
Boosted Wrapper Induction

Dayne Freitag
Just Research

Pittsburgh, PA, USA
dayne@cs.cmu.edu

Nicholas Kushmerick
Department of Computer Science
University College Dublin, Ireland

nick@ucd.ie

Abstract

Recent work in machine learning for information extraction
has focused on two distinct sub-problems: the conventional
problem of filling template slots from natural language text,
and the problem of wrapper induction, learning simple ex-
traction procedures (“wrappers”) for highly structured text
such as Web pages produced by CGI scripts. For suitably reg-
ular domains, existing wrapper induction algorithms can effi-
ciently learn wrappers that are simple and highly accurate, but
the regularity bias of these algorithms makes them unsuitable
for most conventional information extraction tasks. Boost-
ing is a technique for improving the performance of a simple
machine learning algorithm by repeatedly applying it to the
training set with different example weightings. We describe
an algorithm that learns simple, low-coverage wrapper-like
extraction patterns, which we then apply to conventional in-
formation extraction problems using boosting. The result is
BWI, a trainable information extraction system with a strong
precision bias and F1 performance better than state-of-the-art
techniques in many domains.

Introduction
Information extraction (IE) is the problem of converting text
such as newswire articles or Web pages into structured data
objects suitable for automatic processing. An example do-
main, first investigated in the Message Understanding Con-
ference (MUC) (Def 1995), is a collection of newspaper ar-
ticles describing terrorist incidents in Latin America. Given
an article, the goal might be to extract the name of the perpe-
trator and victim, and the instrument and location of the at-
tack. Research with this and similar domains demonstrated
the applicability of machine learning to IE (Soderland 1996;
Kim and Moldovan 1995; Huffman 1996).

The increasing importance of the Internet has brought at-
tention to all kinds of automatic document processing, in-
cluding IE. And it has given rise to problem domains in
which the kind of linguistically intensive approaches ex-
plored in MUC are difficult or unnecessary. Many doc-
uments from this realm, including email, Usenet posts,
and Web pages, rely on extra-linguistic structures, such
as HTML tags, document formatting, and ungrammatical
stereotypic language, to convey essential information. Much

Copyright c
�

2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

recent work in IE, therefore, has focused on learning ap-
proaches that do not require linguistic information, but that
can exploit other kinds of regularities. To this end, several
distinct rule-learning algorithms (Soderland 1999; Califf
1998; Freitag 1998) and multi-strategy approaches (Freitag
2000) have been shown to be effective. Recently, statisti-
cal approaches using hidden Markov models have achieved
high performance levels (Leek 1997; Bikel et al. 1997;
Freitag and McCallum 1999).

At the same time, work on information integration
(Wiederhold 1996; Levy et al. 1998) has led to a need for
specialized wrapper procedures for extracting structured in-
formation from database-like Web pages. Recent research
(Kushmerick et al. 1997; Kushmerick 2000; Hsu and Dung
1998; Muslea et al. 2000) has shown that wrappers can be
automatically learned for many kinds of highly regular doc-
uments, such as Web pages generated by CGI scripts. These
wrapper induction techniques learn simple but highly accu-
rate contextual patterns, such as “to retrieve a URL, extract
the text between ”. Wrapper induction
is harder for pages with complicated content or less rigidly-
structured formatting, but recent algorithms (Hsu and Dung
1998; Muslea et al. 2000) can discover small sets of such
patterns that are highly effective at handling such complica-
tions in many domains.

In this paper, we demonstrate that wrapper induction tech-
niques can be used to perform extraction in traditional (nat-
ural text) domains. We describe BWI, a trainable IE sys-
tem that performs information extraction in both traditional
(natural text) and wrapper (machine-generated or rigidly-
structured text) domains. BWI learns extraction rules com-
posed only of simple contextual patterns. Extraction is trig-
gered by specific token sequences preceding and follow-
ing the start or end of a target field. For example, BWI
might learn the pattern � [< a href = "] � [http] �
for finding the beginning of a URL, and the pattern
� [. html] � [" >] � for finding the end, which would ex-
tract “http://xyz.com/index.html” from “ ����� �����”.

Of course, the documents used for traditional IE tasks do
not exhibit the kind of regular structure assumed in wrap-
per induction. Consider the task of extracting the speaker’s
name from a seminar announcement. A significant frac-
tion of documents in the seminar announcement corpus we

use for experiments have the speaker’s name prefixed by
“Who:”. Similarly, many speaker names begin with hon-
orifics such as “Dr.”. These observations suggest that sim-
ple contextual patterns such as � [who :] � [dr .] � could
be used to identify the start of the speaker’s name with high
precision.

However, while such a pattern may have high precision,
it will generally have low recall: this pattern strongly in-
dicates the beginning of a speaker’s name, but it occurs in
only a fraction of documents. To apply wrapper induction
techniques to IE from natural text, we must generate many
such simple patterns, and then combine their predictions in
some reasonable way. Previous work on learning rules for
information extraction assume that the final extractor will
be some combination, typically a disjunction, of individ-
ual rules, each one covering only a fraction of the training
phrases. However, whereas previous techniques learn in-
dividual rules that cover as many of the training examples
as possible, BWI learns rules that individually have limited
power and coverage, but that can be learned efficiently and
are easy to understand.

Boosting is a procedure for improving the performance
of a “weak” machine learning algorithm by repeatedly ap-
plying it to the training set, at each step modifying train-
ing example weights to emphasize examples on which the
weak learner has done poorly in previous steps (Schapire
and Singer 1998). The ability of boosting to improve upon
the performance of the underlying weak learner has been
verified in a wide range of empirical studies in recent years.

In this paper, we demonstrate that boosting can be used
effectively for information extraction. Our BWI algorithm
uses boosting to generate and combine the predictions from
numerous extraction patterns. The result is a trainable infor-
mation extraction system that, in our experiments, performs
better than previous rule learning approaches, and is com-
petitive with a state-of-the-art statistical technique.

In the remainder of this paper, we (1) formally describe
the extraction patterns BWI learns; (2) describe the BWI al-
gorithm; and (3) empirically evaluate BWI on eight docu-
ment collections.

Problem Statement
We begin by explaining how we treat IE as a classification
problem, and then describe the classifiers (wrappers) that
BWI learns.

Information Extraction as Classification. We treat doc-
uments as sequences of tokens, and the IE task is to identify
one or more distinguished token subsequences called fields.
Specifically, IE involves identifying the boundaries that in-
dicate the beginning and end of each field; below, the sym-
bols � and � refer to boundaries. We cast this as a classifica-
tion problem, where instances correspond to boundaries—
the space between any two adjacent tokens—and the goal is
to approximate two target extraction functions, � begin and� end:

� begin(�) =

�
1 if � begins a field
0 otherwise

Similarly, � end is 1 for field-ending boundaries and 0 other-
wise.

To learn such a function � (either � begin or � end), a
learning algorithm is given a training set � ��� ��� (�) ��� and
must output a function that approximates � .

Wrappers. A pattern is a sequence of tokens (e.g., [who
:] or [dr .]). A pattern matches a token sequence in a
document if the tokens are identical. (Below we enrich this
notion of matching when we describe BWI’s use of wild-
cards.)

A boundary detector 	 = ��
 ��� � is a pair of patterns: a
prefix pattern
 and a suffix pattern � . A boundary detector
(hereafter, simply “detector”) 	 = �

 ��� � matches a bound-
ary � if
 matches the tokens before � and � matches the
tokens after � . We treat a detector 	 as a function from a
boundary to � 0 � 1 � : 	 (�) = 1 if 	 matches � , and 0 other-
wise. Finally, associated with every detector 	 is a numeric
confidence value ��� .

A wrapper � = ��� ��� ��� � consists of two sets � =��� 1 ��� 2 ��������������� and � = ��� 1 ��� 2 ������� ������� of detectors,
and a function � : ["! � + !] # [0 � 1]. The intent is that �
(the “fore” detectors) identifies field-starting boundaries, �
(the “aft” detectors) identifies the field end boundaries, and� ($) reflects the probability that a field has length $.

To perform extraction using wrapper � , every bound-
ary � in a document is first given a “fore” score � (�) =%'& �)(+*,� & (�) and an “aft” score � (�) =

%-& �/.0*1� & (�).� then classifies text fragment �2� �3� � as follows:

� (� �3�) =

�
1 if � (�) � (�) � (�4 5�) 687
0 otherwise

�

where 7 is a numeric threshold.
The rationale is that � compares 7 to an estimate of the

probability of correct classification. The value of � (�) is
proportional to a maximum-likelihood estimate that a frag-
ment is a particular length, given that it is a target fragment.
If we assume that � (�) and � (�) are also proportional to
the conditional probability of finding a beginning or ending
boundary, respectively, then the product of the three values
is proportional to a naive Bayesian estimate with uniform
priors.

By varying 7 one can force a tradeoff between precision
and recall. In our experiments we use the full-recall setting7 = 0, because (as our experiments demonstrate) BWI is
generally biased toward precision.

The BWI algorithm
Learning a wrapper � involves determining the “fore” and
“aft” detectors � and � , and the function � , given the ex-
ample sets 9 and : . In this section, we describe BWI, our
algorithm that solves problems of this form.

Fig. 1 lists BWI. The function � reflects the prior proba-
bility of various field lengths. BWI estimates these probabil-
ities by constructing a frequency histogram � ($) recording
the number of fields of length $ were encountered in the
training set. To learn � and � , BWI boosts LearnDetector,
an algorithm for learning a single detector.

procedure BWI(example sets S and E)���
AdaBoost(LearnDetector ���)� �
AdaBoost(LearnDetector ���)	
�
field length histogram from � and �

return wrapper � = � � � � � 	�

Figure 1: The BWI algorithm.

procedure LearnDetector(example set �)
prefix pattern � � []
suffix pattern � � []
loop

prefix pattern ��� � BestPreExt(� �����
 ���)
suffix pattern � � � BestSufExt(� �����
 ���)
if score(��� � ���
) � score(� ����� �
)

if score(��� � ���
) � score(� �����
)� � the last � ��� + 1 tokens of � �
else return detector �������

else
if score(������� �
) � score(� �����
)� � the first � ��� + 1 tokens of � �
else return detector �������

Figure 2: The LearnDetector weak learner.

Boosting. Freund and Shapire’s generalized AdaBoost al-
gorithm maintains a distribution ��� (�) over the training ex-
amples. Initially, � 0 is uniform. On iteration , the weak
learner is invoked, resulting in hypothesis 	 � (what we have
called a detector), a weight � �"! is assigned to 	#� , and then
the distribution is updated as follows:� � +1(�) = � � (�)exp(�� � ! 	 � (�)(2 � (�) 1)) $&% �
where � (�) ''� 1 � 0 � is the label of � , and % � is a normal-
ization factor. AdaBoost simply repeats this learn-update
cycle (times, and then returns a list of the learned weak
hypotheses with their weights.

The LearnDetector Weak Learner. Fig. 2 shows the
weak learning algorithm LearnDetector. LearnDetector
generates a single detector; BWI invokes LearnDetector
(indirectly through AdaBoost) (times to learn the “fore”
detectors � , and then (more times to learn the “aft” detec-
tors � . LearnDetector iteratively builds out from the empty
detector � [] � [] � . At each step, LearnDetector invokes
the functions BestPreExt and BestSufExt, which search
for the best extension of length) (the lookahead parameter)
or less to the prefix and suffix (respectively) of the current
detector. These extensions are exhaustively enumerated.

The current detector and the best extensions are then com-
pared to maximize a scoring function. If an extension is
found which results in a detector that scores better than the
current one, then the first token of the extension (the right-
most of a prefix extension, the leftmost of a suffix extension)
is added to the appropriate part of the current detector, and
the process repeats. The procedure returns when no exten-
sion yields a better score than the current detector.

The function score() computes the score of detector	 = �
 ��� � . Cohen and Singer 1999 describe SLIPPER, a

boosting algorithm which infers a single rule at each step.
BWI’s scoring method is identical to that used by SLIPPER.
For a detector 	 , let * +� be the correctly classified training
boundaries (i.e., the boundaries in the training set + matched
by 	 and labeled 1), and *-,� be the incorrectly classified
examples. Cohen and Singer showed that training error is
minimized by using:

score() =

. � +� . �/,� �
and assigning detector 	 the confidence value:

� � =
1

2
ln 0 � +� + 1� ,� + 1#2 �

where � +� =
%4365#7

+8 � � (�), is the total weight of the cor-

rectly classified boundaries, ��� (�) is the weight of boundary� during boosting iteration , � ,� is a similar sum over the
set * ,� , and 1 is a small smoothing parameter.

Wildcards. As described so far, BWI learns only wrappers
that match exact token sequences. We have extended BWI to
handle wildcards. A wildcard is a special token that matches
one of a set of tokens. BWI uses the following wildcards:9 <Alph> matches any token that contains only alphabetic

characters9 <ANum>, contains only alphanumeric characters9 <Cap>, begins with an upper-case letter9 <LC>, begins with a lower-case letter9 <SChar>, any one-character token9 <Num>, containing only digits9 <Punc>, a punctuation token9 <*>, any token

Extending BWI to handle wildcards is straightforward: we
simply modify BestPreExt and BestSufExt to enumerate
all sequences of tokens and wildcards, rather than just to-
kens.

Experimental Results
We evaluated BWI on 16 information extraction tasks de-
fined over eight distinct document collections:9 SA: A collection of 486 seminar announcements. Fields:

speaker (speaker’s name); location (seminar location);
stime (starting time); and etime (ending time).9 Acq: A collection of 600 Reuters articles detailing copo-
rate acquisitions. Fields: acq (name of purchased com-
pany); and dlramt (purchase price).9 Jobs: A collection of 298 Usenet job announcements.
Fields: id (message identifier); company (company
name); title (job title).9 CS: A collection of Web pages listing the faculty of
30 computer science departments. Field: name (faculty
member names).

domain top-scoring boundary detectors example

SA-stime (
1 = � [time :], [<Num>] � ����� Time: 2:00 - 3:30 PM �������.
1 = � [], [- <Num> : <*> <Alph> �] �

CS-name (
1 = � [<LC> <*> <*> <Punc> <*> <*> <ANum> " <Punc>], [<FName>] � ����� cgi-bin/facinfo?awb"> Alan � Biermann < �����.
1 = � [� <LName>], [< <Punc> a <Punc> <Punc>] �

Figure 3: Examples of boundary detectors learned by BWI for the SA and CS domains. “ � ” is the return character. The
wildcards <FName> and <LName> stand for first name and last name; see details below.

9 Zagats: A collection of 91 Web pages containing restau-
rant reviews. Field: addr (addresses of restaurants).9 LATimes: A collection of 20 Web pages containing restau-
rant descriptions. Field: cc (credit cards accepted by
restaurants).9 IAF: A collection of 10 pages from an Web email search
engine. Fields: altname (person’s alternate name); and
org (host organization).9 QS: A collection of 10 pages from an Web stock quote
service. Fields: date (quote date); and vol (trading vol-
ume).

We chose these collections because they have been widely
used in previous research. The first three domains are typ-
ical for the traditional IE techniques, while the last five are
typical for the wrapper induction techniques. Fig. 3 gives
examples of wrappers learned by BWI for two of these tasks.

In our experiments, we adopt the standard cross valida-
tion methodology: the document collection is partitioned
several times into a training set and a testing set. We learn a
wrapper using the training set, and then measure its perfor-
mance using the testing set.

Given a test document, BWI extracts zero or more fields.
In order for an extraction to be counted as correct, the ex-
act boundaries of a target fragment must be identified. For
the “traditional” domains (SA, Acq and Jobs), we exploit the
assumption that each document contains at most one field,
and discard all but the highest-confidence prediction. In
the “wrapper” domains (CS, Zagats, LATimes, IAF and QS),
documents may contain multiple fields, so we keep all pre-
dictions with confidence greater than 7 = 0.

We evaluate performance in terms of three metrics: pre-
cision, the number of correctly extracted fields divided by
the total number of extractions; recall, the number of cor-
rect extractions divided by the total number of fields actu-
ally present in the documents, and F1, the harmonic mean
of precision and recall. We report all values as percentages.

Our experiments were designed to answer four questions:

1. What effect does the number of rounds of boosting (have
on performance?

2. What effect does the look-ahead parameter) have on per-
formance?

3. How important are wildcards?

4. How does BWI compare with other learning algorithms
on the same tasks?

To address Questions 1–3, we devised a set of experi-
ments using the four SA tasks, and we discuss the other do-

0

20

40

60

80

100

0 100 200 300 400 500

F1
Boosting iterations T

SA-stime
SA-etime

SA-location
SA-speaker

Figure 4: F1 performance on the SA tasks as a function of
the number of rounds of boosting (.

mains when the results are significantly different. To answer
Question 4, we compare BWI with four alternative learning
algorithms.

Question 1: Boosting. To measure sensitivity to the num-
ber of rounds of boosting, we fixed look-ahead at) = 3,
gave BWI the default wildcard set, and varied the number
of rounds of boosting from (= 1 to 500. As Fig. 4 sug-
gests, the number of rounds required by BWI to reach peak
performance depends on the difficulty of the task. On easy
tasks, such as SA-stime, BWI quickly achieves its peak per-
formance. On more difficult tasks, such as SA-speaker, as
many as 500 rounds may be required.

On the “wrapper” tasks, many fewer rounds of boost-
ing are required. For example, BWI stops improving af-
ter (= 5 on IAF-altname, and a single round of boosting
yields perfect performance on QS-Date. These sources are
formatted in a highly regular fashion, so just just a handful
of boundary detectors are needed.

Question 2: Look-Ahead. Performance improves with
increasing look-ahead) , as indicated in Fig. 5. For the
CS tasks, performance improvements are marginal beyond
a look-ahead of 3. This is fortunate, because training time
increases exponentially with look-ahead. With look-ahead
set to) = 3, BWI took 3,183 sec. to complete 100 rounds
of boosting using the default feature set for the speaker task
on a 300 MHz. Pentium II; with) = 4, it took 13,958 sec.

) speaker location stime etime
1 7.0 40.1 27.7 7.4
2 51.9 76.6 95.0 84.9
3 67.7 76.7 99.4 94.6
4 69.3 75.5 99.6 93.9

Figure 5: F1 performance on the SA tasks as a function of
look-ahead) .

wildcards speaker location stime etime
none 15.1 69.2 95.7 83.4

just <*> 49.4 73.5 99.3 95.0
default 67.7 76.7 99.4 94.6
lexical 73.5 — — —

Figure 6: F1 performance on the SA tasks as a function of
various wildcard sets.

However, much deeper lookahead is required in some do-
mains. For example, in the IAF-altname task,) = 3 results
in � 1 = 0, but) = 8 yields � 1 = 58 � 8. The explanation is
that IAF-altname requires a 30-token “fore” boundary detec-
tor prefix, but shorter prefixes have a very low score, so BWI
can find the correct prefix only with very deep lookahead.

Question 3: Wildcards. Wildcards are important to
achieve good performance on traditional IE problems. Fig. 6
presents F1 performance on the SA task with various wild-
card sets. In each case, we performed 500 rounds of boost-
ing with look-ahead set to 3. The “none” row lists perfor-
mance in the absence of wildcards; “just <*>” lists perfor-
mance with only the <*> wildcard; “default” lists perfor-
mance using the full set of eight wildcards listed above.

Finally, we evaluated BWI after adding task-specific lex-
ical resources in the form of three additional wildcards:
<FName> matches tokens in a list of common first names
released by the U.S. Census Bureau; <LName> matches to-
kens in a similar list of common last names; and <NEW>
matches tokens not found in /usr/dict/words on Unix
systems (“NEW” stands for “not an English word”). These
lexical resources increase F1 from 67.7 to 73.5 on the SA-
speaker task. It is common in traditional IE to use task-
specific lexicons as part of the extraction process. Our re-
sults show how such lexicons can be integrated with learning
in a way that leads to improved performance.

Question 4: Other Algorithms. Figs. 7–8 compares BWI
on the sixteen extraction tasks with four other state-of-
the-art learners: two rule learners (SRV (Freitag 1998)
and Rapier (Califf 1998)), an algorithm based on hidden
Markov models1, and the Stalker wrapper induction algo-

1The HMM in question has four fully connected “target” states,
a prefix and suffix, each of length four, and uses shrinkage to mit-
igate data sparsity. This model has shown state-of-the-art perfor-
mance on a range of IE tasks; see Freitag and McCallum (1999) for
details

rithm (Muslea et al. 2000).
For the four “traditional” domains, we used (= 500

boosting iterations and set the lookahead to) = 3, and used
the default wildcards. For the five “wrapper” domains we
use (= 50 and two different settings for) and the wild-
cards. For CS-name, Zagats-addr, LATimes-cc and QS-date,
we used) = 3 and the lexical wildcards. For IAF-altname,
IAF-org and QS-vol, we used) = 8 because (as described
above) the tasks require very long boundary detectors. Since
BWI is exponential in) , the only feasible way to run the
BWI with) = 8 was to use just the <*> wildcard.

We include precision and recall scores in order to illus-
trate an interesting aspect of BWI’s behavior—its precision
bias. The extractors produced by BWI tend to achieve higher
precision than the other learners, particularly the HMM,
while still managing good recall.

Conclusions

The automatic processing of machine-readable text is be-
coming increasingly important. Techniques for information
extraction—the task of populating a pre-defined database
with fragments from free text documents— are central to
a broad range of text-management applications.

We have described BWI, a novel approach to building a
trainable information extraction system. Like wrapper in-
duction techniques, BWI learns relatively simple contextual
patterns identifying the beginning and end of relevant text
fields. BWI repeatedly invokes an algorithm for learning
such boundaries. By using the AdaBoost algorithm, BWI re-
peatedly reweights the training examples so that subsequent
patterns handle training examples missed by previous rules.

The result is an extraction algorithm with a bias to high
precision (because the learned contextual patterns are highly
accurate) but with reasonable recall in many domains (due
to the fact that dozens or hundreds—but not millions—of
such patterns suffice for broad coverage). We have evaluated
BWI on a broad range of IE tasks, from traditional free text
to machine-generated HTML, and find that BWI is compet-
itive with state-of-the-art algorithms in most domains, and
superior in many.

Acknowledgements. This research was funded in part by
grant N00014-00-1-0021 from the US Office of Naval Re-
search, and grant ST/1999/071 from Enterprise Ireland.

References

D. Bikel, S. Miller, R. Schwartz, and R. Weischedel.
Nymble: a high-performance learning name-finder. In
Proc. ANLP-97, pages 194–201, 1997.

M.-E. Califf. Relational Learning Techniques for Natural
Language Information Extraction. PhD thesis, University
of Texas at Austin, 1998.

W. Cohen and Y. Singer. A simple, fast, and effective rule
learner. In Proc. Sixteenth National Conference on Artifi-
cial Intelligence, 1999.

SA-speaker SA-location SA-stime SA-etime
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

HMM 77.9 75.2 76.6 83.0 74.6 78.6 98.5 98.5 98.5 45.7 97.0 62.1
Rapier 80.9 39.4 53.0 91.0 60.5 72.7 93.9 92.9 93.4 95.8 96.6 96.2
SRV 54.4 58.4 56.3 74.5 70.1 72.3 98.6 98.4 98.5 67.3 92.6 77.9
BWI 79.1 59.2 67.7 85.4 69.6 76.7 99.6 99.6 99.6 94.4 94.9 93.9

Jobs-id Jobs-company Jobs-title Acq-acq Acq-dlramt
HMM — — — 38.6 72.3 50.4 53.2 63.0 57.7 32.8 29.2 30.9 49.3 63.5 55.5
Rapier 98.0 97.0 97.5 76.0 64.8 70.0 67.0 29.0 40.5 57.3 19.2 28.8 63.3 28.5 39.3
SRV — — — — — — — — — 40.7 39.4 40.1 48.1 67.0 56.0
BWI 100 100 100 88.4 70.1 78.2 59.6 43.2 50.1 55.5 24.6 34.1 63.4 42.6 50.9

LATimes-cc Zagats-addr IAF-altname IAF-org
HMM 98.5 100 99.3 97.7 99.5 98.6 1.7 90.0 3.4 16.8 89.7 28.4
Stalker 100 — — 100 — — 100 — — 48.0 — —
BWI 99.6 100 99.8 100 93.7 96.7 90.9 43.5 58.8 77.5 45.9 57.7

CS-name QS-date QS-vol
HMM 41.3 65.0 50.5 36.3 100 53.3 18.4 96.2 30.9
Stalker — — — 0 — — 0 — —
BWI 77.1 31.4 44.6 100 100 100 100 61.9 76.5

Figure 7: BWI compared with four competing algorithms on sixteen tasks.

Defense Advanced Research Projects Agency. Proc. Sixth
Message Understanding Conference (MUC-6). Morgan
Kaufmann Publisher, Inc., 1995.

D. Freitag and A. McCallum. Information extraction using
HMMs and shrinkage. In Proc. AAAI-99 Workshop on Ma-
chine Learning for Information Extraction, 1999. AAAI
Technical Report WS-99-11.

D. Freitag. Information extraction from HTML: Applica-
tion of a general machine learning approach. In Proc. Fif-
teenth National Conference on Artificial Intelligence, 1998.

D. Freitag. Machine learning for information extraction in
informal domains. Machine Learning, 39(2/3), 2000.

C. Hsu and M. Dung. Generating finite-state transducers
for semistructured data extraction from the web. J. Infor-
mation Systems, 23(8), 1998.

S. Huffman. Learning information extraction patterns from
examples. In Connectionist, Statistical, and Symbolic Ap-
proaches to Learning for Natural Language Processing,
volume 1040 of Lecture Notes in Artificial Intelligence,
pages 246–260. Springer-Verlag, Berlin, 1996.

J.-T. Kim and D. Moldovan. Acquisition of linguistic pat-
terns for knowledge-based information extraction. IEEE
Trans. on Knowledge and Data Engineering, 7(5):713–
724, 1995.

N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper In-
duction for Information Extraction. In Proc. 15th Int. Conf.
Artificial Intelligence, pages 729–35, 1997.

N. Kushmerick. Wrapper induction: Efficiency and expres-
siveness. Artificial Intelligence, 2000. In press.

T. Leek. Information extraction using hidden Markov mod-
els. Master’s thesis, UC San Diego, 1997.

A. Levy, C. Knoblock, S. Minton, and W. Cohen. Trends

and controversies: Information integration. IEEE Intelli-
gent Systems, 13(5), 1998.
I. Muslea, S. Minton, and C. Knoblock. Hierachical wrap-
per induction for semistructured information sources. J.
Autonomous Agents and Multi-Agent Systems, 2000. In
press.
R. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. In Proc. Eleventh
Annual Conference on Computational Learning Theory,
1998.
S. Soderland. Learning Text Analysis Rules for Domain-
specific Natural Language Processing. PhD thesis, Uni-
versity of Massachusetts, 1996. CS Tech. Report 96-087.
S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine Learning,
34(1/3):233–272, 1999.
G. Wiederhold. Intelligent Information Integration.
Kluwer, 1996.

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ec

is
io

n,
 B

W
I

Precision, other algorithm

HMM
Rapier

SRV
STALKER

0

20

40

60

80

100

0 20 40 60 80 100

R
ec

al
l,

B
W

I

Recall, other algorithm

HMM
Rapier

SRV

0

20

40

60

80

100

0 20 40 60 80 100

F1
, B

W
I

F1, other algorithm

HMM
Rapier

SRV

Figure 8: Graphical summaries of the data in Fig. 7. Each
point represents a comparison between BWI and one other
algorithm; points above the straight lines indicate domains
in which BWI performs better.

