting point in genetic search (the
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Figure 8: ProbabilityPd of a hypothesis discriminating any two examples, compared to the proba-
bility Psol of a hypothesis covering a random example. The crossover point is atPsol = .5.
Pd andPsol are estimated as an average from 90,000 randomly generated pairs (hypothe-
sis, example), with L = 16.

initial population of solutions) consists of random hypotheses, which are distributed on the horizon-
tal line L = |A|. Afterward, the evolutionary search focuses on the most fit hypotheses, i.e., where
the fitness function favors the mostdiscriminatingandsimplehypotheses.

On one hand, discriminating hypotheses are mostly found close to the phase transition (see
Figure 8). On the other hand, since simple hypotheses score higher than complex ones, everything
else being equal, the genetic search will favor hypotheses close to the phase transition, on the verge
of the NO region. Like FOIL and SMART+, G-Net will most often produce hypotheses in the PT
region (see Giordana and Saitta, 2000, for details).

In retrospect, this general attraction toward the phase transition can be explained if one looks for
hypotheses able to separate positive from negative examples. In fact, the probability that a random
hypothesis separates any two examples reaches its maximum in the PT region, and more precisely
at the crossover point (see Figure 8).

5.2 Correct Identification of the Target Concept

Given that the hypotheses selected by the learner are most often close to the phase transition, let us
examine why and when these hypotheses might differ from the true target concept descriptionh.

When h belongs to the mushy region, two possibilities have been observed (Table 1). Ifh
involves few literals (m≤ 6), then it is correctly identified. Otherwise, several hypothesesht are
retained, eachht covering a few positive training examples, and their disjunctionĥ performs very
poorly on the test set.
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 r0(X1,X2)  r1(X1,X2)  r2(X1,X2)  r3(X1,X2) r4(X1,X2)  r5(X1,X2)  r6(X1,X2)  r7(X1,X2)

 r4(X1,X3)
g=246.80

 r6(X4,X3)
g=1028.28 

 r5(X1,X3)
g=4239.64 

 r7(X4,X3)
g=1071.89 

 r3(X4,X3)
g=1179.06 

 r2(X1,X4)
g=982.56 

 r1(X2,X4)
g=129.24 

 r0(X3,X1)
g=213.73 

 r4(X3,X4)
g=985.66 

 r5(X3,X4)
g=3485.03 

 r6(X2,X4)
g=402.46 

 r7(X2,X4)
g=312.22 

 r3(X2,X4)
g=352.79 

 r2(X3,X2)
g=272.70 1|96)

 r5(X1,X3)
g=237.78 

 r0(X1,X4)
g=781.96 

 r4(X1,X3)
g=3928.51 

 r7(X2,X3)
g=979.65 

 r3(X2,X3)
g=1010.14 

 r6(X2,X3)
g=1013.87 

 r1(X4,X2)
g=129.24 

 r1(X3,X1)
g=205.21 

 r0(X4,X3)
g=963.29 

 r7(X1,X2)
g=1651.52 

 r6(X1,X2)
g=1355.43 

 r2(X4,X1)
g=225.23 

 r4(X4,X2)
g=320.77

 r5(X4,X2)
g=378.25

 r0(X1,X3)
g=246.80 

 r6(X4,X2)
g=1028.28 

 r5(X1,X2)
g=4329.64 

 r7(X4,X2)
g=1071.89 

 r3(X4,X2)
g=1179.06 

 r2(X1,X4)
g=982.56 

 r1(X3,X4)
g=129.24 

 r2(X1,X3)
g=237.78 

 r0(X1,X4)
g=781.96 

 r4(X1,X2)
g=3928.51 

 r7(X3,X2)
g=979.75 

 r3(X3,X2)
g=1010.14 

 r6(X3,X2)
g=1013.87 

 r1(X4,X3)
g=129.24 

 r1(X3,X1)
g=158.13 

 r0(X4,X3)
g=1011.54 

 r3(X1,X2)
g=1294.97 

 r7(X1,X2)
g=1471.76 

 r2(X4,X1)
g=225.23 

 r4(X4,X2)
g=320.77 

 r5(X4,X2)
g=378.25 

 r4(X3,X2)
g=121.57 

 r0(X3,X4)
g=1419.53 

 r5(X3,X2)
g=4563.94 

 r3(X1,X2)
g=1425.26 

 r6(X1,X2)
g=1071.68 

 r2(X3,X1)
g=982.56 

 r1(X4,X1)
g=129.24 

 r6(X3,X2)
g=270.37

 r4(X4,X3)
g=2179.51

R7(X3,X1)
g=1708.79

 r1(X3,X2)
g=663.91

 r1(X4,X2)
g=3431.41

 r7(X4,X3)
g=1220.88

 r7(X4,X3)
g=490.57

 r2(X1,X4)
g=1943.96

 r7(X3,X1)
g=1196.79

 r3(X3,X2)
g=452.89

 r1(X4,X1)
g=3366.04

R4(X4,X3)
g=1735.84

 r5(X2,X1)
g=532.38

 r4(X3,X2)
g=445.87

R7(X2,X1)
g=1708.79

 r1(X2,X3)
g=274.88

 r1(X4,X1)
g=4328.31

 r4(X2,X3)
g=296.44

 r2(X1,X4)
g=1943.96

 r7(X2,X1)
g=1196.79

R4(X4,X3)
g=1573.73

 r0(X2,X1)
g=1543.87

 r5(X2,X1)
g=532.38

 r0(X3,X1)
g=243.30

 r4(X4,X2)
g=3305.10

Figure 9: Visiting the specialization tree for problemΠ8,20. All specialization steps misled by the
information gain maximization are indicated with oblique dashed arrows; the incorrect
best literal is given with the associated information gain. In such cases, the choice is
forced to the best correct literal (indicated with a vertical plain arrow, together with the
associated information gain).

The reasons why a top-down learner should fail to identify along target concept (m > 6) are
illustrated with an example. Let us consider the target concept descriptionh for problemΠ8,20

(m= 8, andL = 20), which belongs to the mushy region:

h(X1,X2,X3,X4) = r0(X1,X2), r1(X2,X3), r2(X2,X3), r3(X3,X4),
r4(X1,X4), r5(X1,X4), r6(X3,X4), r7(X3,X4)

The top-down search proceeds by greedily optimizing the information gain. The choice for the
first literal is indeterminate14 since any predicate has, by construction,N = 100 models in every
example. But this does not penalize the search, as any choice is relevant since all predicates appear
in h by construction. All eight specialization paths, corresponding to all possible choices for the
first literal, are thus considered in parallel (Figure 9).

After a first literal (sayh1 = r0(X1,X2)) has been selected, the information gain of all literals
connected toh1 is computed, and the one with maximum information gain is retained. Unfortu-

14. In a real-world application, the first literal is selected on the basis of pure attribute-value-like information: the infor-
mation gain only depends on the number of occurrences of a predicate symbol in positive/negative examples.
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nately, it turns out that the best literal according to this criterion (e.g.,r6(X3,X2) with gain 270.37)
is incorrect, i.e., it is such that hypothesish2 = r0(X1,X2), r6(X3,X2) doesnot generalizeh; hence,
the search cannot recover and will fail, unless backtracking is used (see below).

On this particular problem, the maximization of the information gain appears to be seriously
misleading. In all but one of the eight specialization paths, the first specialization step (regarding
the second literal) fails as FOIL selects incorrect literals (displayed in Figure 9 with a dashed oblique
arrow, together with the corresponding information gain value).

When a specialization choice is incorrect, FOIL must either backtrack, or end up with an incor-
rect hypothesisht . In order to see the total amount of backtracking needed to find the true target
concept descriptionh, let us manually correct hypothesish2, and replace the wrong literal selected
with the best correct literal (literal with maximum information gain such thath2 does generalize
the true target concept). The best correct literal is indicated with a solid vertical arrow in Figure 9,
together with the corresponding information gain; clearly, the best correct literal appears to be often
poor in terms of information gain.

Unfortunately, it appears that forcing the choice of a correct second literal is not enough; even
thoughh2 is correct, the selection of the third literal is again misled by the information gain criterion,
in all branches but one. To pursue the investigation, let us force again the choice of the best correct
i-th literal, in all cases where the optimal literal with respect to information gain is not correct. All
repairs needed are reported in Figure 9.

These considerations show that greedy top-down search is most likely bound to miss the true
target concept, as there is no error-free specialization path for this learning problem.

5.3 Impact on the Search Strategy

According to Figure 9, a large amount of backtracking would be needed in order to discover the
true target concept from scratch. More precisely, the information gain appears to be reliable in the
late stages of induction, provided that the current hypothesis is correct (in the case of Figure 9, the
search needs to be “seeded” with four correct literals). In other words, the information gain criterion
can be used to transform aninformedguess (the first four literals) into an accurate hypothesis, if and
only if the guess has reached some critical size (in the particular case of problemΠ8,20, the critical
size corresponds to half the size of the true concept).

Let us define the size of the informed guessmk as the minimum number of literals such that,
with probability 0.5, FOIL finds the target concept descriptionh, or a correct generalization of it,
by refining amk-literal guess.

Figure 10 reports the critical sizemk(m,L) of an informed guess for all problemsΠm,L within
or close to the mushy region, obtained, as for problemΠ8,20, by a systematic backtracking. Figure
10 could thus be interpreted as areliability map of the information gain: high values ofmk(m,L)
indicate poor reliability.

These empirical limitations of the information gain criterion can be explained by the phase
transition paradigm. Let us consider the sequence of hypotheses explored by FOIL (or SMART+).
When the current hypothesishi belongs to the YES region, it covers any example with a number of
models that exponentially increases with the number of variables inhi , regardless of the example
label. This fact masks the distinction between correct and incorrect literals: the signal-to-noise ratio
is very low.
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Figure 10: Number of correct literals to be “generated” before information gain becomes reliable.

When the search enters the PT region, the information gain criterion becomes effective, and
guides the learner toward one among many discriminating hypotheses. However, the selected dis-
criminating hypothesis may significantly differ from the true target concept, due to earlier incorrect
choices.

To back up these considerations, the average and the standard deviation of the number of models
of a hypothesisht in an exampleE have been experimentally measured. Figure 11(a) reports the
average number of models for randomht andE, versus the numberm of literals inht . Hypotheses
involving 2, 3 and 4 variables have been considered; it appears that the number of models decreases
very quickly as one approaches the phase transition. Figure 11(b) shows the standard deviation of
the number of models, which is very high for allht in the YES region.

5.4 Correct Approximation of the Target Concept

According to the above discussion, the target concept descriptionh should have hardly any chance
to be correctly identified through top-down learning, when either its sizem or the numberL of
constants in the application domain are large, which is the case for all problems in the NO region.
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Figure 11: Number of models in a randomht in a randomE, versus the numbermof literals inht .

On the contrary, it is observed that FOIL does succeed in finding highly accurate hypotheses
(Figure 6) for many problems in the NO region, when both the target concept is large, and the
examples involve many constants (upper right region, large values ofm andL). A closer inspection
shows that this is the case whenm is more than twice the critical valuemcr, where the horizontal
line L = |A| crosses the phase transition line.

In order to see why this happens, let us consider a learning problem in the NO region. As the
sizem of the target concept increases, so does the amount of modifications needed to transform a
random example into a positive one (Section 3.1). The underlying distributions of the positive and
negative examples are increasingly different, which intuitively explains why it becomes easier to
separate them.

More formally, let us consider a generalizationgenc of the target concept; by constructiongenc is
complete, i.e., it covers all positive examples. On the other hand, ifgenc belongs to the NO region,
it almost surely rejects all random examples, and negative examples in particular (the argument
closely follows the one in Section 5.1). All generalizations ofh in the NO region are thuscomplete
and almost surelycorrect. Hence, if the learner ever discovers a generalizationgenc of the target
concept close to the NO region, the learning search stops becausegenc behaves perfectly on the
training set; asgenc behaves perfectly on the test set as well, learning has succeeded. From the
standpoint of predictive accuracy, the success of relational learning thus depends on the probability
of finding a generalizationgenc of h on the edge of the phase transition.

Let m andg denote the number of literals ofh andgenc, respectively. The number ofg-literal
generalizations ofh, denotedH(g,m), has been analytically computed (see Appendix A). As ex-
pected,H(g,m) reaches its maximum forg = m

2 . Figure 12 reportsH(g,m) versusg, for m= 22.

From Figure 13 one can see that the number of generalizations starts growing very fast asm
increases, and that half of them belong to the PT region whenm is greater than twice the critical
valuemcr.

Both considerations explain why relational learning is more likely to succeed when the sizem
of the target concept increasesand is at least twice as great as the critical valuemcr.
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Figure 12: NumberH(g,22) of g-literal generalizations of a 22-literal target concept descriptionh
versus g.

Figure 13: NumberH(mcr,m) of mcr-literal generalizations of am-literal target concept description
h, and numberSof all g-literal generalizations ofh for g≤ mcr.

6. Discussion and Conclusions

This paper presents a novel perspective on relational learning, based on the distributional analysis of
computational complexity, developed for combinatorial search and constraint satisfaction problems
(Hogg et al., 1996b). Following this new paradigm, experiments using a set of artificial problems
delivers two major lessons.
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The first lesson concerns the existence of an attractor for relational learning, namely the PT
region. This behavior is not specific to artificial learning problems; it also occurs in real-world
problems (King et al., 1995; Giordana et al., 1993), as reported by Giordana and Saitta (2000). This
behavior is observed for top-down and GA-based search strategies; it is explained by the common
learning bias toward simplicity (Occam’s Razor), and the fact that discriminating hypotheses mostly
lie close to the phase transition.

As the PT region concentrates the (empirically) most complex problem instances, it follows that
relational learning cannot sidestep the complexity barrier. How to scale up current algorithms (e.g.,
in order to learn concepts with more than four variables) thus becomes an open question. Indeed, the
most complex applications of relational learning that are described in the literature refer to concepts
with few literals and few variables (King et al., 1995; Giordana et al., 1993; Dolsak et al., 1998).

The second lesson concerns the existence of a “blind spot” for all relational learners considered
in the present study. Whatever the learning problem in this area, the hypotheses extracted from the
training set behave as random guesses on the test set. This blind spot adversely affects the scalability
of relational learning, too.

Actually, both results are explained by the same causes, related to the average number of mod-
els, associated to a pair (hypothesis, example), and its variance. More precisely, this number of
models is high for small-size hypotheses; the existing search criteria (e.g., information gain or min-
imum description length) turn out to mislead the search due to the high variance of this number.
Meanwhile, the structure of the substitution tree explains both the high computational cost in the
PT region, and the fact that discriminating hypotheses belong to it. Of course, the presence of noisy
examples in the training set, and/or irrelevant predicates in the description of the examples, would
only make things worse.

These results are worrying, as they suggest that current techniques cannot easily scale up and
acquire concepts more complex than those described in the current literature. Meanwhile, the need
for relational learning gets stronger in various large size application domains (e.g., learning from
visual data; learning from numerical engineering-related data). New approaches should therefore
be devised to address the above limitations.

One perspective for further research concerns the use of bottom-up search strategies for learn-
ing concepts in the NO region (that is, for characterizing rare events). The difficulty is twofold.
First of all, bottom-up learners are commonly considered less robust than top-down learners (being
sensitive to the order of consideration of the examples on one hand, and to noisy examples on the
other hand). Secondly, bottom-up operators such as least general generalization (lgg) or reduced
lgg (Nienhuys-Cheng and de Wolf, 1997) are not directly applicable to large size examples. The ar-
tificial examples considered in this paper globally contain from 500 to 3,000 tuples (ground literals,
in the ILP terminology) in their tables; such sizes are realistic in a numerical engineering context,
where meshes involve up to some hundred thousands finite elements.

An alternative might be to exploit any prior knowledge available, and to start the learning search
with a correct partial hypothesis (informed guess). In this way, the chance of the search being
misled would be significantly decreased. The limitation is that, even though prior knowledge would
significantly help in finding an accurate solution, the computational complexity of assessing any
candidate hypothesis would remain the same.

A third alternative could be to reconsider the learning strategyand the search criterion. More
specifically, it would make sense to restrict the exploration to the PT region, given that most relevant
hypotheses lie there.
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Appendix A.

Let c be a target concept whose descriptionh containsm literals, built onmdistinct binary predicate
symbols. The numberH(g,m) of g-literal generalizations ofh with the same number of variables
ashis computed according to the following reasoning.

Given the number of variablesn occurring inh, the number of possible variable pairs(Xi,Xj)
in a literal of h is K = n2. Any g-literal, n-variable concept description with the same predicate
symbols ash is a subset of byh if and only if all its variables are chained as inh.

Let r j (1≤ j ≤ K) denote the number of literals inh involving a given pair of variables. By
construction,

K

∑
j=1

r j = m (7)

A g-literal generalization ofh can be obtained by selectingsj literals from ther j ’s (1≤ j ≤K), such
that∑K

j=1sj = g.
Then, the number ofg-literal, n-variable generalizations ofh (up to variable renaming) is given

by:

H(g,m) =
K

∑
j=1

min(r j ,g−∑ j−1
i=1 si)

∑
sj=0

(
rK

v−∑K−1
i=1 si

)
K−1

∏
i=1

(
ri

si
). (8)

Let us notice thatH(g,m) is maximum when the numberssi are roughly equal tori
2 , that is,g is

aboutm
2 .
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